Properties of Porphobilinogenase (PBGase), the enzyme complex converting porphobilinogen (PBG) into uroporphyrinogens, were comparatively studied in a wild strain D273-10B and its mutant B231 of Saccharomyces cerevisiae, Figure 1 shows the growth curves for both strains. The basic pattern of growth was observed but, although S. cerevisiae is a facultative aerobe and was grown on dextrose, a diauxic growth curve was not observed. The beginning of the exponential phase was slightly delayed for the mutant, so, its generation time (G = 3.20 h) was greater than that for the wild strain (G = 1.26 h). Optimum conditions for extracting the enzyme from both strains were found to be sonication at 10 mu for 3 min (Table 1). Table 2 shows the effect of centrifugation at 24,000 xg for 30 min on activity. For both strains the amount of porphyrins formed was the same either in the absence or presence of air. It was found (Figure 2) that urogen formation was linear with protein over a wide range of concentrations and with incubation time up to 2h in agreement with previous results for the enzyme of different sources. Figure 3 shows the effect of pH on PBGase activity. An optimum pH of 7.4 was found for both strains employing sodium phosphate buffer pH 8.0. The shape of the pH curve as well as optimum pH were the same in both Tris-HCl and phosphate buffer, however PBGase was 15% less active in the former. When plots of velocity against PBG concentration were analyzed for PBGase, it was found that measuring the rate of the reaction on the basis of total urogen formation, saturation curves for wild and mutant strains harvested at the exponential phase, followed classical Michaelis-Menten kinetics. Saturation was reached at PBG concentration of about 70-90 microM. Therefore, double reciprocal plots (Figure 4) were linear and from these plots apparent Km's values of 20 and 14 microM were obtained for the wild and mutant strain respectively. It is known that in some organisms, the activity of the enzyme of heme synthesis is significantly influenced by the days of growing; therefore the effect of time growing on PBGase activity was studied (Figure 5). A well defined maximum of enzyme activity was observed for the mutant strain after 20h of growing; while activity of wild strain did not significantly vary during growth.