RESUMEN El cacahuate es una planta que se cultiva ampliamente alrededor del mundo. En este trabajo se exploraron algunas condiciones para la germinación efectiva de semillas de cacahuate criollo Huaquechula. Además, se exploró la capacidad de Azospirillum brasilense Sp7, Paraburkholderia unamae MTl-641, Pseudomonas putida KT2440, Gluconacetobacter diazotrophicus PAl 5 y Sphingomonas sp. OF178 para adherirse a semillas, colonizar la rizósfera y estimular el crecimiento de las plantas; tanto solas como en consorcio. Las semillas de cacahuate sin esterilizar y con tegumento fueron las mejores en germinar. Todas las bacterias exploradas fueron capaces de adherirse a las semillas y colonizar la rizósfera de las plantas, la colonización de Sphingomonas sp. OF178, A. brasilense Sp7 y P. putida KT2440 en consorcio fue mayor en comparación a su colonización individual, sugiriendo que, en consorcio algunas bacterias incrementan su capacidad de interacción. La mayoría de las bacterias incrementaron la longitud del tallo de las plantas cuando se inocularon de forma individual, A. brasilense Sp7 fue capaz de aumentar el crecimiento de la raíz de las plantas y Sphingomonas sp. Of178 incrementó el peso seco de las raíces. Interesantemente, tras la inoculación con el consorcio de las bacterias se observaron incrementos en la longitud del tallo y raíz, así como en el peso seco de las raíces, lo que sugiere un sinergismo entre las bacterias del consorcio que potencia el desarrollo de las plantas. En el proceso de germinación, las semillas inoculadas con el consorcio de bacterias mostraron menor contaminación por hongos con referencia a las no inoculadas; lo que sugiere, que el biocontrol de hongos fitopatógenos que afectan a la semilla durante la germinación, podría ser un mecanismo involucrado en la promoción del crecimiento del cacahuate. ABSTRACT Peanut is a plant widely grown around the world. In this work some conditions to successfully germinate peanut seeds were explored. In addition, the ability of Azospirillum brasilense Sp7, Paraburkholderia unamae MTl-641, Pseudomonas putida KT2440, Gluconacetobacter diazotrophicus PAl 5 and Sphingomonas sp. OF178 to adhere to seeds, colonize the rhizosphere and stimulate the plant growth was explored; both alone or in consortium. Peanut seeds without sterilization and with tegument were the best to germinate. All the bacterial species explored were able to adhere to the seeds and colonize the rhizosphere of plants, rhizospheric colonization of Sphingomonas sp. OF178, A. brasilense Sp7 and P. putida KT2440 in consortium was higher compared to their individual colonization, suggesting that some bacteria increase their interaction capability in the consortium. Stem length was increased after individual inoculation of most bacteria. A. brasilense Sp7 increased the growth of plant roots and Sphingomonas sp. OF178 increased the root dry weight. Interestingly, the bacterial consortium increased both stem and root length as well as root dry weight, suggesting synergism between bacteria to enhance plant development. In the germination process, the seeds inoculated with the bacteria consortium showed less contamination by fungi with reference to non-inoculated seeds; it suggests, that biocontrol of phytopathogenic fungi that affect the seed during germination, could be a mechanism involved in growth promotion of peanut., {"references":["Cáceres-Lorenzo MT, Salas-Pascual M. Diferenciación de repertorios léxicos en los nombres comunes de las plantas americanas. Onomazein [Internet]. 2018;40 (junio de 2018):119–38.","Chan K, Zhang HW, Lin ZX. Treatments used in complementary and alternative medicine. In: Aronson JKBT-SE of DA, editor. A worldwide yearly survey of new data in adverse drug reactions and interactions. Elsevier; 2014. p. 889–98.","Asibuo JY, Akromah R, Safo-Kantanka O, Adu-Dapaah HK, Ohemeng-Dapaah S, Agyeman A. Chemical composition of groundnut, Arachis hypogaea (L) landraces. African J Biotechnol. 2008;7(13):2203–8.","Sarvamangala C, Gowda MVC, Varshney RK. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.). F Crop Res. 2011;122(1):49–59.","Ferreyra JC, Kuskoski EM, Bordignon Luiz MT, Barrera Arellano D, Fett R. Propiedades emulsificantes y espumantes de las proteínas de harina de cacahuate ( Arachis hypogaea Lineau ). Grasas y Aceites. 2007;58(3):264–9.","Romano Cadena MM del S, Hernández Vivanco GA, García Alarcón M del R, Moreno Cortés KC. Análisis de la cadena productiva del cultivo de cacahuate (Arachis hypogaea L.) producido en Huaquechula, Puebla. EDUCATECONCIENCIA. 2019;23(24):65–80.","Hurrell JA, Ulibarri EA, Puentes JP, Buet Constantino F, Arenas PM, Pochettino ML. Leguminosas medicinales y alimenticias utilizadas en la conurbación Buenos Aires-La Plata , Argentina. Boletín Latinoam y del Caribe Plantas Med y Aromáticas. 2011;10(5):443–55.","FAO. FAOSTAT [Internet]. Web page. 2020 [cited 2019 Dec 1].","Reyes-Matamoros J, Martínez-Moreno D, Rueda-Luna R, Paredes-Camacho RM. Prevención de plagas y prácticas culturales en cacahuate ( Arachis hypogaea L .) bajo temporal en la comunidad de Huaquechula , Puebla , México. Rev Iberoam Ciencias. 2015;2(2):1–10.","Pazos-Rojas LA, Marín-Cevada V, Elizabeth Y, García M, Baez A, et al. Uso de microorganismos benéficos para reducir los daños causados por la revolución verde. Rev Iberoam Ciencias. 2016;3(7):72–85.","Morales-García YE, Baez A, Quintero-Hernández V, Molina-Romero D, Rivera-Urbalejo AP, Pazos-Rojas LA, et al. Bacterial mixtures, the future generation of inoculants for sustainable crop production. In: Maheshwari DK, Dheeman S, editors. Field Crops: Sustainable Management by PGPR [Internet]. Cham: Springer International Publishing; 2019. p. 11–44.","Baez-Rogelio A, Morales-García YE, Quintero-Hernández V, Muñoz-Rojas J. Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol. 2017;10(1):19–21.","Cesa-Luna C, Baez A, Quintero-Hernández V, De la Cruz-Enríquez J, Castañeda-Antonio MD, Muñoz-Rojas J. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. Acta Biológica Colomb. 2020;25(1):140–54.","Molina-Romero D, Bustillos-Cristales M del R, Rodríguez-Andrade O, Morales-García YE, Santiago-Saenz Y, Castañeda-Lucio M, et al. Mecanismos de fitoestimulación por rizobacterias, aislamientos en América y potencial biotecnológico. Biológicas. 2015;17(2):24–34.","Yuttavanichakul W, Lawongsa P, Wongkaew S, Teaumroong N, Boonkerd N, Nomura N, et al. Improvement of peanut rhizobial inoculant by incorporation of plant growth promoting rhizobacteria (PGPR) as biocontrol against the seed borne fungus, Aspergillus niger. Biol Control [Internet]. 2012;63(2):87–97.","Dey R, Pal KK, Bhatt DM, Chauhan SM. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res [Internet]. 2004;159(4):371–94.","Paulucci NS, Gallarato LA, Reguera YB, Vicario JC, Cesari AB, García de Lema MB, et al. Arachis hypogaea PGPR isolated from Argentine soil modifies its lipids components in response to temperature and salinity. Microbiol Res [Internet]. 2015;173:1–9.","Hammons RO, Herman D, Stalker HT. Chapter 1 - Origin and Early History of the Peanut. In: Stalker HT, F. Wilson RBT-P, editors. Peanuts Genetics, Processing, and Utilization [Internet]. AOCS Press; 2016. p. 1–26.","Morales-García YE, Pazos-Rojas LA, Bustillos-Cristales M del R, Krell T, Muñoz-Rojas J. Método rápido para la obtención de axénico a partir de semillas maíz. Elementos. 2010;80:35–8.","Morales-García YE, Juárez-Hernández D, Aragón-Hernández C, Mascarua-Esparza MA, Bustillos-Cristales MR, Fuentes-Ramírez LE, et al. Growth response of maize plantlets inoculated with Enterobacter spp., as a model for alternative agriculture. Rev Argent Microbiol. 2011;43:287–93.","Muñoz-Rojas J, Morales-García YE, Juárez-Hernández D, Fuentes-Ramírez LE, Munive-Hernández JA. Formulación de un inoculante multiespecies para potenciar el crecimiento de plantas [Internet]. México; MX2013007978A, 2013. p. 1–36.","Morales-García YE. Antagonismo entre bacterias de interés agrícola y evaluación de inoculantes en la promoción del crecimiento del maíz [Internet]. Benemérita Universidad Autónoma de Puebla; 2013.","Corral-Lugo A, Morales-García YE, Pazos-Rojas LA, Ramírez-Valverde A, Martínez-Contreras RD, Muñoz-Rojas J. Cuantificación de bacterias cultivables mediante el método de \"Goteo en Placa por Sellado (o estampado) Masivo.\" Rev Colomb Biotecnol. 2012;14(2):147–56.","Rodríguez-Andrade O, Fuentes-Ramírez LE, Morales-García YE, Molina-Romero D, Bustillos-Cristales MR, Martínez-Contreras RD, et al. The decrease in the population of Gluconacetobacter diazotrophicus in sugarcane after nitrogen fertilization is related to plant physiology in split root experiments. Rev Argent Microbiol [Internet]. 2015;47(4):335–43.","Rivera-Urbalejo AP, Rodríguez-Andrade O, Morales-García YE, Quintero-Hernández V, Muñoz-Morales JM, Carbajal-Armenta A, et al. Inoculación de plántulas micropropagadas de caña de azúcar con bacterias benéficas para potenciar su producción. Alianzas y Tendencias BUAP [Internet]. 2017;2(7):15–26.","Molina-Romero D, Baez A, Quintero-Hernández V, Castañeda-Lucio M, Fuentes-Ramírez LE, Bustillos-Cristales M del R, et al. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth. PLoS One [Internet]. 2017 Nov 8;12(11):e0187913.","Molina-Romero D, Morales-García YE, Hernández-Tenorio A-L, Castañeda-Lucio M, Netzahuatl-Muñoz AR, Muñoz-Rojas J. Pseudomonas putida estimula el crecimiento de maíz en función de la temperatura. Rev Iberoam Ciencias. 2017;4(February):80–8.","Ziedan EHE. Manipulating Endophytic Bacteria for Biological Control to Soil Borne Diseases of Peanut. J Appl Sci Res. 2006;2(8):497–502.","Khah EM, Passam HC. Sodium hypochlorite concentration, temperature, and seed age influence germination of sweet pepper. HortScience. 2019;27(7):821–3.","Nelson EB. The seed microbiome: Origins, interactions, and impacts. Plant Soil [Internet]. 2018;422(1):7–34.","Mangmang JS, Deaker R, Rogers G. Germination characteristics of cucumber influenced by plant growth–promoting rhizobacteria. Int J Veg Sci [Internet]. 2016 Jan 2;22(1):66–75.","Sabeti M, Tahmasebi P, Ghehsareh Ardestani E, Nikookhah F. Effect of plant growth promoting rhizobacteria (PGPR) on the seed germination, seedling growth and photosynthetic pigments of Astragalus caragana under drought stress. J Rangel Sci [Internet]. 2019;9(4):364–77.","Hossain MM, Das K, Yesmin S, Shahriar S. Effect of plant growth promoting rhizobacteria (PGPR) in seed germination and root-shoot development of chickpea (Cicer arietinum L.) under different salinity condition. Res Agric Livest Fish [Internet]. 2016 May 26;3(1 SE-Agriculture).","Kumar R, Shamet GS, Alam NM, Jana C. Influence of growing medium and seed size on germination and seedling growth of Pinus gerardiana Wall. Compost Sci Util [Internet]. 2016 Apr 2;24(2):98–104.","Dobbelaere S, Croonenborghs A, Thys A, Ptacek D, Vanderleyden J, Dutto P, et al. Responses of agronomically important crops to inoculation with Azospirillum. Funct Plant Biol [Internet]. 2001;28(9):871–9.","Spaepen S, Dobbelaere S, Croonenborghs A, Vanderleyden J. Effects of Azospirillum brasilense indole-3-acetic acid production on inoculated wheat plants. Plant Soil [Internet]. 2008;312(1):15–23.","Muñoz-Rojas J, Caballero-Mellado J. Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol [Internet]. 2003 Jun 21;46(4):454–64.","Muñoz-Rojas J, Alatorre-Cruz JM, Bustillos-Cristales M del R, Morales-García YE, Hernández-Tenorio A-L, Baez-Rogelio A, et al. Multi-species formulation to improve the growth from plants semi-desertic zones [Internet]. México; MX20150 14278A, 2015. p. 1–28.","Onofre-Lemus J, Hernández-Lucas I, Girard L, Caballero-Mellado J. ACC (1-aminocyclopropane-1-carboxylate) deaminase activity, a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol [Internet]. 2009 Oct 15;75(20):6581 LP – 6590.","Thomloudi E-E, Tsalgatidou PC, Douka D, Spantidos T-N, Dimou M, Venieraki A, et al. Multistrain versus single-strain plant growth promoting microbial inoculants - The compatibility issue. Hell Plant Prot J [Internet]. 2019;12(2):61–77.","Soumya S, Sreejith S, Shad KS, Anusha P, Swathy B, Renikrishna R, et al. Combined effect of Pseudomonas spp. consortium and fertilizer with micronutrients on enhanced yield of Amaranthus tricolor (L.). Proc Natl Acad Sci India Sect B - Biol Sci [Internet]. 2020;1–10.","Muñoz-Rojas J, Morales-García YE, Baez-Rogelio A, Quintero-Hernández V, Rivera-Urbalejo AP, Pérez-y- Terrrón R. Métodos económicos para la cuantificación de microorganismos. In: Instituciones de Educación Superior La labor investigadora e innovadora en México [Internet]. Science Associated Editors L.L.C.; 2016. p. 67–82.","Böltner D, Godoy P, Muñoz-Rojas J, Duque E, Moreno-Morillas S, Sánchez L, et al. Rhizoremediation of lindane by root-colonizing Sphingomonas. Microb Biotechnol [Internet]. 2008 Jan 1;1(1):87–93.","Santiago-Saenz YO, Hernández-Tenorio A-L, Morales-García YE, Quintero-Hernández V, Baez-Rogelio A, Pérez-Santos JLM, et al. Method for obtaining patato plants from the extraction of induced sprouts in controlled conditions. [Internet]. Vol. 2015014804. Mexico; MX 2015014804A, 2017. p. 1–25.","Li X, Ding C, Zhang T, Wang X. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol Biochem [Internet]. 2014;72:11–8.","Gupta C, Dubey R, Maheshwari D. Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol Fertil Soils [Internet]. 2002;35(6):399–405.","Blanco Y, Blanch M, Piñón D, Legaz M, Vicente C. Antagonism of Gluconacetobacter diazotrophicus (a sugarcane endosymbiont) against Xanthomonas albilineans (pathogen) studied in alginate-immobilized sugarcane stalk tissues. J Biosci Bioeng [Internet]. 2005;99(4):366–71.","Tortora ML, Díaz-Ricci JC, Pedraza RO. Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol [Internet]. 2011;193(4):275–86.","Caballero-Mellado J, Onofre-Lemus J, Estrada-de los Santos P, Martínez-Aguilar L. The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol [Internet]. 2007 Aug 15;73(16):5308 LP – 5319.","Walsh UF, Morrissey JP, O'Gara F. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol [Internet]. 2001;12(3):289–95.","Morales-García YE, Aguilera-Méndez N, Ramírez-Valverde A, Fuentes-Ramírez LE, Ramos JL, Muñoz-Rojas J. Inhibitory substances produced by Sphingomonas sp. as strategy of competition. In: 4th International meeting on biotechnology, towards a sustainable bioeconomy Book of Abstracts BIOTEC2008. Granada, España.; 2008. p. 177.","Morales-Barrón BM, González-Fernández R, Vázquez-González FJ, De la Mora-Covarrubias A, Quiñonez-Martínez M, Muñoz-Rojas J, et al. Importancia del secretoma de Bacillus spp. en el control biológico de hongos fitopatógenos. Alianzas y Tendencias BUAP [Internet]. 2019;4(15):36–48."]}