1. Linealizacion por realimentacion constructiva de sistemas mecanicos con grado de subactuacion 1 inestables con friccion
- Author
-
M. Lopez-Martinez and José Ángel Acosta
- Subjects
Class (set theory) ,Partial differential equation ,General Computer Science ,Underactuation ,Computer science ,Lyapunov redesign ,lcsh:Control engineering systems. Automatic machinery (General) ,Underactuated Mechanical Systems ,Constructive ,Set (abstract data type) ,lcsh:TJ212-225 ,Nonlinear system ,Control and Systems Engineering ,Control theory ,Nonlinear systems ,Feedback linearization ,Computer Science(all) - Abstract
[ES] En los últimos años se han desarrollado diversos métodos para controlar sistemas mecánicos subactuados. De hecho, dichos métodos no lineales han conseguido resolver problemas muy interesantes desde el punto de vista de control. Sin embargo, para obtener una solución con estos métodos, normalmente es necesario resolver un sistema de ecuaciones diferenciales en derivadas parciales, lo cual no siempre es posible. En este artículo, se presenta una metodología constructiva para diseñar un controlador para una clase de sistemas mecánicos inestables en bucle abierto y con grado de subactuación uno. Para el diseño se emplean principalmente las técnicas de linealización por realimentación y Lyapunov. La metodología consiste en proponer una salida ficticia que se pueda rediseñar de forma constructiva para resolver el problema planteado, dando lugar a una ley de control explícita, que permite tener en cuenta la fricción incluso en las coordenadas no actuadas., [EN] In the last years, several methods to control nonlinear underactuated mechanical systems have been developed. In fact, these nonlinear methods have solved interesting control problems. Nevertheless, the solutions of these methods relies on solving a set of partial differential equations, which is not always possible. This article presents a constructive methodology to control a class of unstable underactuated mechanical systems with underactuation degree one. The design is based on classical feedback linearization and Lyapunov redesign. The methodology is based on proposing a dummy output that allows its redesign in a constructive way to solve the problem, giving rise an explicit and compact control law that allows to take into account the friction even in the underactuated coordinates., El presente trabajo se ha desarrollado gracias a la financiación del Ministerio de Educación y Ciencia, a través de los proyectos CICYT-FEDERDPI2004-06419 y DPI2006-07338, por la Consejería de Innovación, Ciencia y Empresa y por la Junta de Andalucía TEP1563.
- Published
- 2007