1. Formulas in roots for the subresultants
- Author
-
Valdettaro, Marcelo Alejandro and Krick, Teresa
- Subjects
POLINOMIOS DE SCHUR ,COMPLEXITY ,SUBRESULTANTES ,SUMAS DE SYLVESTER ,SUBRESULTANTS ,SYLVESTER'S SUMS ,EXCHANGE LEMMA ,JACOBI POLYNOMIALS ,LEMA DE INTERCAMBIO ,COMPLEJIDAD ,POLINOMIOS DE JACOBI ,SCHUR POLYNOMIALS - Abstract
Los objetos centrales de esta tesis son los polinomios subresultantes de dos polinomios en una variable, que son, en el caso de polinomios con raíces simples, múltiplos escalares de lo que hoy se llama sumas de Sylvester de sus conjuntos de raíces, como demostró J.J.Sylvester en 1853. En primer término presentamos aquí una generalización de las sumas de Sylvester para multiconjuntos de manera que sigue valiendo la relación con los polinomios subresultantes. En el caso en que los multiconjuntos tienen suficientes elementos distintos, esta generalización es particularmente elegante ya que tiene el mismo aspecto que las sumas de Sylvester. Cuando no hay suficientes elementos distintos, nuestra generalización esmás compleja ya que necesita introducir polinomios de Schur. Sin embargo cabe mencionar que ejemplos previos parecen indicar que no se va a poder encontrar ninguna generalización sencilla de las sumas de Sylvester para multiconjuntos arbitrarios. Nuestro enfoque introduce un Lema de intercambio que permite interpolar ciertos polinomios simétricos endistintos conjuntos de nodos. Obtenemos además más aplicaciones naturales de este lema, no sólo a otras propiedades de subresultantes sino también a construcciones relacionadas con matrices de Bézout y bases de Gröbner. Finalmente estudiamos completamente el caso particular de dos polinomios con una sola raíz múltiple cada uno y logramos probar que las subresultantes son, en ese caso, un múltiplo escalar de cierto polinomio de Jacobi, módulo un cambio de variables afín. Esto permite obtener, vía la ecuación diferencial satisfecha por los polinomios de Jacobi, una cota optimal de complejidad para determinar los coeficientes de una subresultante en la base monomial. De este modo logramos mejorar,para esta clase de polinomios, las cotas de complejidad que existen para el cálculo de una subresultante de polinomios arbitrarios. The main objects of this thesis are the subresultant polynomials of two univariate polynomials, which are, for simple-root polynomials, scalar multiples of what is known today as Sylvester sums, as shown by J.J. Sylvester in 1853. First we present a generalization of Sylvester sums for multisets so that the relationship with subresultants still holds. In the case that the multisets have enough different elements, this generalizationis particularly elegant since it has the same shape as Sylvester sums. When there are not enough different elements, our generalization is more complex since it needs to introduce Schur polynomials. However it should be mentioned that previous examples seem to indicate that it will not be possible to obtain any simple generalization of Sylvester sums forarbitrary multisets. Our approach introduces an Exchange lemma which allows to interpolate some symmetric polynomials in different sets of nodes. We also obtain other natural applications of this lemma, not only concerning further properties of subresultants but also other constructions related to Bézout matrices and Gröbner bases. Finally we fully study the particular case of two polynomials with only one multiple root each and provethat their subresultants are scalar multiples of a certain Jacobi polynomial, modulo an affine change of variables. This allows to obtain, using the differential equation satisfied by Jacobi polynomials, an optimal complexity bound for determining the coefficients of a subresultant in the monomial basis. In this way we improve, for this family of polynomials,the existing complexity bounds for computing a subresultant of arbitrary polynomials. Fil: Valdettaro, Marcelo Alejandro. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina.
- Published
- 2017