Resumen La rizosfera comprende el volumen de suelo que se encuentra bajo la influencia de las raíces vegetales. Dicha región presenta una extraordinaria diversidad y actividad microbiana; principalmente debido al alto contenido en nutrientes que proceden de los exudados radiculares. Entre las bacterias colonizadoras de la rizosfera (rizobacterias) algunas pueden promover el crecimiento vegetal o actuar como agentes de biocontrol protegiendo frente a múltiples patógenos vegetales. En este artículo se contempla la producción de metabolitos secundarios bioactivos (antibióticos) como uno de los principales mecanismos a través de los cuales las rizobacterias pueden proteger a las plantas frente a enfermedades o patógenos potenciales. A su vez, se discute la utilización de dichos agentes de biocontrol como biopesticidas en estrategias de agricultura sostenible. Abstract The rhizosphere comprises the volume of soil that is under the influence of plant roots. This region presents an extraordinary diversity and microbial activity; mainly due to the high nutrient content that comes from the root exudates. Among the bacteria colonizing the rhizosphere (rhizobacteria) some can promote plant growth or act as biocontrol agents protecting against multiple plant pathogens. This article contemplates the production of bioactive secondary metabolites (antibiotics) as one of the main mechanisms through which rhizobacteria can protect plants against potential diseases or pathogens. In turn, the use of these biocontrol agents as biopesticides in sustainable agriculture strategies is discussed., {"references":["Hiltner L. Uber neuere Erfahrungen und Problem auf dem Gebiete der Bodenbakteriologie unter besonderden berucksichtigungund Brache. Arb Dtsch Landwirtsch Gesellschaft 1904; 98: 59-78.","Lugtenberg B., Kamilova F. Plant-growth- promoting rhizobacteria. Annu Rev Microbiol 2009; 63: 541-56.","Ishikawa C.M., Bledsoe C.S. Seasonal and diurnal patterns of soil water potential in the rhizosphere of blue oaks: Evidence for hydraulic lift. Oecologia 2000; 125: 459-465.","Hojberg O., Sorensen J. Microgradients of microbial oxygen consumption in a barley rhizosphere model system. Applied Environ Microbiol 1993; 59: 431-437.","Schaller G. pH changes in the rhizosphere in relation to the pH-buffering of soils. Plant and Soil 1987; 97: 439-444.","Uren N.C. Types, amounts and possible functions\tof compounds released into rhizosphere by soil-grown plants. In: Pinton R, Varanini Z, Nannipieri P (eds.) The Rhizosphere: Biochemistry and organic substances at the soil-plant interface. CRC Press 2007; New York, pp. 1-21.","Bais H.P., Weir T.L., Perry L.G., Gilroy S., Vivanco J.M. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 2006; 57: 233-266.","Huang X-F., Chaparro J.M., Reardon K.F., Zhang R., Shen Q., Vivanco J.M. Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 2014; 92: 267-275.","Molina L.A., Ramos C., Duque E., Ronchel M.C., García J.M., Wyke L. et al. Survival of Pseudomonas putida KT2440 in soil and in the rhizosphere of plants under greenhouse and environmental conditions. Soil Biol and Biochem 2000; 32: 315-321.","Egamberdieva D., Kamilova F., Validov S., Gafurova L., Kucharova Z., Lugtenberg B. High incidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grown on salinated soil in Uzbekistan. Environ Microbiol 2008; 10: 1-9.","Mendes R., Kruijt M., de Bruijn I., Dekkers E., van der Voort M., Schneider J.H., et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 2001; 332: 1097-1100.","Marilley L., Hartwig U.A., Aragno M. Influence of an elevated atmospheric CO2 content on soil and rhizosphere bacterial communities beneath Lolium perenne and Trifolium repens under field conditions. Microb Ecol 1999; 38: 39-49.","Doornbos L., Van Loon L., Bakker P.A.H.M. Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agron Sustain Dev 2012; 32: 227-243.","García-Salamanca A., Molina-Henares M.A., van Dillewijn P., Solano J., Pizarro-Tobías P., Roca A., et al. Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb Biotechnol 2013; 6: 36-44.","Somers E., Vanderleyden J., Srinivasan M. Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 2004; 30: 205-240.","Berendsen R.L., Pieterse C.M.J., Bakker P.A.H.M. The rhizosphere microbiome and plant health. Trends Plant Sci 2012; 17: 478-486.","Berg G. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. App Microbiol Biotech 2009; 14: 11-18.","Mousa W.K., Raizada M.N. Biodiversity of genes encoding anti-microbial traits within plants associated microbes. Front Plant Sci 2015; 6: 231.","Bull C.T., Weller D.M., Thomashow L.S. Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology 1991; 81: 954-959.","Haas D., Défago G. Biological control of soil- borne pathogens by fluorescent pseudomonads. Nature Rev Microbiol 2005; 3: 307-319.","Gross H., Loper J.E. Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 2009; 26: 1408-1446.","Bakker A.W., Schippers B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp- mediated plant growth-stimulation. Soil Biol Biochem 1987; 19: 451-457.","Voisard C., Keel C., Haas D., Défago G. Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 1989; 8: 351-358.","Zdor R.E. Bacterial cyanogenesis: impact on biotic interactions. J Appl Microbiol 2015; 118: 267-74.","Lemfack M.C., Nickel J., Dunkel M., Preissner R., Piechulla B. mVOC: a database of microbial volatiles. Nucleic Acids Res 2014; 42: D744-8.","Kai M., Crespo E., Cristescu S.M., Harren F.J., Francke W., Piechulla B. Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl Microbiol Biotechnol 2010; 88: 965-76.","Dandurishvili N., Toklikishvili N., Ovadis M., Eliashvili P., Giorgobiani N., Keshelava R., et al.\tBroad-range antagonistic rhizobacteria Pseudomonas fluorescens and Serratia plymuthica suppress Agrobacterium crown gall tumours on tomato plants. J Appl Microbiol 2011; 110: 341-352.","Kanchiswamy C.N., Malnoy M., Maffei M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci 2015; 6: 151.","Liu G., Chater K.F., Chandra G., Niu G., Tan H. Molecular regulation of antibiotic biosynthesis in Streptomyces. Microbiol Mol Biol Rev 2013;77: 112-143.","Matilla M.A., Nogellova V., Morel B., Krell T., Salmond G.P. Biosynthesis of the acetyl-CoA carboxylase-inhibiting antibiotic, andrimid in Serratia is regulated by Hfq and the LysR-type transcriptional regulator, AdmX. Environ Microbiol 2016; 18: 3635-3650.","Scherlach K., Hertweck C. Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 2009; 7: 1753-1760.","Luo Y., Huang H., Liang J., Wang M., Lu L., Shao Z., et al. Activation and characterization of a cryptic polycyclic tetramate macrolactam biosynthetic gene cluster. Nat Commun 2013; 4: 2894.","Fischbach M.A., Walsh C.T. Antibióticos para patógenos emergentes. Science 2009; 325: 1089-1093","Sattely E.S., Fischbach M.A., Walsh C.T. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat Prod Rep 2008; 25: 757-793.","Hertweck, C. The biosynthetic logic of polyketide diversity. Angew Chem Int Ed Engl 2009; 48: 4688-4716.","Chowdhury S.P., Hartmann A., Gao X., Borriss R. Biocontrol mechanism by root-associated Bacillus amyloliquefaciens FZB42 - a review. Front Microbiol 2015; 6: 780.","Wang H., Fewer D.P., Holm L., Rouhiainen L., Sivonen K. Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci USA 2014; 111: 9259-9264.","Fisch K.M. Biosynthesis of natural products by microbial iterative hybrid PKS-NRPS. RSC Advances 2013; 3: 18228-18247.","Till M., Race P.R. Progress challenges and opportunities for the re-engineering of trans-AT polyketide synthases. Biotechnol Lett 2014; 36: 877-888.","Udwary D.W., Zeigler L., Asolkar R.N., Singan V., Lapidus A., Fenical W., et al. Genome sequencing reveals complex secondary metabolome in the marine actinomycete Salinispora tropica. Proc Natl Acad Sci USA 2007; 104: 10376-10381.","Matilla M.A., Drew A., Udaondo Z., Krell T., Salmond G.P.C. Genome sequence of Serratia plymuthica A153, a model rhizobacterium for the investigation of the synthesis and regulation of haterumalides, zeamine, and andrimid. Genome Announcements 2016; 4: e00373-16.","De Vleesschauwer D., Hofte M. Using Serratia plymuthica to control fungal pathogens of plants. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 2007; 2: 1-12.","Van Der Voort M., Meijer H.J., Schmidt Y., Watrous J., Dekkers E., Mendes R., et al. Genome mining and metabolic profiling of the rhizosphere bacterium Pseudomonas sp. SH- C52 for antimicrobial compounds. Front Microbiol 2015; 6: 693.","Ongena M., Jourdan E., Adam A., Paquot M., Brans A., Joris B., et al. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ Microbiol 2007; 9: 1084-1090.","Debois D., Jourdan E., Smargiasso N., Thonart P., De Pauw E., Ongena M. Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 2014; 86: 4431-4438.","Chowdhury S.P., Uhl J., Grosch R., Alquéres S., Pittroff S., Dietel K., et al. Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant Microbe Interact 2015; 28: 984-995.","Matilla M.A., Stockmann H., Leeper F.J., Salmond G.P.C. Bacterial biosynthetic gene clusters encoding the anti-cancer haterumalide class of molecules: biogenesis of the broad spectrum antifungal and antioomycete compound, oocydin A. J Biol Chem 2012; 287: 39125-39138.","Kurze, S., Bahl, H., Dahl, R., Berg, G. Biological control of fungal strawberry diseases by Serratia plymuthica HRO-C48.\tPlant Disease 2001; 85: 529-34.","Ástrom, B., Gerhardson, B. Differential reactions of wheat and pea genotypes to root inoculation with growth-affecting rhizosphere bacteria. Plant Soil 1988; 109: 263-269.","Matilla M.A., Leeper F.J., Salmond G.P. Biosynthesis of the antifungal haterumalide, oocydin A, in Serratia, and its regulation by quorum sensing, RpoS and Hfq. Environ Microbiol 2015; 17: 2993-3008.","Thaning C., Welch C.J., Borowicz J.J., Hedman R., Gerhardson B. Suppression of Sclerotinia sclerotiorum apothecial formation by the soil bacterium Serratia plymuthica: identification of a chlorinated macrolide as one of the causal agents. Soil Biol Biochem 2001; 33: 1817-26.","Hellberg J.E., Matilla M.A., Salmond G.P. The broad-spectrum antibiotic, zeamine, kills the nematode worm Caenorhabditis elegans. Front Microbiol 2015; 6: 137.","Levenfors J.J., Hedman R., Thaning C., Gerhardson B., Welch C.J. Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A153. Soil Biol Biochem 2004; 36: 677- 685.","Godfray H.C., Beddington J.R., Crute I.R., Haddad L., Lawrence D., Muir J.F., et al. Food security: the challenge of feeding 9 billion people. Science 2010; 327: 812-8","Oerke E.C., Dehne H.W. Safeguarding production - losses in major crops and the role of crop protection. Crop Prot 2004; 23: 275¬285.","Glare T., Caradus J., Gelernter W., Jackson T., Keyhani N., Kohl J., et al. Have biopesticides come of age? Trends Biotechnol 2012; 30: 250¬258.","Pimentel D. Environmental and economic costs of the application of pesticides primarily in the United States. Environ Dev Sustain 2005; 7: 229-252.","Thakore, Y. The biopesticide market for global agricultural use. Industrial Biotechnology 2006; 2: 194-208.","Velivelli S.L., De Vos P., Kromann P., Declerck S., Prestwich B.D. Biological control agents: from field to market, problems, and challenges. Trends Biotechnol 2014; 32: 493-496.","Nowak-Thompson B., Chaney N., Wing J.S., Gould S.J., Loper J.E. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J Bacteriol 1999; 181: 2166-2174.","Loper J.E., Henkels M.D., Shaffer B.T., Valeriote F.A., Gross H. Isolation and identification of rhizoxin analogs from Pseudomonas fluorescens Pf-5 by using a genomic mining strategy. Appl Environ Microbiol 2008; 74: 3085-93.","Lozano G.L., Holt J., Ravel J., Rasko D.A., Thomas M.G., Handelsman J. Draft Genome Sequence of Biocontrol Agent Bacillus cereus UW85. Genome Announc 2016; 4: e00910-16","Baez-Rogelio A., Morales-García Y. E., Quintero-Hernández V., Muñoz-Rojas J. Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol 2017; 10: 19-21.","Vivanco-Calixto R., Molina-Romero D., Morales-García Y. E., Quintero-Hernández V., Munive-Hernández A., Baez-Rogelio A., et al. Reto agrobiotecnológico: Inoculantes bacterianos de segunda generación. Alianzas y Tendencias 2016; 1: 9-19."]}