1. Vektorska polja na sferah
- Author
-
Baltič, Mark and Vavpetič, Aleš
- Subjects
Brouwer's fixed-point theorem ,Eulerjeva karakteristika ,sphere ,sfera ,Euler characteristic ,tangent vector fields ,Browerjev izrek o negibni točki ,udc:515.1 ,tangentna vektorska polja - Abstract
V diplomskem delu si ogledamo nekaj dejstev o obstoju neničelnega zveznega tangentnega vektorska polja na $n$-dimenzionalnih sferah. Najprej eksplicitno pokažemo konstrukcijo oz. nakažemo neobstoj takega vektorskega polja pri nižjih dimenzijah, nato pa idejo posplošimo na višje dimenzije. Pri dveh dimenzijah si ogledamo tudi druge objekte in nakažemo indikator, ki določi število izoliranih točk, kjer vektorsko polje izgine. Kot posledico glavnega izreka dokažemo tudi Browerjev izrek o negibni točki. In this thesis we show some facts about existence of a non vanishing continuous tangent vector field on a $n$-dimensional sphere. At first we explicitly construct such vector field or we indicate the non existence of such vector field at low dimensions and then we generalize the idea to higher dimensions. In the two-dimensional case we also examine other objects and point out the indicator that sets the number of isolated points at which the vector field vanishes. As a consequence of our main theorem we also prove the Brower fixed-point theorem.
- Published
- 2018