1. Research of power factor correctors for the key voltage generator under various types of load
- Subjects
коÑÑекÑÐ¾Ñ ÐºÐ¾ÑÑÑиÑиенÑа моÑноÑÑи ,Gretz rectifier ,коÑÑÑиÑÐ¸ÐµÐ½Ñ Ð¼Ð¾ÑноÑÑи ,клÑÑевой генеÑаÑÐ¾Ñ Ð½Ð°Ð¿ÑÑÐ¶ÐµÐ½Ð¸Ñ ,power ratio ,power factor correction - Abstract
ÐÑновное знаÑение иÑÑледÑемой в вÑпÑÑкной ÑабоÑе ÑÐµÐ¼Ñ ÑоÑÑÐ¾Ð¸Ñ Ð² повÑÑении коÑÑÑиÑиенÑа моÑноÑÑи клÑÑевÑÑ ÑÑ ÐµÐ¼, ÑабоÑаÑÑÐ¸Ñ Ð½Ð° ÑазлиÑнÑе Ð²Ð¸Ð´Ñ Ð½Ð°Ð³ÑÑзки. ÐÑо позволÑÐµÑ Ð¿ÑимениÑÑ ÑÑ ÐµÐ¼Ð¾ÑÐµÑ Ð½Ð¸ÑеÑкие ÑеÑениÑ, обеÑпеÑиваÑÑие минималÑное влиÑние на пиÑаÑÑÑÑ ÑеÑÑ. Рмоем ÑлÑÑае ÑаÑÑмаÑÑиваеÑÑÑ Ð¾Ð´Ð½Ð¾ÑÐ°Ð·Ð½Ð°Ñ Ð¿Ð¸ÑаÑÑÐ°Ñ ÑеÑÑ. ЧÑÐ¾Ð±Ñ Ð¾ÑÑÑеÑÑвиÑÑ ÑабоÑÑ ÐºÐ»ÑÑевого генеÑаÑоÑа напÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¾Ñ Ð¸ÑÑоÑника пиÑÐ°Ð½Ð¸Ñ (Ð¾Ñ Ð¿Ð¸ÑаÑÑей ÑеÑи) Ð½ÐµÐ¾Ð±Ñ Ð¾Ð´Ð¸Ð¼Ð¾ пÑеобÑазование пеÑеменного Ñока в поÑÑоÑннÑй. ÐÑпÑÑмиÑÐµÐ»Ñ Ð±Ñл ÑобÑан по ÑÑ ÐµÐ¼Ðµ ÐÑеÑа. Ðлавной оÑобенноÑÑÑÑ ÐºÐ»ÑÑевого генеÑаÑоÑа ÑвлÑеÑÑÑ Ñо, ÑÑо акÑивнÑе ÑлеменÑÑ Ð¼Ð¾Ð³ÑÑ Ð½Ð°Ñ Ð¾Ð´Ð¸ÑÑÑÑ Ð² двÑÑ ÑоÑÑоÑниÑÑ : «ÑазомкнÑÑое» и «замкнÑÑое». Ðаиболее ÑелеÑообÑазнÑм в диапазоне Ð½Ð¸Ð·ÐºÐ¸Ñ ÑаÑÑÐ¾Ñ (ÐЧ) ÑвлÑеÑÑÑ Ð¸ÑполÑзование в каÑеÑÑве ÐÐ ÑÑанзиÑÑоÑов. СÑÐ¾Ð¸Ñ Ð¾ÑмеÑиÑÑ, ÑÑо лÑбой ÐРв замкнÑÑом ÑоÑÑоÑнии Ð¸Ð¼ÐµÐµÑ ÑопÑоÑивление, оÑлиÑное Ð¾Ñ Ð½ÑлÑ. ÐалиÑие данного ÑопÑоÑÐ¸Ð²Ð»ÐµÐ½Ð¸Ñ Ð²ÐµÐ´ÐµÑ Ðº Ð¿Ð°Ð´ÐµÐ½Ð¸Ñ Ð½Ð°Ð¿ÑÑÐ¶ÐµÐ½Ð¸Ñ Ð½Ð° ÐÐ. ÐÑинÑип ÑабоÑÑ Ð´Ð°Ð½Ð½Ð¾Ð¹ ÑÑ ÐµÐ¼Ñ Ð·Ð°ÐºÐ»ÑÑаеÑÑÑ Ð² попеÑеменном оÑкÑÑÑии и закÑÑÑии двÑÑ Ð¿Ð°Ñ ÑÑанзиÑÑоÑов. ÐÑли не ÑÑиÑÑваÑÑ Ð² данном Ñежиме ÑабоÑÑ Ñак назÑваемÑй deadtime (задеÑÐ¶ÐºÑ Ð¼ÐµÐ¶Ð´Ñ Ð½Ð¸Ð¼Ð¸), пÑоизойдÑÑ ÐºÐ¾ÑоÑкое замÑкание в ÑÑ ÐµÐ¼Ðµ и повÑеждение ÑлеменÑов ÑÑ ÐµÐ¼Ñ ÑооÑвеÑÑÑвенно.ÐÑполÑзование данной ÑÑ ÐµÐ¼Ñ Ð¿Ð¾Ð·Ð²Ð¾Ð»ÑÐµÑ Ð¿Ð¾Ð»ÑÑиÑÑ Ð¼Ð¾ÑноÑÑÑ Ð² два Ñаза болÑÑÑÑ, Ñем, напÑимеÑ, моÑноÑÑÑ, генеÑиÑÑемÑÑ Ð¿Ð¾Ð»ÑмоÑÑовÑм генеÑаÑоÑом. Ðак и лÑбое нелинейное ÑÑÑÑойÑÑво ÐÐ Ð¼Ð¾Ð¶ÐµÑ Ð¾ÑÑиÑаÑелÑно воздейÑÑвоваÑÑ Ð½Ð° пиÑаÑÑÑÑ ÑеÑÑ (ÐС). Ð ÑвÑзи Ñ ÑÑим одной из акÑÑалÑнÑÑ Ð¿Ñоблем ÑвлÑеÑÑÑ Ð¸ÑÑледование влиÑÐ½Ð¸Ñ ÐРна ÐС. СÑÐ¾Ð¸Ñ Ð¾ÑмеÑиÑÑ, ÑÑо ÑÑÐµÐ¿ÐµÐ½Ñ Ð¸Ñкажений в ÐС напÑÑмÑÑ Ð·Ð°Ð²Ð¸ÑÐ¸Ñ Ð¾Ñ Ð¼Ð¾ÑноÑÑи ÑÑÑÑойÑÑв. ÐÑÐºÐ°Ð¶ÐµÐ½Ð¸Ñ Ð¼Ð¾Ð³ÑÑ Ð¿ÑивеÑÑи к непÑавилÑной ÑабоÑе оÑÑалÑнÑÑ ÑÑÑÑойÑÑв ÑеÑи или к Ð¸Ñ Ð¿Ð¾Ð»Ð½Ð¾Ð¼Ñ Ð²ÑÑ Ð¾Ð´Ñ Ð¸Ð· ÑÑÑоÑ.ÐÑло ÑаÑÑмоÑÑено ÑÑи вида ÑÑ ÐµÐ¼: ÐРбез коÑÑекÑоÑа коÑÑÑиÑиенÑа моÑноÑÑи, Ñ Ð¿Ð°ÑÑивнÑм и акÑивнÑм пÑи ÑабоÑе на ÑезиÑÑивнÑÑ Ð½Ð°Ð³ÑÑÐ·ÐºÑ Ð¸ на поÑледоваÑелÑнÑй RLC-ÑилÑÑÑ. ÐаÑÑивнÑй коÑÑекÑÐ¾Ñ ÐºÐ¾ÑÑÑиÑиенÑа пÑедÑÑавлÑÐµÑ Ñобой LC-ÑилÑÑÑ Ð½Ð° вÑÑ Ð¾Ð´Ðµ вÑпÑÑмиÑелÑ. ÐÑÐ½Ð¾Ð²Ñ Ð°ÐºÑивного коÑÑекÑоÑа коÑÑÑиÑиенÑа моÑноÑÑи ÑоÑÑавлÑÐµÑ Ð¸Ð¼Ð¿ÑлÑÑнÑй пÑеобÑазоваÑÐµÐ»Ñ Ð¿Ð¾ÑÑоÑнного напÑÑжениÑ. ÐÐ»Ñ ÑегÑлиÑÐ¾Ð²Ð°Ð½Ð¸Ñ ÐºÐ¾Ð»Ð¸ÑеÑÑва ÑнеÑгии, подаваемой иÑÑоÑником пиÑÐ°Ð½Ð¸Ñ Ðº подклÑÑÐµÐ½Ð½Ð¾Ð¼Ñ Ðº Ð½ÐµÐ¼Ñ Ð¾Ð±Ð¾ÑÑдованиÑ, в ÑÑандаÑÑном импÑлÑÑном иÑÑоÑнике пиÑÐ°Ð½Ð¸Ñ Ð¸ÑполÑзÑеÑÑÑ Ñежим ÑиÑоÑноимпÑлÑÑной модÑлÑÑии (ШÐÐ). СÑеди возможнÑÑ ÑÑÑÑкÑÑÑ Ð°ÐÐÐ, повÑÑаÑÑий пÑеобÑазоваÑÐµÐ»Ñ Ð¿Ð¾ÑÑоÑнного напÑÑÐ¶ÐµÐ½Ð¸Ñ ÑабоÑаÑÑий в Ñежиме непÑеÑÑвнÑÑ Ñоков (Ñ. е. когда велиÑина индÑкÑивноÑÑи повÑÑаÑÑего дÑоÑÑÐµÐ»Ñ Ð²ÑбÑана Ñакой, ÑÑо в ÑеÑение пеÑиода пеÑеклÑÑений ÑеÑез дÑоÑÑÐµÐ»Ñ Ð¿ÑоÑÐµÐºÐ°ÐµÑ Ð½ÐµÐ¿ÑеÑÑвнÑй Ñок), обеÑпеÑÐ¸Ð²Ð°ÐµÑ Ð½Ð°Ð¸Ð¼ÐµÐ½ÑÑÑÑ Ð²ÐµÐ»Ð¸ÑÐ¸Ð½Ñ Ð²ÑÑокоÑаÑÑоÑного Ñока, пÑоÑекаÑÑего ÑеÑез Ð²Ñ Ð¾Ð´Ð½Ð¾Ð¹ конденÑаÑÐ¾Ñ (Ð¡Ð²Ñ ). ÐÑо единÑÑÐ²ÐµÐ½Ð½Ð°Ñ ÑÑÑÑкÑÑÑа, коÑоÑÐ°Ñ Ð¿Ð¾Ð·Ð²Ð¾Ð»ÑÐµÑ ÑменÑÑиÑÑ Ð¿Ð¾Ð¼ÐµÑ Ð¸ на Ð²Ñ Ð¾Ð´Ð½Ð¾Ð¼ конденÑаÑоÑе, ÑÑо ÑвлÑеÑÑÑ Ð¾ÑновнÑм ÑакÑоÑом, опÑеделÑÑÑим габаÑиÑÑ Ð¸ ÑÑоимоÑÑÑ ÑилÑÑÑа. ÐÑоме Ñого, в повÑÑаÑÑем дÑоÑÑеле накапливаеÑÑÑ ÑолÑко ÑаÑÑÑ Ð¿ÐµÑедаваемой ÑнеÑгии (поÑколÑÐºÑ ÑнеÑÐ³Ð¸Ñ Ð¿Ð¾ÑÑеблÑеÑÑÑ Ð¾Ñ ÑеÑи и пÑи ÑазмагниÑивании дÑоÑÑелÑ). Таким обÑазом, поÑÑÐµÐ±Ð½Ð°Ñ Ð¸Ð½Ð´ÑкÑивноÑÑÑ Ð´ÑоÑÑÐµÐ»Ñ Ð¾ÐºÐ°Ð·ÑваеÑÑÑ Ð¼ÐµÐ½ÑÑе, по ÑÑÐ°Ð²Ð½ÐµÐ½Ð¸Ñ Ñ Ð´ÑÑгими ÑÑÑÑкÑÑÑами. Ð ÑезÑлÑÑаÑе ÑÑÑÑкÑÑÑа на оÑнове повÑÑаÑÑего пÑеобÑазоваÑÐµÐ»Ñ Ð¿Ð¾ÑÑоÑнного напÑÑÐ¶ÐµÐ½Ð¸Ñ Ð¿Ð¾Ð·Ð²Ð¾Ð»ÑÐµÑ Ð¿Ð¾Ð»ÑÑиÑÑ ÐÐÐ Ñ Ð½Ð°Ð¸Ð¼ÐµÐ½ÑÑей ÑÑоимоÑÑÑÑ, но пÑи ÑÑом не обеÑпеÑиваеÑÑÑ Ð·Ð°ÑиÑа Ð¾Ñ Ð±ÑоÑков пÑÑкового Ñока и коÑоÑкого замÑканиÑ. ÐÐ»Ñ Ð¿ÑовеÑки ÑоблÑÐ´ÐµÐ½Ð¸Ñ ÑÑÑановленнÑÑ Ð³Ð¾ÑÑдаÑÑÑвеннÑÑ Ð½Ð¾Ñм ÑлекÑÑомагниÑной ÑовмеÑÑимоÑÑи Ð½ÐµÐ¾Ð±Ñ Ð¾Ð´Ð¸Ð¼Ð¾ оÑениÑÑ Ð·Ð½Ð°Ñение ÐРи ÐÐÐ. ÐеÑвÑм ÑаÑÑмаÑÑиваемÑм ÑлÑÑаем ÑвлÑеÑÑÑ Ð¼Ð¾Ð´ÐµÐ»Ñ ÐºÐ»ÑÑевого генеÑаÑоÑа напÑÑÐ¶ÐµÐ½Ð¸Ñ Ð±ÐµÐ· коÑÑекÑоÑа коÑÑÑиÑиенÑа моÑноÑÑи. ÐÐ»Ñ Ð¸ÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¸Ñкажений иÑполÑзÑÑÑÑÑ Ð²ÑеменнÑе завиÑимоÑÑи Ñока на Ð²Ñ Ð¾Ð´Ðµ вÑпÑÑмиÑÐµÐ»Ñ Ð¸ диагÑамма ÑпекÑÑалÑнÑÑ ÑоÑÑавлÑÑÑÐ¸Ñ Ñока пÑи ÑезиÑÑивной нагÑÑзке. ÐолÑзÑÑÑÑ ÑиÑленнÑми даннÑми ÑпекÑÑалÑного анализа, бÑл пÑоизведен ÑаÑÑÐµÑ ÐºÐ¾ÑÑÑиÑиенÑа нелинейнÑÑ Ð¸Ñкажений (ÐÐÐ) и коÑÑÑиÑиенÑа моÑноÑÑи (ÐÐ). ÐолÑÑивÑиеÑÑ Ð·Ð½Ð°ÑÐµÐ½Ð¸Ñ ÑооÑвеÑÑÑвÑÑ Ð½Ð¾Ñмам ÐÐСТÐÐ»Ñ Ð¸ÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ Ð¸Ñкажений пÑи ÑабоÑе на поÑледоваÑелÑнÑй RLC-ÑилÑÑÑ, бÑли ÑаÑÑÑиÑÐ°Ð½Ñ ÐµÐ³Ð¾ ÑлеменÑÑ Ð¸ заÑем взÑÑа ÑаÑÑÑÑойка в 50 пÑоÑенÑов. ÐÑÑ Ð¾Ð´Ñ Ð¸Ð· полÑÑеннÑÑ ÑезÑлÑÑаÑов можно ÑделаÑÑ Ð²Ñвод о Ñом, ÑаÑÑÑÑойка RLC - конÑÑÑа оказÑÐ²Ð°ÐµÑ Ð·Ð½Ð°ÑиÑелÑное влиÑние на паÑамеÑÑÑ Ð¿Ð¸ÑаÑÑей ÑеÑи. ÐÑи ÑаÑÑÑÑойке конÑÑÑа в 50 пÑоÑенÑов, клÑÑевой генеÑаÑÐ¾Ñ Ð½Ð°Ð¿ÑÑÐ¶ÐµÐ½Ð¸Ñ Ð±ÐµÐ· коÑÑекÑоÑа коÑÑÑиÑиенÑа моÑноÑÑи не ÑооÑвеÑÑÑвÑÐµÑ ÑÑандаÑÑам ÑлекÑÑомагниÑной ÑовмеÑÑимоÑÑи ÐÐСТ.Также бÑл ÑаÑÑмоÑÑен ваÑÐ¸Ð°Ð½Ñ ÑÑ ÐµÐ¼Ñ Ñ Ð¿Ð°ÑÑивнÑм коÑÑекÑоÑом коÑÑÑиÑиенÑа моÑноÑÑи, пÑедÑÑавленнÑй в виде LC-ÑилÑÑÑа, подклÑÑенного к вÑÑ Ð¾Ð´Ñ Ð²ÑпÑÑмиÑелÑ. ÐÑедваÑиÑелÑно оÑенив знаÑÐµÐ½Ð¸Ñ ÐРи ÐÐÐ, можно пÑийÑи к вÑводÑ, ÑÑо пÑи индÑкÑивной или емкоÑÑной ÑаÑÑÑÑойке в 50%, даннÑй ваÑÐ¸Ð°Ð½Ñ ÐºÐ¾ÑÑекÑоÑа коÑÑÑиÑиенÑа моÑноÑÑи Ð´Ð»Ñ ÐºÐ»ÑÑевого генеÑаÑоÑа напÑÑÐ¶ÐµÐ½Ð¸Ñ Ð½ÐµÐ·Ð½Ð°ÑиÑелÑно ÑÐ½Ð¸Ð¶Ð°ÐµÑ Ð¿Ð°Ð³Ñбное влиÑние на пиÑаÑÑÑÑ ÑеÑÑ. ÐоÑледним ÑÑапом иÑÑÐ»ÐµÐ´Ð¾Ð²Ð°Ð½Ð¸Ñ ÑÑал акÑивнÑй коÑÑекÑÐ¾Ñ ÐºÐ¾ÑÑÑиÑиенÑа моÑноÑÑи. ÐÑи ÑабоÑе ÐРнапÑÑÐ¶ÐµÐ½Ð¸Ñ Ð½Ð° ÑиÑÑо ÑезиÑÑивнÑÑ Ð½Ð°Ð³ÑÑÐ·ÐºÑ Ð·Ð½Ð°ÑÐµÐ½Ð¸Ñ ÐÐРи ÐРполÑÑилиÑÑ Ñ Ñже, Ñем в ÑÑ ÐµÐ¼Ðµ без ÐÐÐ. ÐÑо вÑзвано Ñем, ÑÑо акÑивнÑй ÐÐРпÑедÑÑавлÑÐµÑ Ñобой еÑе один импÑлÑÑнÑй каÑкад в ÑиÑÑеме. ÐÑо пÑÐ¸Ð²Ð¾Ð´Ð¸Ñ Ðº ÑвелиÑÐµÐ½Ð¸Ñ ÑÑÐ¾Ð²Ð½Ñ Ð²ÑÑокоÑаÑÑоÑнÑÑ Ð¿Ð¾Ð¼ÐµÑ , поÑÑÑпаÑÑÐ¸Ñ Ð² пиÑаÑÑÑÑ ÑеÑÑ. ÐÑÑ Ð¾Ð´Ñ Ð¸Ð· полÑÑеннÑÑ Ð´Ð°Ð½Ð½ÑÑ , можно ÑделаÑÑ Ð²Ñвод, ÑÑо акÑивнÑй ÐÐРдейÑÑвиÑелÑно ÑлÑÑÑил показаÑели ÐÐРи ÐРпÑи ÑаÑÑÑÑойке в 50%. ÐаклÑÑение пÑедÑÑавлено на данном Ñлайде., The main significance of the topic studied in the final work is to increase the power factor of key circuits operating on various types of load. This allows you to apply circuit solutions that ensure minimal impact on the supply network. In my case, a single-phase power supply is considered. To carry out the operation of a key voltage generator from a power source (from the mains), it is necessary to convert alternating current to direct current. The rectifier was assembled according to the Graetz scheme. The main feature of the key generator is that the active elements can be in two states: "open" and "closed". The most appropriate in the low frequency (LF) range is the use of transistors as AE. It should be noted that any AE in the closed state has a resistance other than zero. The presence of this resistance leads to a voltage drop across the AE. The principle of operation of this circuit is to alternately open and close two pairs of transistors. If the so-called deadtime (the delay between them) is not taken into account in this mode of operation, a short circuit will occur in the circuit and damage to the circuit elements, respectively.Using this circuit allows you to get twice the power than, for example, the power generated by a half-bridge generator.Like any non-linear device, the KG can adversely affect the supply network (PS). In this regard, one of the urgent problems is the study of the effect of CG on PS. It should be noted that the degree of distortion in the PS directly depends on the power of the devices. Distortion can lead to incorrect operation of other devices on the network or to their complete failure. Three types of circuits were considered: KG without power factor correction, with passive and active when operating on a resistive load and on a serial RLC filter. The passive gain corrector is an LC filter at the rectifier output. The basis of the active power factor corrector is a pulsed DC voltage converter. The standard switching power supply uses pulse-width modulation (PWM) mode to regulate the amount of power supplied by the power supply to the equipment connected to it. Among the possible AKKM structures, a step-up DC/DC converter operating in continuous current mode (i. e., when the value of the step-up inductor is chosen such that during the switching period a continuous current flows through the inductor), provides the smallest amount of high-frequency current flowing through the input capacitor (Svh). This is the only structure that reduces noise on the input capacitor, which is a major factor in determining the size and cost of the filter. In addition, only a part of the transmitted energy is stored in the step-up choke (because the energy is consumed from the network and when the choke is demagnetized). Thus, the required inductance of the inductor is less than with other structures. As a result, the DC-DC boost converter structure provides the lowest cost PFC, but does not provide protection against inrush currents and short circuits. To verify compliance with established state standards for electromagnetic compatibility, it is necessary to evaluate the value of KM and SOI. The first case under consideration is the model of a key voltage generator without a power factor corrector. To study the distortion, the time dependences of the current at the rectifier input and the diagram of the spectral components of the current with a resistive load are used.Using the numerical data of the spectral analysis, the calculation of the coefficient of non-linear distortion (THD) and power factor (PF) was made. The resulting values ââcomply with GOST standards. To study the distortions when working on a serial RLC filter, its elements were calculated and then a detuning of 50 percent was taken. Based on the results obtained, it can be concluded that the detuning of the RLC circuit has a significant impact on the parameters of the supply network. With a circuit detuning of 50 percent, a key voltage generator without a power factor corrector does not comply with GOST electromagnetic compatibility standards. A variant of the circuit with a passive power factor corrector, presented in the form of an LC filter connected to the rectifier output, was also considered. Preliminarily evaluating the values ââof KM and SOI, we can conclude that with an inductive or capacitive detuning of 50%, this version of the power factor corrector for a key voltage generator slightly reduces the detrimental effect on the supply network. The last stage of the study was an active power factor corrector. When operating the KG voltage on a purely resistive load, the values ââof SOI and KM turned out to be worse than in the circuit without PFC. This is because the active PFC is another pulse stage in the system. This leads to an increase in the level of high-frequency interference entering the supply network. Based on the data obtained, it can be concluded that the active CMC really improved the indicators of CNI and CM with a breakdown of 50%. The conclusion is presented on this slide.
- Published
- 2022
- Full Text
- View/download PDF