1. New identification algorithm for linearly varying frequency of sinusoidal signal
- Author
-
Le Van Tuan, A. A. Bobtsov, M. M. Korotina, S. V. Aranovskiy, National Research University of Information Technologies, Mechanics and Optics [St. Petersburg] (ITMO), CentraleSupélec, Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), and Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Subjects
0209 industrial biotechnology ,Computer science ,идентификация ,02 engineering and technology ,robustness ,Signal ,lcsh:QA75.5-76.95 ,синусоидальные сигналы ,нестационарная частота ,020901 industrial engineering & automation ,[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing ,Robustness (computer science) ,Linear regression ,0202 electrical engineering, electronic engineering, information engineering ,lcsh:QC350-467 ,линейная регрессионная модель ,Mechanical Engineering ,linear regression model ,non-stationary frequency ,sinusoidal signals ,Atomic and Molecular Physics, and Optics ,Computer Science Applications ,Electronic, Optical and Magnetic Materials ,Identification (information) ,identification ,020201 artificial intelligence & image processing ,lcsh:Electronic computers. Computer science ,робастность ,Algorithm ,lcsh:Optics. Light ,Information Systems - Abstract
International audience; The paper deals with the problem of identification of linearly varying frequency of sinusoidal signal with unknown amplitude and phase. Identification task for linearly varying frequency occurs, for example, during telescope operation control and it is of practical interest. Existing synthesis methods for identification algorithms of linearly varying frequency of sinusoidal signal use unlimited functions of time that is not attractive from a technical point of view, since the measurement noise multiplied by an unlimited function tends to give extremely poor estimates of the tunable parameter. This paper proposes a new approach for identification of linearly varying frequency comprising iterative filtering of measured sinusoidal signal (with the use of linear first order stable components), which in turn gives the possibility to obtain a simple linear regression model with one unknown constant parameter. We present computer simulation results, illustrating the performance of the proposed identification algorithm. Computer modeling was performed both in the presence and absence of the measurement noise. Also, comparative analysis of the proposed approach with the previously obtained methods was carried out within the framework of computer simulation. It was shown that the presented solution provides a significant improvement in the accuracy of an unknown frequency identification in the noise presence.; Рассмотрена задача идентификации линейно меняющейся частоты синусоидального сигнала, имеющего неизвестные амплитуду и фазу, возникающая, например, при управлении телескопом. Традиционно методы синтеза алгоритмов идентификации линейно меняющейся частоты синусоидального сигнала используют неограниченные функции времени, что вызывает технические проблемы, поскольку в этом случае наличие шумов при измерении может существенно исказить настраиваемый параметр. Предложен подход к идентификации линейно меняющейся частоты, предусматривающий итеративную фильтрацию (с использованием линейных устойчивых звеньев первого порядка) измеряемого синусоидального сигнала, которая позволяет получить простую линейную регрессионную модель с одним неизвестным постоянным параметром. Приведены результаты компьютерного моделирования, иллюстрирующие работоспособность представленного алгоритма идентификации. Компьютерное моделирование выполнено как при наличии шумов в измерениях, так и в их отсутствие. Путем компьютерного моделирования проведен сравнительный анализ предлагаемого подхода с полученными ранее методами, и показано, что представленное решение обеспечивает существенное повышение точности идентификации неизвестной частоты при наличии шумов
- Published
- 2019