CNPq A tomada de decisão em um ambiente envolvendo incerteza é um problema que data dos primórdios da civilização. Atualmente, uma das áreas mais desenvolvidas em termos de metodologia de análise do comportamento do mercado sob incerteza é o setor financeiro. A análise de evolução dos preços de ações tem demandado o uso de um instrumental analítico fortemente fundamentado e que envolve a utilização de instrumental quantitativo bastante avançado. Os avanços recentes no estado da arte na área da econometria e as controvérsias com os resultados teóricos da Economia, demandou e ainda demanda, uma aobrdagem multidisciplinar para a análise de dados fazendo surgir a criação de novos modelos, em particular, para séries financeiras. Como os modelos tradicionais usados isoladamente, mesmo os não lineares, não apresentam resultados satisfatórios em todos os períodos analisados, uma forma sugerida em muitos casos é combinar modelos para aproveitar as melhores capacidades de previsão de cada um deles, pretendendo com isso, captar os principais parâmetros determinantes da dinâmica das séries temporais. Nesta tese é proposto a utilização de um sistema híbrido, baseado em Redes Neurais Artificiais (RNA) e Modelos econométricos não-lineares, para realizar previsões com o intuito de se conseguir um melhor resultado com esses modelos quando comparados aos modelos isolados. O objetivo do trabalho é investigar quais modelos fornecem a melhor qualidade de previsão, as limitações desses modelos e se os mesmos têm aplicações práticas quando aplicados a previsões de séries temporais. Como resultado, foi possível concluir que o modelo combinado se ajusta melhor aos dados reais do que os modelos individuais, fato este comprovado através da comparação das diferentes medidas de performance. Por exemplo, no caso da série de preços das ações da Petrobras, o erro quadrático médio (MSE) do modelo combinado é reduzido em 40% quando comparado ao MSE do melhor dos modelos estudados. No conjunto das séries não-financeiras, o MSE do modelo combinado para a série de emissão de CO₂ apresentou uma redução de 65% quando comparado ao MSE do modelo ARIMA que para a presente série foi o modelo individual com melhor performance. Usou-se o MSE como exemplo pois o MSE é a medida mais utilizada pela sua facilidade de cálculo e por ser uma métrica encontrada em praticamente todos os pacotes computacionais que trabalham com estatística e RNAs, facilitando assim a comparação dos resultados. De uma forma geral temos sete parâmetros de comparação entre os modelos em sete séries de teste. Assim temos 49 resultados dos parâmetros de comparação. Em 35 resultados o modelo combinado é o melhor dos três, ou seja, para as séries em teste, em 71,4% das vezes o modelo combinado é o melhor. Em 42 resultados o modelo combinado aparece como o melhor resultado, ou seja, para as séries em teste, em 85,7% das vezes o modelo combinado é melhor ou tão bom quanto o das RNAs. Enquanto isso, o modelo RNA aparece apenas 7 vezes (14,3%) como o melhor resultado e 13 vezes (26,5% ) das vezes como melhor ou tão bom quanto o modelo Combinado. O Modelo de Box&Jenkins só apresenta um resultado como sendo o melhor na série de CO₂, na medida BIC. Assim, verifica-se que entre os modelos e dentre essas séries, o modelo Combinado é o mais adequado a se utilizar. Logo, podemos afirmar que, em algumas situações, esses modelos híbridos fornecem melhores resultados quando comparados aos modelos econométricos tradicionais ou mesmo aos modelos puros de Redes Neurais geralmente utilizados para se fazer previsões. Decision making under uncertainty is a problem that has existed since the dawn of civilization. Currently, the financial sector is one of the most advanced in terms of methodological analysis of market behavior under uncertainty. The analysis of evolution of stock prices has required the use of a quantitative analytical tools strongly based. Recent advances in the state of the art in the area of econometrics and controversies with the theoretical results of the Economy have demanded and still demand a multidisciplinary approach to data analysis, creating the creation of new models, particularly for financial series. As the traditional models used alone, even non-linear ones, do not present satisfactory results in all the analyzed periods, a suggested way in many cases is to combine models to take advantage of the best predictive capacities of each one of them, intending to capture the main parameters that determine the dynamics of the time series. This thesis proposes to use a hybrid system based on Dynamic Artificial Neural Networks (DANN) and non-linear econometric models to make predictions, in order to achieve a better result. The objective of this study is to investigate which models provide the highest quality prediction, the limitations of these models and whether they have practical applications when applied to forecasts financial series. As a result, it was concluded that, in some cases, the combined model fits the data better than the actual individual models, a fact confirmed by comparing the different measures of performance. For example, in the series of stock prices of Petrobras, the mean square error (MSE) of the combined model is reduced by 40% compared to the MSE of the best studied individual model. In the group of non-financial series, the MSE of the combined model for the CO₂ emission has fallen by 65% compared to the MSE of the ARIMA model for which this series was the individual model with better performance. The MSE was used as an example because the MSE is the most used measure for its ease of calculation and for being a metric found in almost all the computational packages that work with statistics and RNAs, thus facilitating the comparison of the results. In general we have seven parameters of comparison between the models in seven test series. Thus we have 49 results of the comparison parameters. In 35 results the combined model is the best of the three, that is, for the series under test, at 71.4 % of the time the combined model is the best. In 42 results the combined model appears as the best result, that is, for the series under test, at 85.7 % of the time the combined model is better or as good as the RNAs. Meanwhile, the RNA model appears only 7 times (14.3 %) as the best result and 13 times (26.5 %) of the times as better or as good as the Combined model. The Box&Jenkins Model only shows one result as being the best in the CO₂ series, in BIC measurement. Thus, it is verified that among the models and among these series, the Combined model is the most suitable to be used. Thus, we can say that, in some situations, these hybrid models provide better results when compared to traditional econometric models or even the pure models of neural networks generally used to make predictions.