Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Sulfide mineral exploration shows large environmental risks when these materials are exposed to the surface. These minerals can be oxidized producing acid waters, known mining activities as acid mining drainage. These waters can reach the water table and channels, with high content of metals (Pb, Cd, Ni, etc.) and metalloids (As, B, etc), becoming solubilized by the process, and toxic to the food chain. The present work aimed to evaluate different acid drainage reducing practices and revegetation procedures, by laboratory and field experiments. In the laboratory experiment, lysimeters were tested with different combinations of cover, saddle and capillarity broken layers. For this last layer, additional treatments were used with sodium oxalic (saddle) and geochemical barrier induction (neoformation of jarosite and, or natrojarosite). Layers were constructed with different materials, all placed over a low oxidized sulfide containing-substrate (B2), forming 12 treatments, plus the reference (B2 substrate), in a incomplete factorial casualised blocks design. The water application was carried out at twice the monthly rain amount, observed at Paracatu-MG. The experiment was carried out during 24 months, and leached waters were collected from each lysimeter every month, to quantify the total volume and to determine As, Fe, S, Na and K contents, and pH value. After the end of the experimental time, lysimeters were opened to collect samples from B2 substrate, aiming to verify jarosite and, or natrojarosite neoformation and, from the cover layer, to determine chemical composition in terms of its revegetation potential. The best results the leachates showed lower amount of As, Fe and S, were found with the geochemical barrier induction-treaments. Jarosite formation could be observed by Mössbauer spectroscopy. Although some treatments have produced lower amounts of As, Fe and S in the leachates, none of those reduced its acidity. The pH of the leachates remained close to 3.0. The cover layer had low influence to the metals leaching, but the use of clay produced better results, probably because its As adsorption capacity. The presence of capillarity broken layers is very important due, probably, to promote a humidity gradient, reducing the amounts the As, Fe and S in the leached. The use of sodium oxalic in this layer did not produce any significant effect, showing no difference among treatments in terms of the amount of leached. The greatest Na and K leaching were obtained with the treatments which received the addition of these elements to geochemical barrier induction, being more intensive Na leaching, favoring jarosite formation instead natrojoraosite. The field experiment was set in March, 2000 with the aim to evaluate the effect of the B1 substrate (ore with low sulfide content) and clay as saddle and cover layers, to promote plant growth. Four treatments were set with different combinations of these materials forming the layers, and where shrubs and trees seedlings from nine species were planted. Height and steam diameter were determined along the experimental time. Superficial (0-20 cm) soil available As was also determinate for each treatment. The clay use in both layers showed better results, allowing more survival and growth for plants. The absence of clay in both layers resulted death for all species and more availability of As. Among species, outstanding performance was observed to Acacia holosericea with higher biomass production and good survival rate. Flemingia sp., Enterolobium timabuva and Acacia polyphylla showed lowers biomass production. A exploração de minerais sulfetados apresenta grande risco ao ambiente quando estes são expostos à superfície. Nestas condições estes minerais são oxidados produzindo águas ácidas, que no caso da mineração, principal forma de exposição destes minerais, é conhecida como drenagem ácida de mina. Estas águas podem atingir o lençol freático e cursos d água, com teores elevados de metais pesados (Pb, Cd, Ni, etc) e metalóides (As, B, etc) solubilizados pelo processo e deletérios para toda a cadeia trófica. Este trabalho teve como objetivo avaliar diferentes práticas mitigadoras de drenagem ácida e de revegetação por meio de experimentos em laboratório e em condições de campo. Para o experimento em laboratório, foram montados lisímetros com diferentes combinações de camadas de cobertura, de selamento e de quebra de capilaridade. Esta última com tratamentos adicionais, como uso de oxalato de sódio (selamento) e indução de formação de barreira geoquímica (neoformação de jarosita e, ou, natrojarosita). As camadas foram compostas por diferentes materiais, todos dispostos acima de uma camada do substrato sulfetado pouco intemperizado (B2), formando doze tratamentos mais testemunha (apenas o substrato B2), num esquema fatorial incompleto e delineamento em blocos casualisados. Foram aplicadas quantidades de água desionizada de acordo com o dobro da precipitação média mensal do município de Paracatu/MG. Este experimento teve duração de 24 meses, sendo obtidas, portanto, 24 amostras de lixiviado por unidade experimental, nas quais foram dosados os teores de As, Fe, S, Na e K, leitura do pH e quantificação do volume total lixiviado a cada mês. Após término, os lisímetros foram desmontados, coletadas amostras do substrato B2 para verificação da neoformação de jarosita e, ou, natrojarosita e amostras da camada de cobertura para análises químicas no intuito de se avaliar o potencial para revegetação. Os melhores resultados, onde a lixiviação de As, Fe e S foram significativamente menores, foram obtidos nos tratamentos com a indução da barreira geoquímica, sendo constatada a presença de jarosita pelas técnicas de difração de raios-X e espectroscopia Mössbauer. Embora tenham se obtido menores lixiviações de As, Fe e S com alguns tratamentos, nenhum destes foram eficazes em inibir a geração de acidez, ficando os valores de pH próximo a 3,0. A camada de cobertura teve pouca influência na lixiviação destes elementos, sendo o uso de argila mais indicado para revegetação, por apresentar menores teores de As. O uso de argila como camada selante propiciou melhores resultados (menores lixiviações), possivelmente pela sua capacidade em adsorver arsênio. A presença da camada de quebra de capilaridade foi de fundamental importância, por possivelmente promover um gradiente de umidade, pela diferença de textura, diminuindo significativamente as quantidades lixiviadas de As, Fe e S, mas o uso de oxalato de sódio nesta camada não teve efeito significativo, não apresentando diferença no volume lixiviado para todos os tratamentos analisados. As maiores lixiviações de Na e K foram para os tratamentos que receberam estes elementos para indução da formação da barreira geoquímica, sendo maior a lixiviação de Na, o que parece ter favorecido a formação de jarosita em detrimento a natrojarosita. O experimento de campo foi montado em março de 2000 com o objetivo de avaliar o efeito do substrato B1 (minério com baixo teor de sulfetos) e da argila como camadas selantes e camadas de cobertura para o crescimento de plantas. Foram montados quatro tratamentos com diferentes materiais compondo as camadas selante e superficial, nos quais foram plantadas mudas de nove espécies arbóreas e arbustivas. As avaliações consistiram de medições do diâmetro de colo e da altura das plantas. Foi determinado, ainda, o teor de arsênio disponível na camada de 0 a 20 cm de cada tratamento. A utilização da argila em ambas as camadas propiciou os melhores resultados, favorecendo o maior crescimento e a maior sobrevivência das plantas. A ausência deste material, também em ambas as camadas, propiciou a morte de todas as plantas, além de maior teor de arsênio disponível. Entre as espécies, destaca-se a Acacia holosericea com maior produção de biomassa e boa percentagem de sobrevivência. As espécies Flemingia sp., Enterolobium timbauva e Acacia polyphylla apresentaram as menores produções de biomassa.