1. روش ی ج دی د برا ی ش کن ا ن ام ار میکروقطرات غیرنیوتنی.
- Author
-
احمد بِدرا م
- Subjects
RESEARCH methodology ,BENCHMARK problems (Computer science) ,VORTEX motion ,ALGORITHMS ,NON-Newtonian flow (Fluid dynamics) ,NON-Newtonian fluids - Abstract
In this paper, an asymmetric breakup of non-Newtonian droplet (with power law behavior) in a new geometry (network junction) has been investigated. The geometry can break an initial droplet into six unequal size droplets. The research method is numerical simulation with Volume of Fluid (VOF) algorithm. The numerical results are compared with the results of a benchmark problem and a very good agreement is seen. The results showed that in areas close to the wall, mixing of materials of inside droplet is performed better, which is important in industrial applications of droplet based flows, especially in pharmaceutical and chemical industries. The results showed that the maximum vorticity magnitude in the K1 branch (the lowest output branch in the system) is 26, 44 and 28 % more than the maximum vorticity magnitude of the branches of K2, K3 and K4 (K4 is the highest output branch is in system). Also, maximum effective viscosity in the K1 branch is 27, 29 and 24 % less than the maximum effective viscosity in the K2, K3 and K4 branches, respectively. Therefore, K1 branch has the best performance in mixing of the material of inside droplet among the output branches. It was also revealed that the pressure of inside of droplet (both before and after breakup) is constant along the channel width [ABSTRACT FROM AUTHOR]
- Published
- 2021