1. The Murchison Widefield Array 21 cm Power Spectrum Analysis Methodology
- Author
-
Cathryn M. Trott, Miguel F. Morales, Adam P. Beardsley, Frank H. Briggs, S. R. McWhirter, Bryan Gaensler, Aaron Ewall-Wice, Edward H. Morgan, J. L. B. Line, J. S. B. Wyithe, E. Kratzenberg, Andrew Williams, David Emrich, Lu Feng, Nithyanandan Thyagarajan, Mervyn J. Lynch, Steven Tingay, Alan E. E. Rogers, Rachel L. Webster, S. Paul, N. Udaya Shankar, Daniel A. Mitchell, Nichole Barry, Roger J. Cappallo, K. S. Srivani, J. Riding, Ian Sullivan, Judd D. Bowman, Joshua S. Dillon, Han-Seek Kim, Lincoln J. Greenhill, A. R. Offringa, Christopher L. Williams, Pietro Procopio, Chen Wu, David L. Kaplan, B. E. Corey, Abraham Loeb, Justin C. Kasper, Gianni Bernardi, T. Prabu, Shiv K. Sethi, Divya Oberoi, Jacqueline N. Hewitt, Mark Waterson, Bartosz Pindor, Ravi Subrahmanyan, A. R. Whitney, A. de Oliveira-Costa, R. Goeke, Natasha Hurley-Walker, Emil Lenc, A. Roshi, Abraham R. Neben, Daniel C. Jacobs, Bryna J. Hazelton, Colin J. Lonsdale, P. Carroll, Jonathan C. Pober, Stephen M. Ord, Benjamin McKinley, Max Tegmark, Melanie Johnston-Hollitt, Randall B. Wayth, ITA, USA, and AUS
- Subjects
Physics ,Cosmology and Nongalactic Astrophysics (astro-ph.CO) ,010308 nuclear & particles physics ,Calibration (statistics) ,media_common.quotation_subject ,Astrophysics::Instrumentation and Methods for Astrophysics ,Spectral density ,FOS: Physical sciences ,Astronomy and Astrophysics ,Murchison Widefield Array ,Astrophysics::Cosmology and Extragalactic Astrophysics ,01 natural sciences ,Power (physics) ,Reduction (complexity) ,Space and Planetary Science ,Sky ,0103 physical sciences ,Range (statistics) ,Astrophysics - Instrumentation and Methods for Astrophysics ,010303 astronomy & astrophysics ,Reionization ,Algorithm ,Instrumentation and Methods for Astrophysics (astro-ph.IM) ,media_common ,Astrophysics - Cosmology and Nongalactic Astrophysics - Abstract
We present the 21 cm power spectrum analysis approach of the Murchison Widefield Array Epoch of Reionization project. In this paper, we compare the outputs of multiple pipelines for the purpose of validating statistical limits cosmological hydrogen at redshifts between 6 and 12. Multiple, independent, data calibration and reduction pipelines are used to make power spectrum limits on a fiducial night of data. Comparing the outputs of imaging and power spectrum stages highlights differences in calibration, foreground subtraction and power spectrum calculation. The power spectra found using these different methods span a space defined by the various tradeoffs between speed, accuracy, and systematic control. Lessons learned from comparing the pipelines range from the algorithmic to the prosaically mundane; all demonstrate the many pitfalls of neglecting reproducibility. We briefly discuss the way these different methods attempt to handle the question of evaluating a significant detection in the presence of foregrounds., Comment: accepted to ApJ
- Published
- 2016