Vincenzi, M., Sullivan, M., Möller, A., Armstrong, P., Bassett, B. A., Brout, D., Carollo, D., Carr, A., Davis, T. M., Frohmaier, C., Galbany, L., Glazebrook, K., Graur, O., Kelsey, L., Kessler, R., Kovacs, E., Lewis, G. F., Lidman, C., Malik, U., Nichol, R. C., Popovic, B., Sako, M., Scolnic, D., Smith, M., Taylor, G., Tucker, B. E., Wiseman, P., Aguena, M., Allam, S., Annis, J., Asorey, J., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., T. S., Li, Lima, M., Maia, M. A. G., Marshall, J. L., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Reil, K., Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Varga, T. N., Weller, J., Wilkinson, R. D., Des, Collaboration, Vincenzi, M., Sullivan, M., Möller, A., Armstrong, P., Bassett, B. A., Brout, D., Carollo, D., Carr, A., Davis, T. M., Frohmaier, C., Galbany, L., Glazebrook, K., Graur, O., Kelsey, L., Kessler, R., Kovacs, E., Lewis, G. F., Lidman, C., Malik, U., Nichol, R. C., Popovic, B., Sako, M., Scolnic, D., Smith, M., Taylor, G., Tucker, B. E., Wiseman, P., Aguena, M., Allam, S., Annis, J., Asorey, J., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Pereira, M. E. S., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Flaugher, B., Fosalba, P., Frieman, J., García-Bellido, J., Gerdes, D. W., Gruen, D., Gutierrez, G., Hinton, S. R., Hollowood, D. L., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Lahav, O., T. S., Li, Lima, M., Maia, M. A. G., Marshall, J. L., Miquel, R., Morgan, R., Ogando, R. L. C., Palmese, A., Paz-Chinchón, F., Pieres, A., Plazas Malagón, A. A., Reil, K., Roodman, A., Sanchez, E., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., To, C., Varga, T. N., Weller, J., Wilkinson, R. D., Des, Collaboration, UAM. Departamento de Física Teórica, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut d'Astrophysique de Paris (IAP), Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and DES
Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, los autores pertenecientes a la UAM y el nombre del grupo de colaboración, si lo hubiere, This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record Monthly Notices of the Royal Astronomical Society Volume 518.1 (2023): 1106-1127 is available online at: https://academic.oup.com/mnras/article-abstract/518/1/1106/6601453, Cosmological analyses of samples of photometrically identified type Ia supernovae (SNe Ia) depend on understanding the effects of ‘contamination’ from core-collapse and peculiar SN Ia events. We employ a rigorous analysis using the photometric classifier SuperNNova on state-of-the-art simulations of SN samples to determine cosmological biases due to such ‘non-Ia’ contamination in the Dark Energy Survey (DES) 5-yr SN sample. Depending on the non-Ia SN models used in the SuperNNova training and testing samples, contamination ranges from 0.8 to 3.5 per cent, with a classification efficiency of 97.7–99.5 per cent. Using the Bayesian Estimation Applied to Multiple Species (BEAMS) framework and its extension BBC (‘BEAMS with Bias Correction’), we produce a redshift-binned Hubble diagram marginalized over contamination and corrected for selection effects, and use it to constrain the dark energy equation-of-state, w. Assuming a flat universe with Gaussian ΩM prior of 0.311 ± 0.010, we show that biases on w are, This work was supported by the Science and Technology Facilities Council [grant number ST/P006760/1] through the DISCnet Cen¬tre for Doctoral Training. MS acknowledges support from EU/FP7¬ERC grant 615929, and PW acknowledges support from STFC grant ST/R000506/1. TMD acknowledges support from ARC grant FL180100168. LG acknowledges financial support from the Span¬ish Ministry of Science, Innovation and Universities (MICIU) un¬der the 2019 Ramón y Cajal program RYC2019-027683 and from the Spanish MICIU project PID2020-115253GA-I00. RH and MS were supported by DOE grant DE-FOA-0001781 and NASA grant NNH15ZDA001N-WFIRST. The material is based upon work sup¬ported by NASA under award number 80GSFC17M0002. LK thanks the UKRI Future Leaders Fellowship for support through the grant MR/T01881X/1. This paper has gone through internal review by the DES collab¬oration. Funding for the DES Projects has been provided by the U.S. Department of Energy, the U.S. National Science Foundation, the Ministry of Science and Education of Spain, the Science and Technology Facilities Council of the United Kingdom, the Higher Education Funding Council for England, the National Center for Supercomputing Applications at the University of Illinois at Urbana-Champaign, the Kavli Institute of Cosmological Physics at the Uni¬versity of Chicago, the Center for Cosmology and Astro-Particle Physics at the Ohio State University, the Mitchell Institute for Fun¬damental Physics and Astronomy at Texas A&M University, Finan¬ciadora de Estudos e Projetos, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro, Conselho Nacional de Desenvolvimento Científico e Tecnológico and the Ministério da Ciência, Tecnologia e Inovação, the Deutsche Forschungsgemein¬schaft and the Collaborating Institutions in the Dark Energy Survey. The Collaborating Institutions are Argonne National Laboratory, the University of California at Santa Cruz, the University of Cam¬bridge, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas-Madrid, the University of Chicago, University Col¬lege London, the DES-Brazil Consortium, the University of Edin¬burgh, the Eidgenössische Technische Hochschule (ETH) Zürich, Fermi National Accelerator Laboratory, the University of Illinois at Urbana-Champaign, the Institut de Ciències de l’Espai (IEEC/CSIC), the Institut de Física d’Altes Energies, Lawrence Berkeley National Laboratory, the Ludwig-Maximilians Universität München and the associated Excellence Cluster Universe, the University of Michigan, NFS’s NOIRLab, the University of Nottingham, The Ohio State Uni-versity, the University of Pennsylvania, the University of Portsmouth, SLAC National Accelerator Laboratory, Stanford University, the Uni¬versity of Sussex, Texas A&M University, and the OzDES Member¬ship Consortium. Based in part on observations at Cerro Tololo Inter-American Observatory at NSF’s NOIRLab (NOIRLab Prop. ID 2012B-0001; PI: J. Frieman), which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. The DES data management system is supported by the Na¬tional Science Foundation under Grant Numbers AST-1138766 and AST-1536171. The DES participants from Spanish institutions are partially supported by MICINN under grants ESP2017-89838, PGC2018-094773, PGC2018-102021, SEV-2016-0588, SEV-2016¬-0597, and MDM-2015-0509, some of which include ERDF funds from the European Union. IFAE is partially funded by the CERCA program of the Generalitat de Catalunya. Research leading to these re¬sults has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP7/2007-2013) including ERC grant agreements 240672, 291329, and 306478. We acknowledge support from the Brazilian Instituto Nacional de Ciên¬cia e Tecnologia (INCT) do e-Universo (CNPq grant 465376/2014¬2). This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. De¬partment of Energy, Office of Science, Office of High Energy Physics. This work was completed in part with resources provided by the University of Chicago’s Research Computing Center. Finally, this work was based in part on data acquired at the Anglo-Australian Telescope, under program A/2013B/012. We acknowledge the traditional owners of the land on which the AAT stands, the Gamilaraay people, and pay our respects to elders past and present