Over the last century, there has been a steady development of new technologies for intraoperative tissue identification and differentiation. The applications are varied, with the core purpose being to identify target structures while preserving adjacent tissue and thereby follow a general paradigm of minimally invasive medicine. Particularly in oncology, a further asset of these technologies is the identification or classification of neoplastic tissue to support and improve therapy, for example, in breast cancer surgery.Many technologies under consideration make use of the different physical characteristics of treated tissues, such as induced fluorescence, optical coherence, and electrical impedance.Recent developments are focusing on moving from ex vivo to in situ and from asynchronous to real-time assistance of the clinicians, for example, by means of optical emission spectroscopy. Refinements of existing and the creation of new methods will include AI tools to make them more powerful while reducing the inter-operator variability in operative interventions. This talk addresses several aspects of the usage and suitability of these technologies for intraoperative, therapy-supporting application., (© 2023. The Author(s), under exclusive licence to Springer Medizin Verlag GmbH, ein Teil von Springer Nature.)