Vidal , Vincent, Laboratoire d'InfoRmatique en Image et Systèmes d'information ( LIRIS ), Université Lumière - Lyon 2 ( UL2 ) -École Centrale de Lyon ( ECL ), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 ( UCBL ), Université de Lyon-Centre National de la Recherche Scientifique ( CNRS ) -Institut National des Sciences Appliquées de Lyon ( INSA Lyon ), Université de Lyon-Institut National des Sciences Appliquées ( INSA ) -Institut National des Sciences Appliquées ( INSA ), INSA de Lyon, Christian Wolf, Florent Dupont, STAR, ABES, Geometry Processing and Constrained Optimization (M2DisCo), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), and Université de Lyon-Université Lumière - Lyon 2 (UL2)
The work in this thesis concerns structural analysis of 2-manifold triangular meshes, and their processing towards quality enhancement (remeshing) or simplification. In existing work, the repositioning of mesh vertices necessary for remeshing is either done locally or globally, but in the latter case without local control on the introduced geometrical error. Therefore, current results are either not globally optimal or introduce unwanted geometrical error. Other promising remeshing and approximation techniques are based on a decomposition into simple geometrical primitives (planes, cylinders, spheres etc.), but they generally fail to find the best decomposition, i.e. the one which jointly optimizes the residual geometrical error as well as the number and type of selected simple primitives. To tackle the weaknesses of existing remeshing approaches, we propose a method based on a global model, namely a probabilistic graphical model integrating soft constraints based on geometry (approximation error), mesh quality and the number of mesh vertices. In the same manner, for segmentation purposes and in order to improve algorithms delivering decompositions into simple primitives, a probabilistic graphical modeling has been chosen. The graphical models used in this work are Markov Random Fields, which allow to find an optimal configuration by a global minimization of an objective function. We have proposed three contributions in this thesis about 2-manifold triangular meshes : (i) a statistically robust method for feature edge extraction for mechanical objects, (ii) an algorithm for the segmentation into regions which are approximated by simple primitives, which is robust to outliers and to the presence of noise in the vertex positions, (iii) and lastly an algorithm for mesh optimization which jointly optimizes triangle quality, the quality of vertex valences, the number of vertices, as well as the geometrical fidelity to the initial surface., Ce travail de thèse concerne l'analyse structurelle des maillages triangulaires surfaciques, ainsi que leur traitement en vue de l'amélioration de leur qualité (remaillage) ou de leur simplification. Dans la littérature, le repositionnement des sommets d'un maillage est soit traité de manière locale, soit de manière globale mais sans un contrôle local de l'erreur géométrique introduite, i.e. les solutions actuelles ne sont pas globales ou introduisent de l'erreur géométrique non-contrôlée. Les techniques d'approximation de maillage les plus prometteuses se basent sur une décomposition en primitives géométriques simples (plans, cylindres, sphères etc.), mais elles n'arrivent généralement pas à trouver la décomposition optimale, celle qui optimise à la fois l'erreur géométrique de l'approximation par les primitives choisies, et le nombre et le type de ces primitives simples. Pour traiter les défauts des approches de remaillage existantes, nous proposons une méthode basée sur un modèle global, à savoir une modélisation graphique probabiliste, intégrant des contraintes souples basées sur la géométrie (l'erreur de l'approximation), la qualité du maillage et le nombre de sommets du maillage. De même, pour améliorer la décomposition en primitives simples, une modélisation graphique probabiliste a été choisie. Les modèles graphiques de cette thèse sont des champs aléatoires de Markov, ces derniers permettant de trouver une configuration optimale à l'aide de la minimisation globale d'une fonction objectif. Nous avons proposé trois contributions dans cette thèse autour des maillages triangulaires 2-variétés : (i) une méthode d'extraction statistiquement robuste des arêtes caractéristiques applicable aux objets mécaniques, (ii) un algorithme de segmentation en régions approximables par des primitives géométriques simples qui est robuste à la présence de données aberrantes et au bruit dans la position des sommets, (iii) et finalement un algorithme d'optimisation de maillages qui cherche le meilleur compromis entre l'amélioration de la qualité des triangles, la qualité de la valence des sommets, le nombre de sommets et la fidélité géométrique à la surface initiale.