1. Optimizing Hybrid Perovskites for High-Efficiency Solar Energy
- Author
-
Wissem Nasri, Baghdad Hadri, Nour El Islam Boukortt, and Yacine Sebbah
- Subjects
hybrid perovskite ,photovoltaic energy ,interface engineering ,long-term stability ,Renewable energy sources ,TJ807-830 - Abstract
Our research explores hybrid perovskite solar cells, promising low-cost and high-efficiency photovoltaic solutions. Despite challenges, optimizations like interface engineering enhance performance for future commercial use. Study of different physical parameters with the help of SILVACO and MATLAB Simulink for cell modeling. Long-term stability and cost reductions are among the most significant challenges to broad commercialization Future research will be around trying different parameter values. There searcher said this project represents an important step forward in the development of hybrid perovskite solar cells, which could be a key partof a new wave of clean energy sources that are needed as global consumption levels continue to rise. The solar cells studied herein are detailed by the six-scan structure: Glass/Indium Tin Oxide (ITO) / Electron Transport Layer - (N layer) - Active Layer (Perovskite) - Hole transport_layer (Payer) - Metal Electrode; Glass/ITO/TiO2/Pero_Aardes Spiro-OMeTAD/Au. It delivers the energy conversion efficiency of 19.12% with a fill factor (FF) of 80.53%, an open-circuit voltage at Voc =1.14 Vandshort circuit current density Jsc=20.88 mA/cm²,respectively The active layer is a 0.25 -thick CH3NH3PbI3 perovskite, and the TiO2 layer thickness was set at 0.02
- Published
- 2024
- Full Text
- View/download PDF