1. Optimization of injection molding process parameters based on GA-ELM-GA
- Author
-
Mei Yi and Xue Maoyuan
- Subjects
process parameter optimization ,orthogonal test ,poor analysis ,elm ,ga-elm ,ga-elm-ga ,Engineering (General). Civil engineering (General) ,TA1-2040 - Abstract
The most common optimization method for the optimization of injection mold process parameters is range analysis, but there is often a nonlinear coupling relationship between injection molding process parameters and quality indicators. Therefore, it is difficult to find the optimal process combination in range analysis. In this article, a genetic algorithm optimized extreme learning machine network model (GA-ELM) combined with genetic algorithm (GA) was proposed to optimize the process parameters of the injection mold. Take the injection molding process parameter optimization of an electrical appliance buckle cover shell as an example. In order to find the process parameters corresponding to the minimum warpage deformation, an orthogonal experiment was designed and the results of the orthogonal experiment were analyzed. Then, the corresponding optimal process combination and the degree of influence of process parameters on the warpage deformation were obtained. At the same time, the extreme learning machine network model (GA-ELM) optimized by the genetic algorithm was used to predict the warpage deformation of the plastic part. The trained GA-ELM model can map non-linear coupling relationship between the five process parameters and the warpage deformation well. And the optimal process parameters in the trained GA-ELM network model was searched by the powerful optimization ability of genetic algorithm. Generally speaking, the warpage deformation after optimization by range analysis is reduced by 6.7% compared with the minimum warpage after optimization by orthogonal experiment. But compared to the minimum warpage deformation after orthogonal experiment optimization, the warpage deformation after GAELM-GA optimization is reduced by 22%, which is better than that of the range analysis, thus verifying the feasibility and the optimization of the optimization method. This optimization method provides a certain theoretical reference and technical support for the field involving the optimization of process parameters.
- Published
- 2022
- Full Text
- View/download PDF