ISI Document Delivery No.: 629YQ Times Cited: 4 Cited Reference Count: 58 Cited References: An SI, 2008, J CLIMATE, V21, P3, DOI 10.1175/2007JCLI1500.1 An S-I, 2000, GEOPHYS RES LETT, V27, P1573 An SI, 2000, J CLIMATE, V13, P2044, DOI 10.1175/1520-0442(2000)0132.0.CO;2 An SI, 2005, J CLIMATE, V18, P2617, DOI 10.1175/JCLI3433.1 An SI, 2004, J CLIMATE, V17, P2399, DOI 10.1175/1520-0442(2004)0172.0.CO;2 Annamalai H, 2007, J CLIMATE, V20, P1071, DOI 10.1175/JCL14035.1 BELMADANI A, 2010, J CLIM IN PRESS CANE MA, 1976, J MAR RES, V34, P629 Capotondi A, 2006, OCEAN MODEL, V15, P274, DOI 10.1016/j.ocemod.2006.02.004 Collins M, 2005, CLIM DYNAM, V24, P89, DOI 10.1007/s00382-004-0478-x Collins M, 2000, GEOPHYS RES LETT, V27, P3509, DOI 10.1029/2000GL011747 Delworth TL, 2006, J CLIMATE, V19, P643, DOI 10.1175/JCLI3629.1 Dewitte B, 2007, J CLIMATE, V20, P2002, DOI 10.1175/JCL14110.1 Dewitte B, 2007, J CLIMATE, V20, P1035, DOI 10.1175/JCLI4060.1 Dewitte B., 2000, Journal of Climate, V13, DOI 10.1175/1520-0442(2000)0132.0.CO;2 Dewitte B, 1996, J CLIMATE, V9, P1188, DOI 10.1175/1520-0442(1996)0092.0.CO;2 DiNezio PN, 2009, J CLIMATE, V22, P4873, DOI 10.1175/2009JCLI2982.1 Fedorov AV, 2000, SCIENCE, V288, P1997, DOI 10.1126/science.288.5473.1997 Guilyardi E, 2004, J CLIMATE, V17, P4623, DOI 10.1175/JCLI-3260.1 Guilyardi E, 2006, CLIM DYNAM, V26, P329, DOI 10.1007/s00382-005-0084-6 Guilyardi E, 2009, B AM METEOROL SOC, V90, P325, DOI 10.1175/2008BAMS2387.1 HALPERN D, 1995, J GEOPHYS RES, V100, P1525 HIRST AC, 1986, J ATMOS SCI, V43, P606, DOI 10.1175/1520-0469(1986)0432.0.CO;2 IMADA U, 2006, SOLA, V2, P164 Jin FF, 2003, GEOPHYS RES LETT, V30, DOI 10.1029/2002GL015983 Kirtman BP, 1997, J CLIMATE, V10, P1690, DOI 10.1175/1520-0442(1997)0102.0.CO;2 Kirtman BP, 2002, J CLIMATE, V15, P2301, DOI 10.1175/1520-0442(2002)0152.0.CO;2 KNUTSON TR, 1995, J CLIMATE, V8, P2181, DOI 10.1175/1520-0442(1995)0082.0.CO;2 Knutson TR, 1997, J CLIMATE, V10, P138, DOI 10.1175/1520-0442(1997)0102.0.CO;2 LARGE WG, 1994, REV GEOPHYS, V32, P363, DOI 10.1029/94RG01872 Levitus S., 1998, NOAA ATLAS NESDIS 18, V1, P346 Lin JL, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2006GL028937 Liu ZY, 2005, J CLIMATE, V18, P4684, DOI 10.1175/JCLI3579.1 Meehl GA, 2001, CLIM DYNAM, V17, P515, DOI 10.1007/PL00007929 MEEHL GA, 1993, CLIM DYNAM, V8, P117 Meehl GA, 2007, B AM METEOROL SOC, V88, P1383, DOI 10.1175/BAMS-88-9-1383 MEEHL GA, 1990, J CLIMATE, V3, P72, DOI 10.1175/1520-0442(1990)0032.0.CO;2 Meehl GA, 2006, CLIM DYNAM, V26, P549, DOI 10.1007/s00382-005-0098-0 MELLOR GL, 1982, REV GEOPHYS, V20, P851, DOI 10.1029/RG020i004p00851 Merryfield WJ, 2006, J CLIMATE, V19, P4009, DOI 10.1175/JCLI3834.1 Moon BK, 2004, GEOPHYS RES LETT, V31, DOI 10.1029/2003GL018829 Moon BK, 2007, CLIM DYNAM, V29, P101, DOI 10.1007/s00382-006-0219-4 Stockdale TN, 1998, J GEOPHYS RES-OCEANS, V103, P14325, DOI 10.1029/97JC02440 Timmermann A, 2002, GEOPHYS RES LETT, V29, DOI 10.1029/2001GL013369 Timmermann A, 1999, NATURE, V398, P694 Trenberth KE, 1997, GEOPHYS RES LETT, V24, P3057, DOI 10.1029/97GL03092 van Oldenborgh GJ, 2005, OCEAN SCI, V1, P81 VECCHI GA, 2008, EXAMINING TROPICAL P, V89 Yang HJ, 2005, GEOPHYS RES LETT, V32, DOI 10.1029/2004GL021624 Yeh SW, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2005GL025653 Yeh SW, 2007, J CLIMATE, V20, P203, DOI 10.1175/JCLI4001.1 Yeh SW, 2009, NATURE, V461, P511, DOI 10.1038/nature08316 Yukimoto S., 2001, PAP METEOROL GEOPHYS, V51, P47, DOI DOI 10.2467/MRIPAPERS.51.47 ZEBIAK SE, 1987, MON WEATHER REV, V115, P2262, DOI 10.1175/1520-0493(1987)1152.0.CO;2 Zelle H, 2005, J CLIMATE, V18, P4669, DOI 10.1175/JCLI3574.1 Zhang MH, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2006GL025942 Zhang RH, 2007, GEOPHYS RES LETT, V34, DOI 10.1029/2007GL032119 Zhang RH, 2006, GEOPHYS RES LETT, V33, DOI 10.1029/2005GL025286 Yeh, Sang-Wook Dewitte, Boris Yim, Bo Young Noh, Yign Korea Meteorological Administration Research and Development [RACS_2010-2006]; CNRS (Centre National de la Recherche Scientifique); ANR (Agence Nationale de la Recherche) This work was funded by the Korea Meteorological Administration Research and Development Program under Grant RACS_2010-2006. B. Dewitte benefited from support of the CNRS (Centre National de la Recherche Scientifique) through a STAR (Science and Technology Amicable Research) program and of the ANR (Agence Nationale de la Recherche) through the PCCC (Peru Chile Climate Change) program. 4 SPRINGER NEW YORK CLIM DYNAM; The response of El Nio and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO(2) concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Nio-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO-like SST variability to global warming.