1. Etude à l'échelle atomique de l'implantation du fer dans le carbure de silicium (SiC) : Elaboration d'un semiconducteur magnétique dilué à température ambiante
- Author
-
Diallo, Lindor, STAR, ABES, Groupe de physique des matériaux (GPM), Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU), Normandie Université, Abdeslem Fnidiki, Luc Lechevallier, Alain Declémy, Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université de Caen Normandie (UNICAEN), Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), and Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Semi-conducteur magnétique dilué ,Spectrométrie Mössbauer ,Magnétométrie Squid ,Squid magnetometry ,Silicon carbide ,Mössbauer spectrometry ,[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Atom probe tomography ,Implantation ionique ,Ion implantation ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Diluted magnetic semiconductor ,Sonde atomique tomographique ,Carbure de silicium - Abstract
This PhD thesis focuses on the study of SiC, doped with Fe in order to elaborate a diluted magnetic semiconductor at room temperature for spintronic applications. The iron doping was carried out by ion implantation of multi-energy type (30-160 keV) at different fluences, leading to a 2% constant atomic concentration between 20 to 100 nm, followed by a high temperature annealing in the goal of homogenizing the dopant concentration. The implantation temperature during this process is 550 °C, in order to avoid amorphization. The optimization of the magnetic and electronic properties of SiC-Fe, as well as the understanding of the physical mechanisms at the origin of induced magnetism, require a thorough characterization of the microstructure of the implanted materials. The objectives of this work are, on the one hand, to carry out an atomic scale study of the nanostructure according to the implantation conditions (temperature, fluence) and the post-implantation annealing and the other hand, to characterize the magnetic properties of implanted materials. In this work, we have shown by atom probe tomographic, the existence of nanoparticles whose the average size increases with the annealing temperature. The chemical mapping of the nanoparticles shows the presence of the Fe-rich phases for the annealed samples. Magnetic study (Mössbauer spectrometry and Squid) shows the ferromagnetic contribution is due to the magnetic nanoparticles and/or the diluted Fe atoms in the matrix. The correlation between structural and magnetic properties allowed showing that diluted Fe atoms and substitute to Si sites contribute to the ferromagnetic contribution below 300 K. In coupling many characterization techniques in order to give a detailed description of the different studied samples, we have shown that the size and nature of the phase present in the nanoparticles depend on the implantation conditions and the annealing temperatures and consequently it is necessary to anneal our samples at high temperature to reveal ferromagnetic order., Ce travail de thèse porte sur l’étude du carbure de silicium, dopé avec du fer dans le but de réaliser un semi-conducteur magnétique dilué à température ambiante pour des applications à la spintronique. Le dopage en fer a été réalisé par implantation ionique de type multi-énergie (30 - 160 keV) à différentes fluences, conduisant à une concentration atomique constante de 2 % de 20 à 100 nm. Il a été suivi d’un recuit à haute température dans le but d’homogénéiser la concentration en dopants. Les implantations se sont déroulées à une température de 550 °C. L’optimisation des propriétés magnétiques et électroniques du SiC–Fe, de même que la compréhension des mécanismes physiques à l’origine du magnétisme induit, ont nécessité une caractérisation poussée de la microstructure des matériaux implantés. Les objectifs de ce travail ont été d’une part, de réaliser une étude à l’échelle atomique de la nanostructure en fonction des conditions d’implantations (température, fluence) et des traitements thermiques post-implantation, et d’autre part, de déterminer les propriétés magnétiques des matériaux implantés. Dans ce travail, nous avons montré par Sonde Atomique Tomographique, la présence de nanoparticules dont la taille moyenne augmente avec la température de recuit. La cartographie chimique des nanoparticules a permis de révéler l’existence de phases riches en Fe pour les échantillons recuits. L’étude magnétique (spectrométrie Mössbauer et Squid) a montré que la contribution ferromagnétique est due principalement aux nanoparticules magnétiques et/ ou aux atomes de fer magnétiques dilués dans la matrice. La corrélation entre les propriétés structurale et magnétique a permis de montrer que les atomes de fer dilués dans la matrice et substitués sur sites de silicium contribuent au signal ferromagnétique en dessous de 300 K. Nous avons donc montré dans ce travail, que la taille et la nature des phases présentes dans les nanoparticules dépendent des conditions d’implantation et des températures de recuit et qu’il est nécessaire de recuire les échantillons à haute température pour faire apparaître un ordre ferromagnétique.
- Published
- 2019