1. Développement et analyse de méthodes de volumes finis
- Author
-
Pascal Omnes, Service Fluide numériques, Modélisation et Etudes (SFME), Département de Modélisation des Systèmes et Structures (DM2S), CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-CEA-Direction des Energies (ex-Direction de l'Energie Nucléaire) (CEA-DES (ex-DEN)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire Analyse, Géométrie et Applications (LAGA), Université Paris 8 Vincennes-Saint-Denis (UP8)-Centre National de la Recherche Scientifique (CNRS)-Institut Galilée-Université Paris 13 (UP13), Université Paris-Nord - Paris XIII, Raphaële Herbin, and Université Paris 8 Vincennes-Saint-Denis (UP8)-Université Paris 13 (UP13)-Institut Galilée-Centre National de la Recherche Scientifique (CNRS)
- Subjects
méthode de Godunov ,système divergence rotationnel ,a priori error estimation ,volumes finis ,arbitrary meshes ,elliptic equations ,finite volume method ,maillages adaptatifs ,Godunov method ,maillages quelconques ,dualité discrète ,opérateurs différentiels discrets ,équations de Maxwell ,low Mach correction ,[MATH]Mathematics [math] ,équations hyperboliques ,équation des ondes ,adaptive meshes ,estimation a priori ,convergence ,div-curl system ,discrete duality ,équations elliptiques ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,hyperbolic equations ,a posteriori error estimation ,discrete differential operators ,hyperbolic correction ,Maxwell's equations ,correction bas Mach ,wave equation ,correction hyperbolique ,estimation a posteriori - Abstract
This document is a synthesis of a set of works concerning the development and the analysis of finite volume methods used for the numerical approximation of partial differential equations (PDEs) stemming from physics. In the first part, the document deals with colocalized Godunov type schemes for the Maxwell and wave equations, with a study on the loss of accuracy of this scheme at low Mach number. In the second part, discrete differential operators are built on fairly general, in particular very distorted or nonconforming, bidimensional meshes. These operators are used to approach the solutions of PDEs modelling diffusion, electro and magnetostatics and electromagnetism by the discrete duality finite volume method (DDFV) on staggered meshes. The third part presents the numerical analysis and some a priori as well as a posteriori error estimations for the discretization of the Laplace equation by the DDFV scheme. The last part is devoted to the order of convergence in the L^2 norm of the finite volume approximation of the solution of the Laplace equation in one dimension and on meshes with orthogonality properties in two dimensions. Necessary and sufficient conditions, relatively to the mesh geometry and to the regularity of the data, are provided that ensure the second-order convergence of the method.; Ce document synthétise un ensemble de travaux portant sur le développement et l'analyse de méthodes de volumes finis utilisées pour l'approximation numérique d'équations aux dérivées partielles issues de la physique. Le mémoire aborde dans sa première partie des schémas colocalisés de type Godunov d'une part pour les équations de l'électromagnétisme, et d'autre part pour l'équation des ondes acoustiques, avec une étude portant sur la perte de précision de ce schéma à bas nombre de Mach. La deuxième partie est consacrée à la construction d'opérateurs différentiels discrets sur des maillages bidimensionnels relativement quelconques, en particulier très déformés ou encore non-conformes, et à leur utilisation pour la discrétisation d'équations aux dérivées partielles modélisant des phénomènes de diffusion, d'électrostatique et de magnétostatique et d'électromagnétisme par des schémas de type volumes finis en dualité discrète (DDFV) sur maillages décalés. La troisième partie aborde ensuite l'analyse numérique et les estimations d'erreur a priori et a posteriori associées à la discrétisation par le schéma DDFV de l'équation de Laplace. La quatrième et dernière partie est consacrée à la question de l'ordre de convergence en norme L^2 de la solution numérique du problème de Laplace, issue d'une discrétisation volumes finis en dimension un et en dimension deux sur des maillages présentant des propriétés d'orthogonalité. L'étude met en évidence des conditions nécessaires et suffisantes relatives à la géométrie des maillages et à la régularité des données du problème afin d'obtenir la convergence à l'ordre deux de la méthode.
- Published
- 2010