1. Toward a multi-level statistical language modeling for under-resourced language
- Author
-
Seng, Sopheap, Groupe d’Étude en Traduction Automatique/Traitement Automatisé des Langues et de la Parole (GETALP), Laboratoire d'Informatique de Grenoble (LIG), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National Polytechnique de Grenoble (INPG)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF), Université de Grenoble, and Laurent Besacier(laurent.besacier@imag.fr)
- Subjects
multi-level statistical language modeling ,reconnaissance automatique de la parole ,Automatic speech recognition ,modélisation statistique multi-niveau du langage ,under-resourced language ,langue peu dotée ,[INFO.INFO-CL]Computer Science [cs]/Computation and Language [cs.CL] - Abstract
This PhD thesis focuses on the problems encountered when developing automatic speech recognition for under-resourced languages with a writing system without explicit separation between words. The specificity of the languages covered in our work requires automatic segmentation of text corpus into words in order to make the n-gram language modeling applicable. While the lack of text data has an impact on the performance of language model, the errors introduced by automatic segmentation can make these data even less usable. To deal with these problems, our research focuses primarily on language modeling, and in particular the choice of lexical and sub-lexical units, used by the recognition systems. We investigate the use of multiple units in speech recognition system. We validate these modeling approaches based on multiple units in recognition systems for a group of languages : Khmer, Vietnamese, Thai and Laotian.; Ce travail de thèse porte sur la reconnaissance automatique de la parole des langues peu dotées et ayant un système d'écriture sans séparation explicite entre les mots. La spécificité des langues traitées dans notre contexte d'étude nécessite la segmentation automatique en mots pour rendre la modélisation du langage n-gramme applicable. Alors que le manque de données textuelles a un impact sur la performance des modèles de langage, les erreurs introduites par la segmentation automatique peuvent rendre ces données encore moins exploitables. Pour tenter de pallier les problèmes, nos recherches sont axées principalement sur la modélisation du langage, et en particulier sur le choix des unités lexicales et sous-lexicales, utilisées par les systèmes de reconnaissance. Nous expérimentons l'utilisation des multiples unités au niveau des modèles du langage et au niveau des sorties de systèmes de reconnaissance. Nous validons ces approches de modélisation à base des multiples unités sur les systèmes de reconnaissance pour un groupe de langues peu dotées : le khmer, le vietnamien, le thaï et le laotien.
- Published
- 2010