1. Uncooled focal plane infrared detectors: the state of the art
- Author
-
Tissot, Jean-Luc
- Subjects
- *
DETECTORS , *INFRARED detectors , *THERMOMETERS , *FERROELECTRIC devices , *PHYSICS instruments - Abstract
The emergence of uncooled detectors has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. LETI and ULIS have chosen from the very beginning to develop first a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing infrared detector manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the technology developed by CEA/LETI and its improvement for being able to designs
384×288 and160×120 arrays with a pitch of 35 μm. Thermographic application needs high stability infrared detector with a precise determination of the amount of absorbed infrared flux. Hence, infrared detector with internal temperature stabilized shield has been developed and characterized. These results will be presented. To cite this article: J.-L. Tissot, C. R. Physique 4 (2003). [Copyright &y& Elsevier]- Published
- 2003
- Full Text
- View/download PDF