8 results on '"Cuomo S"'
Search Results
2. Coupled hydro-mechanical modelling of a 1995 Hong Kong landslide
- Author
-
Cuomo Sabatino and Di Perna Angela
- Subjects
Environmental sciences ,GE1-350 - Abstract
The paper deals with the modelling of the instability mechanism induced by rainfall in an unsaturated cut-slope. A large-sized landslide occurred in 1995 in Hong Kong (the so-called “Fei Tsui Road landslide”). It was here analysed because it was characterized by unusual dimensions and very large runout distance for the study area. The slope failure was attributed to a decrease in soil shear strength due to the rise of a perched water table above a weak kaolin-rich layer, together with the loss of suction caused by water infiltration during a heavy rainfall event. The hydro-mechanical coupled analyses made through the commercial software Plaxis 2D aimed to investigate the relations between the hydrological variables (i.e., rainfall infiltration, suction, saturation) and the slope response in terms of changes in soil resistance and soil plastic deformations. The study demonstrates that the evaluation of the hydro-mechanical coupling effects on the hydraulic slope response as well as on the stability of the whole slope is a crucial issue to well capture the mechanical behaviour of the unsaturated cut-slope. Different failure scenarios have been also considered in order to match the field observations and to back-analyse the initial condition of the slope before landslide.
- Published
- 2020
- Full Text
- View/download PDF
3. Modelling of simple shear tests on volcanic unsaturated sands
- Author
-
Moscariello Mariagiovanna, Chen Yanni, Cuomo Sabatino, and Buscarnera Giuseppe
- Subjects
Environmental sciences ,GE1-350 - Abstract
In landslide susceptibility analysis, a relevant issue is the proper modelling of the complex mechanisms that regulate the failure and post-failure stages. In this paper, simple shear experiments replicating the kinematics of failure in landslide-prone areas are interpreted through an elastoplastic strain-hardening constitutive model for both saturated and unsaturated soils. The material tested is an air-fall volcanic (pyroclastic) soil from Southern Italy which originated from the explosive activity of the Somma-Vesuvius volcanic apparatus. Data from triaxial and shear tests performed on remoulded specimens characterized by saturated and unsaturated conditions are used to calibrate the model parameters. The evolution of shear stress, volumetric and shear strain measured during the experiments are reproduced by means of a model formulation specific for simple shear conditions. To capture the strength emerging under different states of saturation, non-associated flow rule, and a suction-dependent yield surface are used. Examination of the experimental data available for various testing conditions enabled the quantification of the variability of fundamental model constants, such as those controlling frictional resistance and water retention behaviour. To account for such scatter in the physical properties, the constitutive analyses are performed by employing varying model constants within a band of admissible values. The resulting model performance is validated by comparing the simulations with the experimental results at different saturation conditions. The results show that the combination of the proposed model with a data-driven determination of the range of variation of hydro-mechanical properties is crucial to satisfactorily simulate the essential features of the soil response under a variety of simple shear testing regimes.
- Published
- 2020
- Full Text
- View/download PDF
4. Wetting-induced collapse behaviour of a natural and vegetated coarse pyroclastic soil
- Author
-
Capobianco Vittoria, Cascini Leonardo, Cuomo Sabatino, and Foresta Vito
- Subjects
Environmental sciences ,GE1-350 - Abstract
Unsaturated pyroclastic soils originated by Vesuvius volcano show a collapsible behaviour upon wetting with a significant reduction in volume and rearrangement of solid skeleton. The paper investigates the role played by vegetation on wetting-induced collapse behaviour (namely, collapsibility) of reconstituted unsaturated soil specimens through two series of wetting tests in a standard oedometer. The first series of tests was performed on bare soil specimens, as to resemble the site conditions. The second group of tests was conducted on the same soil previously vegetated for 20 weeks with perennial graminae species, which are frequently used as a nature-based solution for contrasting surface erosion along slopes in different geo-environmental contexts. First, an initial small vertical net stress was applied on partially saturated specimens having similar initial saturation degree, then collapse was induced by flooding the specimens with distilled water and final vertical displacements were measured. As main outcome, soil porosity is highly reduced by the growth of grass roots. Consequently, the potential wetting collapse in the rooted soils is inhibited by low values of porosity. For similar initial soil porosity, in both bare and vegetated specimens (after root growth), a further reduction of the volumetric collapse magnitude is observed.
- Published
- 2020
- Full Text
- View/download PDF
5. Shear strength and retention models of a partially saturated riverbank silty soil
- Author
-
Moscariello Mariagiovanna, Gragnano Carmine Gerardo, Cuomo Sabatino, Rocchi Irene, and Gottardi Guido
- Subjects
Environmental sciences ,GE1-350 - Abstract
Soil mechanical behaviour is strictly related to its natural water content, which is primarily dependent on hydraulic boundary conditions. When soils are partially saturated, as frequently occur in river embankments, soil suction also turns into a fundamental variable worth of investigation and monitoring, both in laboratory and in the field, for a reliable interpretation of the related soil response to external actions. The case of earthen water retaining structures and their safety condition assessment towards local or global collapse mechanisms requires special attention for soil characterization and site measurement of unsaturated soil states. Moreover, strength and hydraulic models used for relevant stability analyses should be adequate for representing the site-specific behaviour of soil in terms of water content, pore water pressure and suction values, relying on the effective possibility to properly calibrate all required parameters. Nevertheless, these aspects typically receive only limited attention, especially in standard practice, leading to inaccurate estimates of flood hazard and related risk management. In this context, with the aim of comprehensively studying the strength and retention properties of a riverbank silty soil, a series of laboratory investigations – including oedometric and direct shear tests under suction-controlled conditions – have been performed. Laboratory tests are here used as the main direct source of information to model unsaturated soil behaviour, monitoring different state variables under suction-controlled conditions. The results have been then interpreted using both literature and soil-specific mechanical and hydraulic models, to be possibly implemented in integrated methodologies for the stability assessment of river embankments.
- Published
- 2020
- Full Text
- View/download PDF
6. Determination of hydraulic conductivity and shear strength properties of unsaturated residual soil from flysch rock mass
- Author
-
Peranić Josip, Moscariello Mariagiovanna, Cuomo Sabatino, and Arbanas Željko
- Subjects
Environmental sciences ,GE1-350 - Abstract
Slopes in flysch deposits areas wide within Europe are highly prone to landslide occurrence. Depending on the material properties and climate conditions, instabilities in a form of earthflows, shallow and deep-seated landslides were observed in these formations. Typically, slope instabilities occurred after prolonged periods of rainfall. The Rječina River Valley, Croatia, built in flysch formation, is well known by several landslides occurred in the past. The weathering process of flysch rock mass and local climate conditions resulted in a specific engineering geological profile of the valley, with the unsaturated residual soil covering the bedrock. Although the behaviour of residual soil is important for a landslide triggering both through the rainfall infiltration process and (unsaturated) shear strength, hydro-mechanical properties of this material in unsaturated conditions were not investigated in the past. This paper summarizes the results of different laboratory tests performed on intact samples for hydro-mechanical characterization of the residual soil from flysch rock mass. It was found that the unique shear strength envelope could be used to determine failure conditions both for saturated and unsaturated conditions. The results obtained from strain-controlled and wetting tests performed in conventional and modified direct shear apparatuses indicated high values of the apparent cohesion that the near-surface soil can experience due to the increase of matric suction. The hysteresis effects and hydraulic paths to which soil was exposed to in the past were found to affect the soil behaviour, while the soil formation process results with a complex soil structure that imposes the necessity of using intact soil samples for proper hydraulic characterization of the soil.
- Published
- 2020
- Full Text
- View/download PDF
7. Grain scale mechanisms for capillary collapse in a loose unsaturated pyroclastic soil
- Author
-
Cuomo Sabatino, Moscariello Mariagiovanna, and Salager Simon
- Subjects
Environmental sciences ,GE1-350 - Abstract
Soil collapse may occur passing from unsaturated to saturated conditions, thus causing major problems, among which one can mention a poor performance of the structures or the occurrence of landslides turning into flows. The mechanisms of the soil collapse have been studied at macroscopic scale since many years, while few observations at microscopic level are available. In this work, the mechanisms of capillary collapse were investigated for a volcanic (air-fall) pyroclastic soil of Southern Italy, which is characterized by an open metastable structure and is frequently involved into catastrophic rainfall-induced landslides. The experimental investigation was performed through X-ray Computed Tomography, which allows reconstructing 3D images of the specimen from the spatial distribution of the linear attenuation coefficient. The tests were carried out on coarse sand. During the tests, the specimens were loaded by its self-weight without any external load, and the suction was gradually reduced until the specimen collapse occurs. The aims of the experimental program were: i) follow the transformation of the specimen’s microstructure; ii) evaluate the variation in terms of water content, porosity and grains spatial distribution; iii) analyse the effect of grain size distribution on the development of capillary forces and mass forces. The experimental evidences outline that, for the coarse pyroclastic sand, the collapse occurs at a very low suction, while it is not mandatory to reach the complete saturation.
- Published
- 2016
- Full Text
- View/download PDF
8. Modelling of wetting tests for a natural pyroclastic soil
- Author
-
Moscariello Mariagiovanna, Cuomo Sabatino, Manzanal Diego, Foresta Vito, and Pastor Manuel
- Subjects
Environmental sciences ,GE1-350 - Abstract
The so-called wetting-induced collapse is one of the most common problems associated with unsaturated soils. This paper applies the Modified Pastor-Zienkiewicz model (MPZ) to analyse the wetting behaviour of undisturbed specimens of an unsaturated air-fall volcanic (pyroclastic) soil originated from the explosive activity of the Somma-Vesuvius volcano (Southern Italy). Both standard oedometric tests, suction-controlled oedometeric tests and suction-controlled isotropic tests are considered. The results of the constitutive modelling show a satisfactory capability of the MPZ to simulate the variations of soil void ratio upon wetting, with negligible differences among the measured and the computed values.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.