810 results on '"symmetry: chiral"'
Search Results
2. Lowest-lying even-parity B ¯ s mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses
- Author
-
Albaladejo, M., Fernandez-Soler, P., Nieves, J., and Ortega, P. G.
- Published
- 2017
- Full Text
- View/download PDF
3. Combinatorics of Edge Symmetry: Chiral and Achiral Edge Colorings of Icosahedral Giant Fullerenes: C80, C180, and C240
- Author
-
Krishnan Balasubramanian
- Subjects
edge symmetry of giant fullerenes ,edge colorings of giant icosahedral fullerenes ,chirality in edge colorings of giant fullerenes ,combinatorial techniques for giant fullerenes ,aromaticity and superaromaticity ,Mathematics ,QA1-939 - Abstract
We develop the combinatorics of edge symmetry and edge colorings under the action of the edge group for icosahedral giant fullerenes from C80 to C240. We use computational symmetry techniques that employ Sheehan’s modification of Pόlya’s theorem and the Möbius inversion method together with generalized character cycle indices. These techniques are applied to generate edge group symmetry comprised of induced edge permutations and thus colorings of giant fullerenes under the edge symmetry action for all irreducible representations. We primarily consider high-symmetry icosahedral fullerenes such as C80 with a chamfered dodecahedron structure, icosahedral C180, and C240 with a chamfered truncated icosahedron geometry. These symmetry-based combinatorial techniques enumerate both achiral and chiral edge colorings of such giant fullerenes with or without constraints. Our computed results show that there are several equivalence classes of edge colorings for giant fullerenes, most of which are chiral. The techniques can be applied to superaromaticity, sextet polynomials, the rapid computation of conjugated circuits and resonance energies, chirality measures, etc., through the enumeration of equivalence classes of edge colorings.
- Published
- 2020
- Full Text
- View/download PDF
4. Conformal symmetry, chiral fermions and semiclassical approximation
- Author
-
Gonera, Joanna, Kosiński, Piotr, and Maślanka, Paweł
- Published
- 2020
- Full Text
- View/download PDF
5. Circular dichroism of some high-symmetry chiral molecules: B3LYP and SAOP calculations
- Author
-
Trindle, Carl and Altun, Zikri
- Published
- 2009
- Full Text
- View/download PDF
6. Confronting generalized hidden local symmetry chiral model with the ALEPH data on the decay {tau}{sup -{yields}{pi}+{pi}-{pi}-{nu}}{sub {tau}}
- Published
- 2010
- Full Text
- View/download PDF
7. Topology Classification from Chiral Symmetry: Chiral Phase Index and Spin Correlations in Graphene Nanoribbons
- Author
-
Jiang, Jingwei and Louie, Steven G.
- Subjects
Condensed Matter - Materials Science ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,Materials Science (cond-mat.mtrl-sci) ,FOS: Physical sciences - Abstract
Topology concepts have significantly deepened of our understanding in recent years of the electronic properties of one-dimensional (1D) nano structures such as the graphene nanoribbons. Controlling topological electronic properties of GNRs has been demonstrated in both theoretical studies and experimental realization. Most previous works rely on classification theory requiring both time reversal and spatial symmetry of a unit cell in the 1D bulk material that is commensurate to its boundary. To access boundary structures that lead to unit cell with no spatial symmetry and to generalize the theory, we propose here another classification scheme, using chiral symmetry, to arrive at a Z classification that is not only applicable to GNRs with arbitrary terminations, but also to any general 1D chiral structures. This theory, combining with Lieb's theorem, moreover enables access to the electron's spin degree of freedom, allowing for investigation of spin physics.
- Published
- 2020
8. Size-Dependent Transition to High-Symmetry Chiral Structures in AgCu, AgCo, AgNi, and AuNi Nanoalloys.
- Author
-
Davide Bochicchio and Riccardo Ferrando
- Published
- 2010
- Full Text
- View/download PDF
9. Heavy quark symmetry, chiral symmetry, and parity doublets of heavy mesons in the Bethe-Salpeter approach
- Author
-
Huang, C [Institut fuer Physik, Universitaet Dortmund, D-44221 Dortmund (Germany) Institute of Theoretical Physics, Academia Sinica, 100080 Beijing (China)]
- Published
- 1995
- Full Text
- View/download PDF
10. Lowest lying even-parity $\bar B_s$ mesons: heavy quark spin-flavor symmetry, chiral dynamics, and constituent quark model bare masses
- Author
-
Pablo G. Ortega, Juan Luis Nieves, Miguel Albaladejo, and Pedro Fernandez-Soler
- Subjects
Quark ,Physics ,Particle physics ,Physics and Astronomy (miscellaneous) ,Meson ,010308 nuclear & particles physics ,High Energy Physics::Lattice ,Scalar (mathematics) ,Nuclear Theory ,High Energy Physics::Phenomenology ,Lattice (group) ,FOS: Physical sciences ,Constituent quark ,Coupling (probability) ,01 natural sciences ,Fock space ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,0103 physical sciences ,High Energy Physics::Experiment ,010306 general physics ,Nuclear Experiment ,Engineering (miscellaneous) ,Spin-½ - Abstract
The discovery of the $D^\ast_{s0}(2317)$ and $D_{s1}(2460)$ resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between $Q\bar q$ and $(Q\bar q)(q\bar q)$ Fock components. In contrast to the $c\bar s$ sector, there is no experimental evidence of $J^P=0^+,1^+$ bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the $D_{s0}^\ast(2317)$ and $D_{s1}(2460)$ states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark model P-wave $\bar B_s$ scalar and axial mesons and the $\bar B^{(\ast)}K$ channels is incorporated employing an effective interaction, consistent with heavy quark spin symmetry, constrained by the lattice energy levels., 9 pages, 2 figures, 1 table
- Published
- 2016
11. Size-Dependent Transition to High-Symmetry Chiral Structures in AgCu, AgCo, AgNi, and AuNi Nanoalloys
- Author
-
Riccardo Ferrando and Davide Bochicchio
- Subjects
Chemistry ,Magnetism ,Icosahedral symmetry ,High Energy Physics::Lattice ,Mechanical Engineering ,Shell (structure) ,Bioengineering ,General Chemistry ,Symmetry group ,Condensed Matter Physics ,Symmetry (physics) ,Crystallography ,Monatomic ion ,Chemical physics ,Physics::Atomic and Molecular Clusters ,General Materials Science ,Mirror symmetry ,Chirality (chemistry) - Abstract
A class of nanomaterials possessing the highest degree of chiral symmetry, the chiral icosahedral symmetry, is found by a combination of global optimization searches and first-principle calculations. These nanomaterials are core-shell nanoalloys with a Cu, Ni, or Co core and a chiral Ag or Au shell of monatomic thickness. The chiral shell is obtained by a transformation of an anti-Mackay icosahedral shell by a concerted rotation of triangular atomic islands which breaks all mirror symmetries. This transformation becomes energetically favorable as the cluster size increases. Other chiral nanoalloys, belonging to a different structural family of C(5) group symmetry, are found in the size range between 100 and 200 atoms. High-symmetry chiral nanoalloys associate strong energetic stability with potential for applications in optics, catalysis, and magnetism.
- Published
- 2010
12. Size-dependent transition to high-symmetry chiral structures in AgCu, AgCo, AgNi, and AuNi nanoalloys.
- Author
-
Bochicchio D and Ferrando R
- Abstract
A class of nanomaterials possessing the highest degree of chiral symmetry, the chiral icosahedral symmetry, is found by a combination of global optimization searches and first-principle calculations. These nanomaterials are core-shell nanoalloys with a Cu, Ni, or Co core and a chiral Ag or Au shell of monatomic thickness. The chiral shell is obtained by a transformation of an anti-Mackay icosahedral shell by a concerted rotation of triangular atomic islands which breaks all mirror symmetries. This transformation becomes energetically favorable as the cluster size increases. Other chiral nanoalloys, belonging to a different structural family of C(5) group symmetry, are found in the size range between 100 and 200 atoms. High-symmetry chiral nanoalloys associate strong energetic stability with potential for applications in optics, catalysis, and magnetism.
- Published
- 2010
- Full Text
- View/download PDF
13. Confronting generalized hidden local symmetry chiral model with the ALEPH data on the decay tau^- to pi^+ pi^- pi^- nu_tau
- Author
-
Achasov, N. N. and Kozhevnikov, A. A.
- Subjects
Nuclear Theory (nucl-th) ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,Nuclear Theory ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,High Energy Physics::Experiment ,High Energy Physics - Experiment - Abstract
Generalized Hidden Local Symmetry (GHLS) model is the chiral model of pseudoscalar, vector, and axial vector mesons and their interactions. It contains also the couplings of strongly interacting particles with electroweak gauge bosons. Here, GHLS model is confronted with the ALEPH data on the decay $\tau^-\to\pi^-\pi^-\pi^+\nu_\tau$. It is shown that the invariant mass spectrum of final pions in this decay calculated in GHLS framework with the single $a_1(1260)$ resonance disagrees with the experimental data at any reasonable number of free GHLS parameters. Two modifications of GHLS model based on inclusion of two additional heavier axial vector mesons are studied. One of them giving a good description of the ALEPH data, with all the parameters kept free is shown to result in very large $\Gamma_{a_1^\pm\to\pi^\pm\gamma}$ partial width. The other scheme with the GHLS parameters fixed in a way that the universality is preserved and the observed central value of $\Gamma_{a_1^\pm\to\pi^\pm\gamma}$ is reached, results in a good description of the three pion spectrum in $\tau^-\to\pi^+\pi^-\pi^-\nu_\tau$ decay., Comment: 10 pages, 8 figures, 2 tables. V2 is considerably revised. Added are the fits with the fixed both the universality of rho coupling and radiative width of a_1(1260). Accepted for publication in Phys Rev D
- Published
- 2010
14. Heavy quark symmetry, chiral symmetry, and parity doublets of heavy mesons in the Bethe-Salpeter approach.
- Author
-
Huang CS
- Published
- 1995
- Full Text
- View/download PDF
15. Minimal Doubling and Point Splitting
- Author
-
Creutz, M
- Published
- 2010
16. The Price for Quantum Group Symmetry: Chiral versus 2D WZNW Model
- Author
-
Furlan, Paolo and Furlan, Paolo
- Published
- 1996
17. Vibrational Circular Dichroism Detects Symmetry Breaking due to Conformational Mobility in C 2 -Symmetry Chiral Molecules and Provides Further Insight into Inter-Chromophoric Interactions.
- Author
-
Mazzeo, Giuseppe, Abbate, Sergio, Boiadjiev, Stefan E., Lightner, David A., and Longhi, Giovanna
- Subjects
- *
VIBRATIONAL circular dichroism , *SYMMETRY breaking , *CIRCULAR dichroism , *DOUBLE bonds , *CHIRALITY of nuclear particles , *MOLECULES , *FORECASTING - Abstract
Bicyclo[3.3.1]nonane-2,6-dione (1) and bicyclo[3.3.1]nona-3,7-diene-2,6-dione (2) have been examined by vibrational circular dichroism (VCD), which, as for most C2-symmetric systems, exhibits strong VCD signals. In the case of 2, VCD signals are stronger and sharper with several bisignate doublets; for 1, signals are less intense and broader. The VCD and IR spectra are excellently predicted by DFT calculations: only one conformer is present for 2, while for 1, three main conformers, related through concerted skeleton torsional motions are present (two of them being interchanged by C2-rotation). The VCD spectrum shows specific features for the different conformers, such that correct population factors are crucial for reproducing experimental data. Also, the TD-DFT prediction of ECD (electronic circular dichroism) spectra is good. By comparing the spectroscopic signature of the two molecules (both VCD and ECD) and by careful analysis of the theoretical results, the role of the C=C double bond in compound (2) is evidenced. The double bond contributes toward enhancing the CD response both electronically and vibrationally. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
18. Combinatorics of Edge Symmetry: Chiral and Achiral Edge Colorings of Icosahedral Giant Fullerenes: C80, C180, and C240†.
- Author
-
Balasubramanian, Krishnan
- Subjects
- *
FULLERENES , *COMBINATORICS , *SYMMETRY , *DELOCALIZATION energy , *SYMMETRY groups , *CHIRALITY of nuclear particles - Abstract
We develop the combinatorics of edge symmetry and edge colorings under the action of the edge group for icosahedral giant fullerenes from C80 to C240. We use computational symmetry techniques that employ Sheehan's modification of Pόlya's theorem and the Möbius inversion method together with generalized character cycle indices. These techniques are applied to generate edge group symmetry comprised of induced edge permutations and thus colorings of giant fullerenes under the edge symmetry action for all irreducible representations. We primarily consider high-symmetry icosahedral fullerenes such as C80 with a chamfered dodecahedron structure, icosahedral C180, and C240 with a chamfered truncated icosahedron geometry. These symmetry-based combinatorial techniques enumerate both achiral and chiral edge colorings of such giant fullerenes with or without constraints. Our computed results show that there are several equivalence classes of edge colorings for giant fullerenes, most of which are chiral. The techniques can be applied to superaromaticity, sextet polynomials, the rapid computation of conjugated circuits and resonance energies, chirality measures, etc., through the enumeration of equivalence classes of edge colorings. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
19. Coupled Minimal Conformal Field Theory Models Revisited
- Author
-
António Antunes and Connor Behan
- Subjects
field theory: conformal ,chiral [symmetry] ,family ,algebra: Virasoro ,Regge poles ,General Physics and Astronomy ,coupling: minimal ,spin ,anomalous dimension ,symmetry: chiral ,minimal [coupling] ,fixed point: infrared ,central charge ,infrared [fixed point] ,Virasoro [algebra] ,unitarity ,ddc:530 ,conformal [field theory] ,model: minimal ,minimal [model] ,perturbation theory - Abstract
Physical review letters 130(7), 071602 (2023). doi:10.1103/PhysRevLett.130.071602, We study coupled unitary Virasoro minimal models in the large rank (m→∞) limit. In large m perturbation theory, we find two nontrivial IR fixed points which exhibit irrational coefficients in several anomalous dimensions and the central charge. For N>4 copies, we show that the IR theory breaks all possible currents that would otherwise enhance the Virasoro algebra, up to spin 10. This provides strong evidence that the IR fixed points are examples of compact, unitary, irrational conformal field theories with the minimal amount of chiral symmetry. We also analyze anomalous dimension matrices for a family of degenerate operators with increasing spin. These display further evidence of irrationality and begin to reveal the form of the leading quantum Regge trajectory., Published by APS, College Park, Md.
- Published
- 2023
20. Coupled Minimal Models Revisited
- Author
-
Leite Antunes, António and Behan, Connor
- Subjects
fixed point, infrared ,family ,Regge poles ,symmetry, chiral ,central charge ,coupling, minimal ,unitarity ,model, minimal ,field theory, conformal ,spin ,algebra, Virasoro ,anomalous dimension ,perturbation theory - Abstract
We study coupled unitary Virasoro minimal models in the large rank ($m \rightarrow \infty$) limit. In large $m$ perturbation theory, we find two non-trivial IR fixed points which exhibit irrational coefficients in several anomalous dimensions and the central charge. For $N>4$ copies, we show that the IR theory breaks all possible currents that would otherwise enhance the Virasoro algebra, up to spin 10. This provides strong evidence that the IR fixed points are examples of compact, unitary, irrational CFTs with the minimal amount of chiral symmetry. We also analyze anomalous dimension matrices for a family of degenerate operators with increasing spin. These display further evidence of irrationality and begin to reveal the form of the leading quantum Regge trajectory.
- Published
- 2022
- Full Text
- View/download PDF
21. Mass Renormalization of the Schwinger Model with Wilson and Staggered Fermions in the Hamiltonian Lattice Formulation
- Author
-
Takis Angelides, Lena Funcke, Karl Jansen, and Stefan Kühn
- Subjects
fermion, Wilson ,Quantum Physics ,density ,Hamiltonian formalism ,High Energy Physics - Lattice (hep-lat) ,Schwinger model ,FOS: Physical sciences ,fermion, staggered ,mass dependence ,mass, renormalization ,electric field ,Hamiltonian ,topological ,High Energy Physics - Lattice ,benchmark ,model, lattice ,symmetry, chiral ,ddc:530 ,Quantum Physics (quant-ph) ,perturbation theory - Abstract
39th International Symposium on Lattice Field Theory, Lattice 2022, Bonn, Germany, 8 Aug 2022 - 13 Aug 2022; Proceedings of Science / International School for Advanced Studies (LATTICE2022), 046 (2022). doi:10.22323/1.430.0046, Lattice computations in the Hamiltonian formulation have so far mainly focused on staggered fermions. In these proceedings, we study Wilson fermions in the Hamiltonian formulation and propose a new method to determine the resulting mass shift. As a benchmark study, we examine the one-flavour Schwinger model with Wilson fermions and a topological $\theta$-term using matrix product states. Wilson fermions explicitly break chiral symmetry; thus, the bare mass of the lattice model receives an additive renormalization. In order to measure this mass shift directly, we develop a method that is suitable for the Hamiltonian formulation, which relies on the fact that the vacuum expectation value of the electric field density vanishes when the renormalized mass is zero. We examine the dependence of the mass shift on the lattice spacing, the lattice volume, the $\theta$-parameter, and the Wilson parameter. Using the mass shift, we then perform the continuum extrapolation of the electric field density and compare the resulting mass dependence to the analytical predictions of mass perturbation theory. We demonstrate that incorporating the mass shift significantly improves the continuum extrapolation. Finally, we apply our method to the same model using staggered fermions instead of Wilson fermions and compare the resulting mass shift to recent theoretical predictions., Published by SISSA, Trieste
- Published
- 2022
- Full Text
- View/download PDF
22. Experimental Evidence for an Attractive p-φ Interaction
- Author
-
Marian Krivda, Subhadeep Roy, Francesco Noferini, Grzegorz Andrzej Wilk, Matthias Richter, Ante Bilandzic, Lawrence Pinsky, Philippe Pillot, Swati Saha, Hiroki Yokoyama, Cynthia Marie Hadjidakis, Horst Sebastian Scheid, Sergey Kiselev, Natalia Kondratyeva, Mateusz Andrzej Ploskon, Kirill Voloshin, Filippo Costa, Baidyanath Sahoo, Shakeel Ahmad, Krzysztof Redlich, Mikhail Zhalov, Alwina Ruixin Liu, Anna Onnerstad, Suharyo Sumowidagdo, Yanchun Ding, Marta Urioni, Marian Ivanov, Sami Sakari Rasanen, Juan Manuel Mejia Camacho, Stefano Boi, Michal Broz, Mohamad Tarhini, Cristiane Jahnke, Andreas Morsch, Anastasia Berdnikova, Corey James Myers, Stefano Trogolo, Shingo Sakai, Alberto Rotondi, Thomas Klemenz, Catalin-Lucian Ristea, Vitaly Loginov, Vladimir Nikulin, Laura Helena Gonzalez Trueba, Ali Zaman, Giulia Clai, Vikash Sumberia, Jesus Ricardo Alvarado Garcia, Anders Nils Erik Oskarsson, Boris Hippolyte, Marco van Leeuwen, Marco Marquard, Patrick Simon Reichelt, Rosario Nania, Yongwook Baek, Lidia Maria Gorlich, Kenneth Francis Read, Zaida Conesa del Valle, Salvatore De Pasquale, Teodor Siemiarczuk, Peter Chochula, Partha Pratim Bhaduri, Christophe Pierre Suire, Felix Reidt, Patrick Huhn, Slavka Jadlovska, Stefania Bufalino, Song Zhang, Vivek Singh, Sandeep Dudi, G. Bencedi, Lorenzo de Cilladi, Vasco Miguel Chibante Barroso, Luca Barioglio, Brigitte Cheynis, Natasha Sharma, Neelkamal Mallick, Dimitra Andreou, Austin Vincent Harton, Ailec Bell Hechavarria, Vladimir Belyaev, Podist Kurashvili, Raghunath Sahoo, Valerie Ramillien Barret, Josephina Rae Wright, Feng Fan, Stefano Piano, Michael Rudolf Ciupek, Takuya Kumaoka, Aurora Diozcora Vargas Trevino, Martin Kroesen, Supriya Das, Artur Furs, Rafael Peretti Pezzi, Daniel Michael Muhlheim, Ketil Roeed, Grigorii Feofilov, Andrea Rossi, Gustavo Conesa Balbastre, Anselmo Margotti, Artem Isakov, Bernhard Franz Ketzer, Benjamin Donigus, Hugo Denis Antonio Pereira Da Costa, Javier Ernesto Castillo Castellanos, Sebastian Dominik Koryciak, Alexander Kluge, Jhuma Ghosh, Sabyasachi Siddhanta, Michael Lettrich, Subhasis Chattopadhyay, Christophe Furget, Paolo Giubellino, Pierre Vande Vyvre, Victor Jose Gaston Feuillard, Jean Willy Andre Cleymans, Volker Lindenstruth, Francesca Soramel, Pritam Chakraborty, Barbara Antonina Trzeciak, Vladislav Manko, Nicola Rubini, Nachiketa Sarkar, Oleg Karavichev, Jian Liu, Sebastien Perrin, Domenico Elia, Alberto Caliva, Henrique Jose Correia Zanoli, Zubayer Ahammed, Nicolas Schmidt, Dezso Varga, Alex Henri Jean Chauvin, Joyful Elma Mdhluli, Stefano Politano, Petra Loncar, D. De Gruttola, Giacomo Vito Margagliotti, Mihai Petrovici, Ara Grigoryan, Jeremy John Wilkinson, Pooja Pareek, Bernd Stefan Windelband, Varlen Grabski, Leticia Cunqueiro Mendez, Dimitar Lubomirov Mihaylov, Bong-Hwi Lim, Johan Alme, Luciano Ramello, Mike Henry Petrus Sas, Anju Bhasin, Daicui Zhou, Alla Maevskaya, Philippe Crochet, Jonatan Adolfsson, Gian Michele Innocenti, Jogender Saini, Christos Pliatskas Stylianidis, Mihaela Gabriela Besoiu, Miroslaw Jablonski, Alberica Toia, Magnus Mager, Ester Anna Rita Casula, Bushra Ali, Sarah Julie Porteboeuf, Maria Barlou, Manuel Colocci, Anatoly Tikhonov, Prottay Das, Tatsuya Chujo, Negin Alizadehvandchali, Gergoe Hamar, Lennart van Doremalen, C. Ceballos Sanchez, Alberto Masoni, Lukas Koska, Somnath Kar, Pietro Antonioli, Mohammad Asif Bhat, Alexander Vinogradov, Dukhishyam Mallick, Nicola Funicello, Andrea Ferrero, Gennady Zinovjev, Sadhana Dash, Christian Schmidt, Zebo Tang, Linda Vickovic, Alexandre Shabetai, Jiyeon Kwon, Antonio Ortiz Velasquez, A. Matyja, Janusz Oleniacz, Bernhard Skaali, Pengyao Cui, Nicole Alice Martin, Mirko Planinic, Luisa Cifarelli, Silvia Pisano, Zuzana Moravcova, S. T. Heckel, Qiye Shou, Sanjay K. Ghosh, Zuzana Jakubcinova, Aude Marie Camille Glaenzer, Nicolo Jacazio, Raquel Estefania Quishpe Quishpe, Luca Micheletti, Yury Ryabov, Ulrich Fuchs, Corrado Gargiulo, Abhi Modak, Fabian Pliquett, Mikolaj Krzewicki, Boris Polishchuk, Marielle Chartier, Despina Hatzifotiadou, Jasper Elias Parkkila, Vytautas Vislavicius, Thomas Peitzmann, Robert Helmut Munzer, Soren Pontoppidan Sorensen, Sanghoon Lim, Raffaele Grosso, Leo Clifford Greiner, Roman Rogalev, Prottoy Das, Miljenko Suljic, Alessandra Fantoni, Franco Meddi, Dmitry Aleksandrov, Pavel Larionov, Franck Manso, Alexandra Neagu, Sibaliso Mhlanga, Qasim Waheed Malik, Alexandru Bercuci, Nora De Marco, Youngil Kwon, Andrey Zarochentsev, Harald Appelshaeuser, Fernando Torales Acosta, Antonio Uras, Chinorat Kobdaj, Arianna Grisel Torres Ramos, Angela Badala, Ritsuya Hosokawa, Adrian Florin Mechler, Guillermo Mesa Perez, Georgijs Skorodumovs, Oleksandr Kovalenko, Dagmar Adamová, David Dobrigkeit Chinellato, Rahul Ramachandran Nair, Jacopo Pazzini, Christian Klein-Boesing, Omar Vazquez Rueda, Hartmut Hillemanns, Yue Shi Lai, Annalisa De Caro, Edgar Dominguez Rosas, Wadut Shaikh, Gokhan Halimoglu, Fabio Catalano, Stefania Beole, Theraa Tork, Lukas Nellen, David Olle Rickard Silvermyr, Martin Schmidt, Ionel Stan, Mohammed Hamid, Joonil Lee, Giuseppe Trombetta, Lukas Lautner, Dong Jo Kim, Raphaelle Marie Bailhache, Peter Martin Jacobs, Hadi Hassan, Elisa Meninno, Meike Charlotte Danisch, Matthew Daniel Buckland, Klaus Johannes Reygers, Dominik Voscek, Jon Christopher Wikne, Alessandro De Falco, Gioacchino Vino, Charles E. Hughes, Ramni Gupta, Anand Kumar Dubey, Alexander Szabo, Filip Krizek, Laszlo Boldizsar, Alexander Kurepin, Peter Christiansen, J. W. Harris, Seyed Farid Taghavi, Erin Frances Gauger, Vit Kucera, Premomoy Ghosh, Dmitry Mal Kevich, Paola Gianotti, Marie Germain, Thomas Michael Cormier, Sergey Sadovskiy, Thomas Humanic, Uzma Tabassam, Adela Kravcakova, Preeti Dhankher, Inayat Rasool Bhat, Sanchari Thakur, Francesca Bellini, James Philip Iddon, Laszlo Gyulai, Jaehyeon Do, Solangel Rojas Torres, Emily Jade Willsher, Branislav Sitar, Roelof Jan Gijs van Weelden, Yajun Mao, Xinye Peng, Michal Meres, Tiziano Virgili, Markus Fasel, Vito Manzari, Arvind Khuntia, Ermanno Vercellin, Jose Luis Bazo Alba, Marco Giacalone, Alexandre Alarcon Do Passo Suaide, Mario Kruger, Antonio Di Mauro, Federico Ronchetti, Mengke Cai, Lokesh Kumar, Hua Pei, Ahsan Mehmood Khan, Christian Lippmann, Viktor Riabov, Guido Alexander Willems, Barthelemy von Haller, Deepa Thomas, Silvia Masciocchi, Sidharth Kumar Prasad, Annalisa Mastroserio, Paula Fernanda Toledo Matuoka, Laura Brittany Havener, Maurice Louis Coquet, R. J. Ehlers, Przemyslaw Karczmarczyk, Suman Deb, Federico Antinori, Anisa Khatun, Iwona Anna Sputowska, Ophelie Bugnon, Kenta Shigaki, Ayben Karasu Uysal, Y. Yamaguchi, Alice Elisabeth Ohlson, Simone Ragoni, Jan Honermann, Ezra Douglas Lesser, Kjetil Ullaland, Alexander Vodopyanov, Sergey Shirinkin, Yoshini Bailung, Cindy Mordasini, Lars Bratrud, Jan Musinsky, Luis Gustavo Pereira, Andrey Erokhin, Thibaut Albert Rancien, Andrey Vasiliev, Maciej Slupecki, Jens Joergen Gaardhoeje, Piotr Jan Konopka, Ombretta Pinazza, Michal Sumbera, Peter Glassel, Francesca Ercolessi, Piotr Nowakowski, Alena Gromada, Kai Oliver Schweda, Robin Albert Andre Caron, Anik Gupta, Sukalyan Chattopadhyay, Marcello Lunardon, Silvia Delsanto, Enrico Scomparin, Justin Thomas Blair, James Declan Mulligan, Maya Hachiya Shimomura, Alexey Kurepin, Tebogo Joyce Shaba, Anton Jusko, Svetlana Belokurova, Francesco Riggi, Gianluigi Boca, Panagiota Foka, Alexandr Tumkin, Rajendra Nath Patra, Hushnud Hushnud, Stephan Friedrich Stiefelmaier, Geun Hee Hong, Tiago Fiorini da Silva, Serhiy Senyukov, Paulus Gerardus Kuijer, Emma Gonzalez Hernandez, Alessandro Ferretti, Johannes Lehrbach, Susanna Costanza, Irais Bautista Guzman, Vladimir Ivanov, Ji-Young Kim, Magnus Rentsch Ersdal, Paola La Rocca, Edmundo Javier Garcia-Solis, Giulio Eulisse, Kilian Eberhard Schwarz, Bartosz Balis, Dmitrii Nesterov, Francesca Carnesecchi, Tabea Maria Eder, Oliver Matonoha, Alexander Adler, Janet Elizabeth Seger, Alessandro Balbino, Sven Gotovac, Zabulon Vilakazi, Roman Lavicka, Barbara Ewa Erazmus, Florian Herrmann, Massimo Lamanna, Jungeol Kim, Joakim Nystrand, Ivan Kralik, Miroslav Pikna, Mario Sitta, Bernhard Hohlweger, Giacomo Contin, Arturo Alejandro Menchaca-Rocha, Beomkyu Kim, Andrea Dubla, Michelangelo Agnello, Sushanta Tripathy, Cristina Terrevoli, Werner Riegler, Anjaly Sasikumar Menon, Mattia Faggin, Orlando Villalobos Baillie, Jan Fiete Grosse-Oetringhaus, Yury Kharlov, Luciano Musa, Attiq Ur Rehman, Igor Altsybeev, Motoi Inaba, Jin Hee Yoon, Austin Robert Schmier, Davide Pagano, Jiri Mares, Antonin Maire, Zhi Yu, Jesus Guillermo Contreras Nuno, Amalia Pop, Jennifer Lynn Klay, Francesco Mazzaschi, Min Jung Kweon, Marek Bombara, Sanjib Muhuri, Milan Tkacik, Ranbir Singh, Marco Toppi, Ernst Hellbar, Edith Zinhle Buthelezi, Simon Voigt Nesbø, Andreas Michael Mathis, Dmitry Serebryakov, Nikola Poljak, Giuseppe Simonetti, Ivan Ravasenga, Ya Zhu, Amanda Nicole Flores, Alexander Akindinov, Satoshi Yano, Monika Varga-Kofarago, Nicole Apadula, Udo Wolfgang Kebschull, Gabriele Fiorenza, Pascal Dupieux, Andrea Dainese, Rachid Guernane, Meenakshi Sharma, Imrich Szarka, Minjung Kim, Nicole Bastid, Sergey Fokin, Katharina Demmich, Viljar Nilsen Eikeland, Torsten Alt, Chun-Lu Huang, Navneet Kumar, Petr Zavada, Debojit Sarkar, Antonio Palasciano, Michael Andreas Winn, Gerardo Antonio Herrera Corral, Vladimir Vechernin, Yasir Ali, Hermann Franz Degenhardt, Raul Arteche Diaz, Marta Verweij, Ralf Peter Averbeck, Laure Marie Massacrier, Malgorzata Anna Janik, Yifei Zhang, Jon-Are Saetre, Jeongsu Bok, Haidar Mas'Ud Alfanda, Daniel Berenyi, Rutuparna Rath, Christina Markert, Paolo Martinengo, Eugenio Nappi, Vladimir Izucheev, Sumit Basu, K. Krizkova Gajdosova, Matthias Kleiner, Marc Weber, Anthony Robert Timmins, Haakon Andre Reme-Ness, Adam Ryszard Kisiel, Tatiana Lazareva, Christian Holm Christensen, Jinjin Pan, Yury Melikyan, Jihye Song, Sarah Louise La Pointe, Germano Bonomi, Adrian Horzyk, Bedangadas Mohanty, Kristjan Herlache Gulbrandsen, David Karatovic, Saul Anibal Rodriguez Ramirez, Johannes Peter Wessels, S. R. Klein, Dmitry Yurevich Peresunko, Junlee Kim, Elisa Laudi, R Jefferson Porter, Guillermo Tejeda Munoz, Costin Grigoras, Nikolai Smirnov, Sheetal Sharma, Ida Storehaug, Michael Karim Habib, Jan Jadlovsky, Laura Serksnyte, Lucia Anna Husova, Raphael Noel Tieulent, Reynier Cruz Torres, Markus Ball, Przemyslaw Stefan Rokita, Evgeny Kryshen, Dhruv Utpalkumar Dixit, Gabriel Garcia Guardiano, Zoltán Varga, Ankhi Roy, Sebastian Adam Bysiak, Latchezar Betev, Roberto Preghenella, Taku Gunji, Francesco Prino, Alexander Schmah, Matteo Concas, Adrian Sevcenco, Alexey Bogdanov, Stefano Panebianco, Roy Crawford Lemmon, Lucas Altenkamper, Yitao Wu, Jun Takahashi, Jana Bielcikova, Robert Vertesi, Paul Alois Buhler, Aydan Garibli, Jens Wiechula, Bjarte Kileng, Kamil Rafal Deja, Peter Graham Jones, Smbat Grigoryan, Gvozden Neskovic, Darius Keijdener, Rainer Martin Schicker, Ernesto Lopez Torres, Bhawani Singh, Mihail Bogdan Blidaru, Antoine Jean-Simon Junique, Yasuo Miake, Sinjini Chandra, Jakub Kvapil, Ernesto Calvo Villar, Georgui Kornakov, Andre Augustinus, Vojtech Petracek, Debjani Banerjee, Fernando Antonio Flor, Davide Caffarri, Nicolo' Valle, Bharati Naik, Kirill Lapidus, Yury Pestov, Tariq Mahmoud, Sylvain Chapeland, Rinaldo Rui, Sergey Evdokimov, Ganesh Jagannath Tambave, Alberto Collu, Xiaoming Zhang, Henner Buesching, Carlos Duarte Galvan, Buddhadeb Bhattacharjee, Boris Wagner, Shinichi Hayashi, David H. Evans, Antonio Carlos Oliveira da Silva, Diego Stocco, Eugen Mudnic, Daniel Jia Qin Goh, Tonatiuh Garcia Chavez, Jamila Bashir Butt, Christian Claude Kuhn, Emma Sophia Chizzali, Shreyasi Acharya, Sergey Nikolaev, Constantinos Loizides, Ravindra Singh, Sagarika Swain, Hideki Hamagaki, Nikolay Zavyalov, Vladimir Zherebchevskii, Peter Kalinak, Marianna Mazzilli, Adriana Telesca, Patrick John Steffanic, Peter Matthew Bond, Ionut Cristian Arsene, Arturo Tauro, Soyeon Cho, A. Alkin, Florian Eisenhut, Antonio Trifiro, Auro Prasad Mohanty, Tim Sebastian Rogoschinski, Takumi Osako, Peter Braun-Munzinger, Sanjeev Singh Sambyal, A. Nath, Luis Alberto Perez Moreno, Valeriy Pozdniakov, Jacek Kitowski, Sean Murray, Lukas Kreis, Zaenal Akbar, Serpil Yalcin Kuzu, Alberto Martin Gago Medina, Ralf Keidel, Johann Joachim Schambach, Peter Levai, Fiorella Maria Celeste Fionda, Shi Qiu, Gergely Gabor Barnafoldi, Jacek Tomasz Otwinowski, Zhanna Khabanova, Adrian Fereydon Nassirpour, Sudhir Pandurang Rode, Georgy Tersimonov, Bas Hofman, Maria Vasileiou, Eun Joo Kim, Nicola Zurlo, Vladimir Kovalenko, Shiming Yang, Hira Ilyas, Sarita Sahoo, Giuseppe Mandaglio, Joshua Leon Konig, Christoph Mayer, Jens Robert Luhder, Claudiu Cornel Schiaua, Ishaan Ahuja, Filippo Baruffaldi, Sergey Filchagin, Marco Bregant, Oskari Antti Matti Saarimaki, Luisa Bergmann, Andrea Danu, Thomas Janson, Guillaume Batigne, Massimo Angeletti, Evgeny Karpechev, Tomasz Trzcinski, Pawel Grzegorz Russek, Xiaomei Li, Markus Keil, Renu Bala, Christoph Blume, Andrzej Rybicki, Kosei Yamakawa, Anar Rustamov, Esther Bartsch, Nima Zardoshti, Giacomo Volpe, Mikhail Ippolitov, Livia Terlizzi, Chunzheng Wang, Mauro Rogerio Cosentino, Jose Garabatos Cuadrado, Fabio Filippo Colamaria, Xiaozhi Bai, Haavard Helstrup, Giacinto de Cataldo, Anders Garritt Knospe, Tomas Herman, Amrit Gautam, Michael Henry Oliver, Laurent Bernard Aphecetche, Iouri Belikov, Thomas Dietel, Roman Lietava, Herve Borel, You Zhou, Bruno Alessandro, Alek Hutson, H. Caines, Sudhir Raniwala, Tatiana Karavicheva, Denise Aparecida Moreira De Godoy, Alexandru Florin Dobrin, Mario Rodriguez Cahuantzi, Sandro Christian Wenzel, Syaefudin Jaelani, Laura Fabbietti, Dibakar Bauri, Gines Martinez-Garcia, Grazia Luparello, Caitlin Beattie, Natalia Dzalaiova, Paraskevi Ganoti, Fabrizio Grosa, Eleazar Cuautle Flores, Victor Gonzalez, Silvia Arcelli, Randhir Singh, Raffaele del Grande, Dariusz Czeslaw Miskowiec, Lucas Anne Vermunt, Oton Vazquez Doce, Julian Wojciech Myrcha, Arthur Willem Jean Gal, Rainer Arno Ernst Renfordt, Jinsook Kim, Romain Schotter, Petr Nomokonov, David Horak, Rashmi Raniwala, Anantachai Lakrathok, Luca Quaglia, Sebastian Hornung, Claude Andre Pruneau, Roberto Barbera, Paolo Camerini, Elena Botta, Sergey Voloshin, Zhongbao Yin, Jerome Jung, Philip Hauer, Rabi Soto Camacho, Ana Maria Marin, Peter Zahariev Hristov, Ken Oyama, Himanshu Sharma, Artem Kotliarov, Wladyslaw Henryk Trzaska, Madalina-Gabriela Tarzila, Mesut Arslandok, Alexei Khanzadeev, Lukasz Kamil Graczykowski, Valentina Mantovani Sarti, Alexander Nyanin, Basanta Kumar Nandi, Rishat Sultanov, Kristin Fanebust Hetland, Svetlana Kushpil, Antonina Rosano, Dmitry Blau, Sergey Gorbunov, Yuko Sekiguchi, Boris Batyunya, Chiara de Martin, A. R. Redelbach, Shiming Yuan, Oveis Sheibani, Wioleta Rzesa, Rune Langøy, Roberta Arnaldi, Anuj Chandra, Maxime Guilbaud, Mario Ivan Martinez Hernandez, Rosario Turrisi, Wenjing Deng, Teo Mrnjavac, Tulika Tripathy, Evgeny Kondratyuk, Gilda Scioli, Pradip Kumar Roy, Sudipan De, Evgeny Ryabinkin, Guy Paic, Yury Sibiryak, Seoyoung Noh, Hikari Murakami, Jørgen André Lien, William Edward Witt, Aditya Nath Mishra, Roberto Divia, Luigi Dello Stritto, Adam Tadeusz Wegrzynek, Yvonne Chiara Pachmayer, Alessandro Feliciello, Se Yong Kim, Amelia Lindner, Dmitry Finogeev, Purba Bhattacharya, Mohd Danish Azmi, Peter Malzacher, Markus Konrad Kohler, Bruno Espagnon, Jetnipit Kaewjai, Pietro Cortese, Rita Sadek, Andrei Riabov, Sourav Kundu, Ola Slettevoll Groettvik, Oliver Thomas Jevons, Rene Bellwied, Florian Jonas, Liudmila Malinina, Sizar Aziz, Pragati Sahoo, Norbert Novitzky, Monika Joanna Jakubowska, Giulio Usai, Ramona Lea, Jonathan Samuel Colburn, Marten Ole Schmidt, Sergio Paisano Guzman, Chiara Pinto, D. H. Kim, Dirk Hutter, Gabor Biro, Arturo Fernandez Tellez, Sergio Vergara Limon, Kunal Garg, Maximiliano Puccio, Raimond Snellings, Alexander Borissov, Vladislav Grigoryev, Giuseppe Bruno, Jose Ruben Alfaro Molina, Igor Morozov, Nataliya Topilskaya, Stefan Kirsch, Sergey Nikulin, Ran Xu, Johanna Stachel, Livio Bianchi, Dongfang Wang, Jacek Bogumil Biernat, Alexander Bolozdynya, Konstantin Mikhaylov, Federico Cindolo, Oeystein Djuvsland, Cvetan Valeriev Cheshkov, Ildefonso Leon Monzon, Radiy Ilkaev, Surya Prakash Pathak, Shaista Khan, Fouad Rami, F. Bock, Deekshit Kumar, Dmitry Budnikov, Antonio Lafuente Mazuecos, Igor Pshenichnov, I. Das, M. Mohisin Khan, Borge Svane Nielsen, Ingrid Mckibben Lofnes, Jan Figiel, Alperen Yuncu, Klaus Barth, Tinku Sarkar Sinha, Vitaly Okorokov, Ivan Vorobyev, Jin Joo Seo, Alessandro Grelli, Naomi van der Kolk, Alberto Baldisseri, Fabio de Moraes Canedo, Siegfried Valentin Foertsch, Piotr Jan Gasik, Vikas Singhal, Antonino Zichichi, Jorge Andres Lopez Lopez, Guillaume Taillepied, Marcelo Gameiro Munhoz, Valeria Muccifora, David Michael Rohr, Vladimir Kaplin, Dieter Roehrich, Muhammad Umair Naru, Xing Long Li, Jaime Norman, Marek Kowalski, Artem Shangaraev, Nicola Bianchi, Mustafa Anaam, Marek Gorgon, Lee Stuart Barnby, Wenya Wu, Pradip Kumar Sahu, Piero Giubilato, Jan Anton Hasenbichler, Xavier Bernard Lopez, Jaroslav Bielcik, Ryan Patrick Hannigan, Elena Rogochaya, Enrico Fragiacomo, Jacobb Lee Martinez, Jaehyun Kim, In Kwon Yoo, Anton Andronic, Jochen Klein, Heidi Maria Rytkonen, Trine Spedstad Tveter, Gianluca Aglieri Rinella, Ivan Kisel, Yaroslav Berdnikov, Florian Paul Andre Damas, Neelima Agrawal, Corrado Cicalo, John Jowett, Pablo Fierro Rojas, Martino Gagliardi, Clara Bartels, D. Di Bari, Martin Vala, Taejun Kim, Lucrezia Camilla Migliorin, Rihan Haque, Arnon Songmoolnak, Saikat Biswas, Ian Gardner Bearden, Eszter Frajna, Daiki Sekihata, Andrea Alici, Alexey Kuryakin, Hannah Bossi, Andrey Kondratyev, Yves Roland Schutz, Cristian Andrei, Venelin Anguelov, Andry Malala Rakotozafindrabe, Tuva Ora Herenui Richert, Siyu Tang, Benedikt Volkel, Mikhail Malaev, Martin Poghosyan, Barbara Jacak, Alexander Philipp Kalweit, Uliana Dmitrieva, Michael Jung, Thorsten Sven Kollegger, Christopher Hills, Dushmanta Sahu, Domenico Colella, Martin Andreas Volkl, Vladimir Samsonov, Christine Nattrass, Carlos Soncco Meza, Mohammad Al-Turany, Sang Un Ahn, Valentina Zaccolo, Hans Rudolf Schmidt, Pranjal Sarma, Ilya Selyuzhenkov, Boris Rumyantsev, S. N. Alam, Pietro Fecchio, Panagiotis Christakoglou, Jonghan Park, Samsul Islam, Olja Dordic, Hanna Paulina Zbroszczyk, Toru Sugitate, Anjali Sharma, Chiara Oppedisano, Junjie Zhu, Filip Erhardt, Karel Safarik, Arseniy Shabanov, Stephan Alexander Konigstorfer, Jurgen Schukraft, Victor Trubnikov, Julien Faivre, Chiara Zampolli, Sara Vallero, Marko Jercic, Andrey Kazantsev, Sumit Kumar Saha, Jan de Cuveland, Sonali Padhan, Massimo Masera, Maksim Melnik Storetvedt, Alice Mulliri, Biswarup Paul, Alessandra Maria Mazzoni, Ruben Shahoyan, Yu-Gang Ma, Janka Vrlakova, Masanori Ogino, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Laboratoire de Physique de Clermont (LPC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Institut Pluridisciplinaire Hubert Curien (IPHC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Laboratoire de Physique Subatomique et de Cosmologie (LPSC), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), ALICE, Helsinki Institute of Physics, Acharya, S, Adamová, D, Adler, A, Adolfsson, J, Aglieri Rinella, G, Agnello, M, Agrawal, N, Ahammed, Z, Ahmad, S, Ahn, S U, Ahuja, I, Akbar, Z, Akindinov, A, Al-Turany, M, Alam, S N, Aleksandrov, D, Alessandro, B, Alfanda, H M, Alfaro Molina, R, Ali, B, Ali, Y, Alici, A, Alizadehvandchali, N, Alkin, A, Alme, J, Alt, T, Altenkamper, L, Altsybeev, I, Anaam, M N, Andrei, C, Andreou, D, Andronic, A, Angeletti, M, Anguelov, V, Antinori, F, Antonioli, P, Anuj, C, Apadula, N, Aphecetche, L, Appelshäuser, H, Arcelli, S, Arnaldi, R, Arsene, I C, Arslandok, M, Augustinus, A, Averbeck, R, Aziz, S, Azmi, M D, Badalà, A, Baek, Y W, Bai, X, Bailhache, R, Bailung, Y, Bala, R, Balbino, A, Baldisseri, A, Balis, B, Ball, M, Banerjee, D, Barbera, R, Barioglio, L, Barlou, M, Barnaföldi, G G, Barnby, L S, Barret, V, Bartels, C, Barth, K, Bartsch, E, Baruffaldi, F, Bastid, N, Basu, S, Batigne, G, Batyunya, B, Bauri, D, Bazo Alba, J L, Bearden, I G, Beattie, C, Belikov, I, Bell Hechavarria, A D C, Bellini, F, Bellwied, R, Belokurova, S, Belyaev, V, Bencedi, G, Beole, S, Bercuci, A, Berdnikov, Y, Berdnikova, A, Berenyi, D, Bergmann, L, Besoiu, M G, Betev, L, Bhaduri, P P, Bhasin, A, Bhat, I R, Bhat, M A, Bhattacharjee, B, Bhattacharya, P, Bianchi, L, Bianchi, N, Bielčík, J, Bielčíková, J, Biernat, J, Bilandzic, A, Biro, G, Biswas, S, Blair, J T, Blau, D, Blidaru, M B, Blume, C, Boca, G, Bock, F, Bogdanov, A, Boi, S, Bok, J, Boldizsár, L, Bolozdynya, A, Bombara, M, Bond, P M, Bonomi, G, Borel, H, Borissov, A, Bossi, H, Botta, E, Bratrud, L, Braun-Munzinger, P, Bregant, M, Broz, M, Bruno, G E, Buckland, M D, Budnikov, D, Buesching, H, Bufalino, S, Bugnon, O, Buhler, P, Buthelezi, Z, Butt, J B, Bysiak, S A, Caffarri, D, Cai, M, Caines, H, Caliva, A, Calvo Villar, E, Camacho, J M M, Camacho, R S, Camerini, P, Canedo, F D M, Carnesecchi, F, Caron, R, Castillo Castellanos, J, Casula, E A R, Catalano, F, Ceballos Sanchez, C, Chakraborty, P, Chandra, S, Chapeland, S, Chartier, M, Chattopadhyay, S, Chauvin, A, Chavez, T G, Cheshkov, C, Cheynis, B, Chibante Barroso, V, Chinellato, D D, Chizzali, E S, Cho, S, Chochula, P, Christakoglou, P, Christensen, C H, Christiansen, P, Chujo, T, Cicalo, C, Cifarelli, L, Cindolo, F, Ciupek, M R, Clai, G, Cleymans, J, Colamaria, F, Colburn, J S, Colella, D, Collu, A, Colocci, M, Concas, M, Conesa Balbastre, G, Conesa Del Valle, Z, Contin, G, Contreras, J G, Coquet, M L, Cormier, T M, Cortese, P, Cosentino, M R, Costa, F, Costanza, S, Crochet, P, Cuautle, E, Cui, P, Cunqueiro, L, Dainese, A, Damas, F P A, Danisch, M C, Danu, A, Das, I, Das, P, Das, S, Dash, S, De, S, De Caro, A, de Cataldo, G, De Cilladi, L, de Cuveland, J, De Falco, A, De Gruttola, D, De Marco, N, De Martin, C, De Pasquale, S, Deb, S, Degenhardt, H F, Deja, K R, Del Grande, R, Dello Stritto, L, Delsanto, S, Deng, W, Dhankher, P, Di Bari, D, Di Mauro, A, Diaz, R A, Dietel, T, Ding, Y, Divià, R, Dixit, D U, Djuvsland, Ø, Dmitrieva, U, Do, J, Dobrin, A, Dönigus, B, Dordic, O, Dubey, A K, Dubla, A, Dudi, S, Dukhishyam, M, Dupieux, P, Dzalaiova, N, Eder, T M, Ehlers, R J, Eikeland, V N, Eisenhut, F, Elia, D, Erazmus, B, Ercolessi, F, Erhardt, F, Erokhin, A, Ersdal, M R, Espagnon, B, Eulisse, G, Evans, D, Evdokimov, S, Fabbietti, L, Faggin, M, Faivre, J, Fan, F, Fantoni, A, Fasel, M, Fecchio, P, Feliciello, A, Feofilov, G, Fernández Téllez, A, Ferrero, A, Ferretti, A, Feuillard, V J G, Figiel, J, Filchagin, S, Finogeev, D, Fionda, F M, Fiorenza, G, Flor, F, Flores, A N, Foertsch, S, Foka, P, Fokin, S, Fragiacomo, E, Frajna, E, Fuchs, U, Funicello, N, Furget, C, Furs, A, Gaardhøje, J J, Gagliardi, M, Gago, A M, Gal, A, Galvan, C D, Ganoti, P, Garabatos, C, Garcia, J R A, Garcia-Solis, E, Garg, K, Gargiulo, C, Garibli, A, Garner, K, Gasik, P, Gauger, E F, Gautam, A, Gay Ducati, M B, Germain, M, Ghosh, J, Ghosh, P, Ghosh, S K, Giacalone, M, Gianotti, P, Giubellino, P, Giubilato, P, Glaenzer, A M C, Glässel, P, Goh, D J Q, Gonzalez, V, González-Trueba, L H, Gorbunov, S, Gorgon, M, Görlich, L, Gotovac, S, Grabski, V, Graczykowski, L K, Greiner, L, Grelli, A, Grigoras, C, Grigoriev, V, Grigoryan, A, Grigoryan, S, Groettvik, O S, Grosa, F, Grosse-Oetringhaus, J F, Grosso, R, Guardiano, G G, Guernane, R, Guilbaud, M, Gulbrandsen, K, Gunji, T, Gupta, A, Gupta, R, Guzman, I B, Guzman, S P, Gyulai, L, Habib, M K, Hadjidakis, C, Halimoglu, G, Hamagaki, H, Hamar, G, Hamid, M, Hannigan, R, Haque, M R, Harlenderova, A, Harris, J W, Harton, A, Hasenbichler, J A, Hassan, H, Hatzifotiadou, D, Hauer, P, Havener, L B, Hayashi, S, Heckel, S T, Hellbär, E, Helstrup, H, Herman, T, Hernandez, E G, Herrera Corral, G, Herrmann, F, Hetland, K F, Hillemanns, H, Hills, C, Hippolyte, B, Hofman, B, Hohlweger, B, Honermann, J, Hong, G H, Horak, D, Hornung, S, Horzyk, A, Hosokawa, R, Hristov, P, Huang, C, Hughes, C, Huhn, P, Humanic, T J, Hushnud, H, Husova, L A, Hutson, A, Hutter, D, Iddon, J P, Ilkaev, R, Ilyas, H, Inaba, M, Innocenti, G M, Ippolitov, M, Isakov, A, Islam, M S, Ivanov, M, Ivanov, V, Izucheev, V, Jablonski, M, Jacak, B, Jacazio, N, Jacobs, P M, Jadlovska, S, Jadlovsky, J, Jaelani, S, Jahnke, C, Jakubowska, M J, Janik, M A, Janson, T, Jercic, M, Jevons, O, Jonas, F, Jones, P G, Jowett, J M, Jung, J, Jung, M, Junique, A, Jusko, A, Kaewjai, J, Kalinak, P, Kalweit, A, Kaplin, V, Kar, S, Karasu Uysal, A, Karatovic, D, Karavichev, O, Karavicheva, T, Karczmarczyk, P, Karpechev, E, Kazantsev, A, Kebschull, U, Keidel, R, Keijdener, D L D, Keil, M, Ketzer, B, Khabanova, Z, Khan, A M, Khan, S, Khanzadeev, A, Kharlov, Y, Khatun, A, Khuntia, A, Kileng, B, Kim, B, Kim, D, Kim, D J, Kim, E J, Kim, J, Kim, J S, Kim, M, Kim, S, Kim, T, Kirsch, S, Kisel, I, Kiselev, S, Kisiel, A, Kitowski, J P, Klay, J L, Klein, J, Klein, S, Klein-Bösing, C, Kleiner, M, Klemenz, T, Kluge, A, Knospe, A G, Kobdaj, C, Köhler, M K, Kollegger, T, Kondratyev, A, Kondratyeva, N, Kondratyuk, E, Konig, J, Konigstorfer, S A, Konopka, P J, Kornakov, G, Koryciak, S D, Koska, L, Kotliarov, A, Kovalenko, O, Kovalenko, V, Kowalski, M, Králik, I, Kravčáková, A, Kreis, L, Krivda, M, Krizek, F, Krizkova Gajdosova, K, Kroesen, M, Krüger, M, Kryshen, E, Krzewicki, M, Kučera, V, Kuhn, C, Kuijer, P G, Kumaoka, T, Kumar, D, Kumar, L, Kumar, N, Kundu, S, Kurashvili, P, Kurepin, A, Kurepin, A B, Kuryakin, A, Kushpil, S, Kvapil, J, Kweon, M J, Kwon, J Y, Kwon, Y, La Pointe, S L, La Rocca, P, Lai, Y S, Lakrathok, A, Lamanna, M, Langoy, R, Lapidus, K, Larionov, P, Laudi, E, Lautner, L, Lavicka, R, Lazareva, T, Lea, R, Lee, J, Lehrbach, J, Lemmon, R C, León Monzón, I, Lesser, E D, Lettrich, M, Lévai, P, Li, X, Li, X L, Lien, J, Lietava, R, Lim, B, Lim, S H, Lindenstruth, V, Lindner, A, Lippmann, C, Liu, A, Liu, J, Lofnes, I M, Loginov, V, Loizides, C, Loncar, P, Lopez, J A, Lopez, X, López Torres, E, Luhder, J R, Lunardon, M, Luparello, G, Ma, Y G, Maevskaya, A, Mager, M, Mahmoud, T, Maire, A, Malaev, M, Malik, Q W, Malinina, L, Mal'Kevich, D, Mallick, N, Malzacher, P, Mandaglio, G, Manko, V, Manso, F, Manzari, V, Mao, Y, Mareš, J, Margagliotti, G V, Margotti, A, Marín, A, Markert, C, Marquard, M, Martin, N A, Martinengo, P, Martinez, J L, Martínez, M I, Martínez García, G, Masciocchi, S, Masera, M, Masoni, A, Massacrier, L, Mastroserio, A, Mathis, A M, Matonoha, O, Matuoka, P F T, Matyja, A, Mayer, C, Mazuecos, A L, Mazzaschi, F, Mazzilli, M, Mazzoni, M A, Mdhluli, J E, Mechler, A F, Meddi, F, Melikyan, Y, Menchaca-Rocha, A, Meninno, E, Menon, A S, Meres, M, Mhlanga, S, Miake, Y, Micheletti, L, Migliorin, L C, Mihaylov, D L, Mikhaylov, K, Mishra, A N, Miśkowiec, D, Modak, A, Mohanty, A P, Mohanty, B, Mohisin Khan, M, Moravcova, Z, Mordasini, C, Moreira De Godoy, D A, Moreno, L A P, Morozov, I, Morsch, A, Mrnjavac, T, Muccifora, V, Mudnic, E, Mühlheim, D, Muhuri, S, Mulligan, J D, Mulliri, A, Munhoz, M G, Munzer, R H, Murakami, H, Murray, S, Musa, L, Musinsky, J, Myers, C J, Myrcha, J W, Naik, B, Nair, R, Nandi, B K, Nania, R, Nappi, E, Naru, M U, Nassirpour, A F, Nath, A, Nattrass, C, Neagu, A, Nellen, L, Nesbo, S V, Neskovic, G, Nesterov, D, Nielsen, B S, Nikolaev, S, Nikulin, S, Nikulin, V, Noferini, F, Noh, S, Nomokonov, P, Norman, J, Novitzky, N, Nowakowski, P, Nyanin, A, Nystrand, J, Ogino, M, Ohlson, A, Okorokov, V A, Oleniacz, J, Oliveira Da Silva, A C, Oliver, M H, Onnerstad, A, Oppedisano, C, Ortiz Velasquez, A, Osako, T, Oskarsson, A, Otwinowski, J, Oyama, K, Pachmayer, Y, Padhan, S, Pagano, D, Paić, G, Palasciano, A, Pan, J, Panebianco, S, Pareek, P, Park, J, Parkkila, J E, Pathak, S P, Patra, R N, Paul, B, Pazzini, J, Pei, H, Peitzmann, T, Peng, X, Pereira, L G, Pereira Da Costa, H, Peresunko, D, Perez, G M, Perrin, S, Pestov, Y, Petráček, V, Petrovici, M, Pezzi, R P, Piano, S, Pikna, M, Pillot, P, Pinazza, O, Pinsky, L, Pinto, C, Pisano, S, Płoskoń, M, Planinic, M, Pliquett, F, Poghosyan, M G, Polichtchouk, B, Politano, S, Poljak, N, Pop, A, Porteboeuf-Houssais, S, Porter, J, Pozdniakov, V, Prasad, S K, Preghenella, R, Prino, F, Pruneau, C A, Pshenichnov, I, Puccio, M, Qiu, S, Quaglia, L, Quishpe, R E, Ragoni, S, Rakotozafindrabe, A, Ramello, L, Rami, F, Ramirez, S A R, Ramos, A G T, Rancien, T A, Raniwala, R, Raniwala, S, Räsänen, S S, Rath, R, Ravasenga, I, Read, K F, Redelbach, A R, Redlich, K, Rehman, A, Reichelt, P, Reidt, F, Reme-Ness, H A, Renfordt, R, Rescakova, Z, Reygers, K, Riabov, A, Riabov, V, Richert, T, Richter, M, Riegler, W, Riggi, F, Ristea, C, Rode, S P, Rodríguez Cahuantzi, M, Røed, K, Rogalev, R, Rogochaya, E, Rogoschinski, T S, Rohr, D, Röhrich, D, Rojas, P F, Rokita, P S, Ronchetti, F, Rosano, A, Rosas, E D, Rossi, A, Rotondi, A, Roy, A, Roy, P, Roy, S, Rubini, N, Rueda, O V, Rui, R, Rumyantsev, B, Russek, P G, Rustamov, A, Ryabinkin, E, Ryabov, Y, Rybicki, A, Rytkonen, H, Rzesa, W, Saarimaki, O A M, Sadek, R, Sadovsky, S, Saetre, J, Šafařík, K, Saha, S K, Saha, S, Sahoo, B, Sahoo, P, Sahoo, R, Sahoo, S, Sahu, D, Sahu, P K, Saini, J, Sakai, S, Sambyal, S, Samsonov, V, Sarkar, D, Sarkar, N, Sarma, P, Sarti, V M, Sas, M H P, Schambach, J, Scheid, H S, Schiaua, C, Schicker, R, Schmah, A, Schmidt, C, Schmidt, H R, Schmidt, M O, Schmidt, M, Schmidt, N V, Schmier, A R, Schotter, R, Schukraft, J, Schutz, Y, Schwarz, K, Schweda, K, Scioli, G, Scomparin, E, Seger, J E, Sekiguchi, Y, Sekihata, D, Selyuzhenkov, I, Senyukov, S, Seo, J J, Serebryakov, D, Šerkšnytė, L, Sevcenco, A, Shaba, T J, Shabanov, A, Shabetai, A, Shahoyan, R, Shaikh, W, Shangaraev, A, Sharma, A, Sharma, H, Sharma, M, Sharma, N, Sharma, S, Sheibani, O, Shigaki, K, Shimomura, M, Shirinkin, S, Shou, Q, Sibiriak, Y, Siddhanta, S, Siemiarczuk, T, Silva, T F, Silvermyr, D, Simonetti, G, Singh, B, Singh, R, Singh, V K, Singhal, V, Sinha, T, Sitar, B, Sitta, M, Skaali, T B, Skorodumovs, G, Slupecki, M, Smirnov, N, Snellings, R J M, Soncco, C, Song, J, Songmoolnak, A, Soramel, F, Sorensen, S, Sputowska, I, Stachel, J, Stan, I, Steffanic, P J, Stiefelmaier, S F, Stocco, D, Storehaug, I, Storetvedt, M M, Stylianidis, C P, Suaide, A A P, Sugitate, T, Suire, C, Suljic, M, Sultanov, R, Šumbera, M, Sumberia, V, Sumowidagdo, S, Swain, S, Szabo, A, Szarka, I, Tabassam, U, Taghavi, S F, Taillepied, G, Takahashi, J, Tambave, G J, Tang, S, Tang, Z, Tarhini, M, Tarzila, M G, Tauro, A, Tejeda Muñoz, G, Telesca, A, Terlizzi, L, Terrevoli, C, Tersimonov, G, Thakur, S, Thomas, D, Tieulent, R, Tikhonov, A, Timmins, A R, Tkacik, M, Toia, A, Topilskaya, N, Toppi, M, Torales-Acosta, F, Tork, T, Cruz-Torres, R, Torres, S R, Trifiró, A, Tripathy, S, Tripathy, T, Trogolo, S, Trombetta, G, Trubnikov, V, Trzaska, W H, Trzcinski, T P, Trzeciak, B A, Tumkin, A, Turrisi, R, Tveter, T S, Ullaland, K, Uras, A, Urioni, M, Usai, G L, Vala, M, Valle, N, Vallero, S, van der Kolk, N, van Doremalen, L V R, van Leeuwen, M, Vande Vyvre, P, Varga, D, Varga, Z, Varga-Kofarago, M, Vargas, A, Vasileiou, M, Vasiliev, A, Vázquez Doce, O, Vechernin, V, Vercellin, E, Vergara Limón, S, Vermunt, L, Vértesi, R, Verweij, M, Vickovic, L, Vilakazi, Z, Villalobos Baillie, O, Vino, G, Vinogradov, A, Virgili, T, Vislavicius, V, Vodopyanov, A, Volkel, B, Völkl, M A, Voloshin, K, Voloshin, S A, Volpe, G, von Haller, B, Vorobyev, I, Voscek, D, Vrláková, J, Wagner, B, Wang, C, Wang, D, Weber, M, Weelden, R J G V, Wegrzynek, A, Wenzel, S C, Wessels, J P, Wiechula, J, Wikne, J, Wilk, G, Wilkinson, J, Willems, G A, Willsher, E, Windelband, B, Winn, M, Witt, W E, Wright, J R, Wu, W, Wu, Y, Xu, R, Yalcin, S, Yamaguchi, Y, Yamakawa, K, Yang, S, Yano, S, Yin, Z, Yokoyama, H, Yoo, I-K, Yoon, J H, Yuan, S, Yuncu, A, Zaccolo, V, Zaman, A, Zampolli, C, Zanoli, H J C, Zardoshti, N, Zarochentsev, A, Závada, P, Zaviyalov, N, Zbroszczyk, H, Zhalov, M, Zhang, S, Zhang, X, Zhang, Y, Zherebchevskii, V, Zhi, Y, Zhou, D, Zhou, Y, Zhu, J, Zhu, Y, Zichichi, A, Zinovjev, G, Zurlo, N, Acharya, S., Adamova, D., Adler, A., Adolfsson, J., Aglieri Rinella, G., Agnello, M., Agrawal, N., Ahammed, Z., Ahmad, S., Ahn, S. U., Ahuja, I., Akbar, Z., Akindinov, A., Al-Turany, M., Alam, S. N., Aleksandrov, D., Alessandro, B., Alfanda, H. M., Alfaro Molina, R., Ali, B., Ali, Y., Alici, A., Alizadehvandchali, N., Alkin, A., Alme, J., Alt, T., Altenkamper, L., Altsybeev, I., Anaam, M. N., Andrei, C., Andreou, D., Andronic, A., Angeletti, M., Anguelov, V., Antinori, F., Antonioli, P., Anuj, C., Apadula, N., Aphecetche, L., Appelshauser, H., Arcelli, S., Arnaldi, R., Arsene, I. C., Arslandok, M., Augustinus, A., Averbeck, R., Aziz, S., Azmi, M. D., Badala, A., Baek, Y. W., Bai, X., Bailhache, R., Bailung, Y., Bala, R., Balbino, A., Baldisseri, A., Balis, B., Ball, M., Banerjee, D., Barbera, R., Barioglio, L., Barlou, M., Barnafoldi, G. G., Barnby, L. S., Barret, V., Bartels, C., Barth, K., Bartsch, E., Baruffaldi, F., Bastid, N., Basu, S., Batigne, G., Batyunya, B., Bauri, D., Bazo Alba, J. L., Bearden, I. G., Beattie, C., Belikov, I., Bell Hechavarria, A. D. C., Bellini, F., Bellwied, R., Belokurova, S., Belyaev, V., Bencedi, G., Beole, S., Bercuci, A., Berdnikov, Y., Berdnikova, A., Berenyi, D., Bergmann, L., Besoiu, M. G., Betev, L., Bhaduri, P. P., Bhasin, A., Bhat, I. R., Bhat, M. A., Bhattacharjee, B., Bhattacharya, P., Bianchi, L., Bianchi, N., Bielcik, J., Bielcikova, J., Biernat, J., Bilandzic, A., Biro, G., Biswas, S., Blair, J. T., Blau, D., Blidaru, M. B., Blume, C., Boca, G., Bock, F., Bogdanov, A., Boi, S., Bok, J., Boldizsar, L., Bolozdynya, A., Bombara, M., Bond, P. M., Bonomi, G., Borel, H., Borissov, A., Bossi, H., Botta, E., Bratrud, L., Braun-Munzinger, P., Bregant, M., Broz, M., Bruno, G. E., Buckland, M. D., Budnikov, D., Buesching, H., Bufalino, S., Bugnon, O., Buhler, P., Buthelezi, Z., Butt, J. B., Bysiak, S. A., Caffarri, D., Cai, M., Caines, H., Caliva, A., Calvo Villar, E., Camacho, J. M. M., Camacho, R. S., Camerini, P., Canedo, F. D. M., Carnesecchi, F., Caron, R., Castillo Castellanos, J., Casula, E. A. R., Catalano, F., Ceballos Sanchez, C., Chakraborty, P., Chandra, S., Chapeland, S., Chartier, M., Chattopadhyay, S., Chauvin, A., Chavez, T. G., Cheshkov, C., Cheynis, B., Chibante Barroso, V., Chinellato, D. D., Chizzali, E. S., Cho, S., Chochula, P., Christakoglou, P., Christensen, C. H., Christiansen, P., Chujo, T., Cicalo, C., Cifarelli, L., Cindolo, F., Ciupek, M. R., Clai, G., Cleymans, J., Colamaria, F., Colburn, J. S., Colella, D., Collu, A., Colocci, M., Concas, M., Conesa Balbastre, G., Conesa Del Valle, Z., Contin, G., Contreras, J. G., Coquet, M. L., Cormier, T. M., Cortese, P., Cosentino, M. R., Costa, F., Costanza, S., Crochet, P., Cuautle, E., Cui, P., Cunqueiro, L., Dainese, A., Damas, F. P. A., Danisch, M. C., Danu, A., Das, I., Das, P., Das, S., Dash, S., De, S., De Caro, A., De Cataldo, G., De Cilladi, L., De Cuveland, J., De Falco, A., De Gruttola, D., De Marco, N., De Martin, C., De Pasquale, S., Deb, S., Degenhardt, H. F., Deja, K. R., Del Grande, R., Dello Stritto, L., Delsanto, S., Deng, W., Dhankher, P., Di Bari, D., Di Mauro, A., Diaz, R. A., Dietel, T., Ding, Y., Divia, R., Dixit, D. U., Djuvsland, O., Dmitrieva, U., Do, J., Dobrin, A., Donigus, B., Dordic, O., Dubey, A. K., Dubla, A., Dudi, S., Dukhishyam, M., Dupieux, P., Dzalaiova, N., Eder, T. M., Ehlers, R. J., Eikeland, V. N., Eisenhut, F., Elia, D., Erazmus, B., Ercolessi, F., Erhardt, F., Erokhin, A., Ersdal, M. R., Espagnon, B., Eulisse, G., Evans, D., Evdokimov, S., Fabbietti, L., Faggin, M., Faivre, J., Fan, F., Fantoni, A., Fasel, M., Fecchio, P., Feliciello, A., Feofilov, G., Fernandez Tellez, A., Ferrero, A., Ferretti, A., Feuillard, V. J. G., Figiel, J., Filchagin, S., Finogeev, D., Fionda, F. M., Fiorenza, G., Flor, F., Flores, A. N., Foertsch, S., Foka, P., Fokin, S., Fragiacomo, E., Frajna, E., Fuchs, U., Funicello, N., Furget, C., Furs, A., Gaardhoje, J. J., Gagliardi, M., Gago, A. M., Gal, A., Galvan, C. D., Ganoti, P., Garabatos, C., Garcia, J. R. A., Garcia-Solis, E., Garg, K., Gargiulo, C., Garibli, A., Garner, K., Gasik, P., Gauger, E. F., Gautam, A., Gay Ducati, M. B., Germain, M., Ghosh, J., Ghosh, P., Ghosh, S. K., Giacalone, M., Gianotti, P., Giubellino, P., Giubilato, P., Glaenzer, A. M. C., Glassel, P., Goh, D. J. Q., Gonzalez, V., Gonzalez-Trueba, L. H., Gorbunov, S., Gorgon, M., Gorlich, L., Gotovac, S., Grabski, V., Graczykowski, L. K., Greiner, L., Grelli, A., Grigoras, C., Grigoriev, V., Grigoryan, A., Grigoryan, S., Groettvik, O. S., Grosa, F., Grosse-Oetringhaus, J. F., Grosso, R., Guardiano, G. G., Guernane, R., Guilbaud, M., Gulbrandsen, K., Gunji, T., Gupta, A., Gupta, R., Guzman, I. B., Guzman, S. P., Gyulai, L., Habib, M. K., Hadjidakis, C., Halimoglu, G., Hamagaki, H., Hamar, G., Hamid, M., Hannigan, R., Haque, M. R., Harlenderova, A., Harris, J. W., Harton, A., Hasenbichler, J. A., Hassan, H., Hatzifotiadou, D., Hauer, P., Havener, L. B., Hayashi, S., Heckel, S. T., Hellbar, E., Helstrup, H., Herman, T., Hernandez, E. G., Herrera Corral, G., Herrmann, F., Hetland, K. F., Hillemanns, H., Hills, C., Hippolyte, B., Hofman, B., Hohlweger, B., Honermann, J., Hong, G. H., Horak, D., Hornung, S., Horzyk, A., Hosokawa, R., Hristov, P., Huang, C., Hughes, C., Huhn, P., Humanic, T. J., Hushnud, H., Husova, L. A., Hutson, A., Hutter, D., Iddon, J. P., Ilkaev, R., Ilyas, H., Inaba, M., Innocenti, G. M., Ippolitov, M., Isakov, A., Islam, M. S., Ivanov, M., Ivanov, V., Izucheev, V., Jablonski, M., Jacak, B., Jacazio, N., Jacobs, P. M., Jadlovska, S., Jadlovsky, J., Jaelani, S., Jahnke, C., Jakubowska, M. J., Janik, M. A., Janson, T., Jercic, M., Jevons, O., Jonas, F., Jones, P. G., Jowett, J. M., Jung, J., Jung, M., Junique, A., Jusko, A., Kaewjai, J., Kalinak, P., Kalweit, A., Kaplin, V., Kar, S., Karasu Uysal, A., Karatovic, D., Karavichev, O., Karavicheva, T., Karczmarczyk, P., Karpechev, E., Kazantsev, A., Kebschull, U., Keidel, R., Keijdener, D. L. D., Keil, M., Ketzer, B., Khabanova, Z., Khan, A. M., Khan, S., Khanzadeev, A., Kharlov, Y., Khatun, A., Khuntia, A., Kileng, B., Kim, B., Kim, D., Kim, D. J., Kim, E. J., Kim, J., Kim, J. S., Kim, M., Kim, S., Kim, T., Kirsch, S., Kisel, I., Kiselev, S., Kisiel, A., Kitowski, J. P., Klay, J. L., Klein, J., Klein, S., Klein-Bosing, C., Kleiner, M., Klemenz, T., Kluge, A., Knospe, A. G., Kobdaj, C., Kohler, M. K., Kollegger, T., Kondratyev, A., Kondratyeva, N., Kondratyuk, E., Konig, J., Konigstorfer, S. A., Konopka, P. J., Kornakov, G., Koryciak, S. D., Koska, L., Kotliarov, A., Kovalenko, O., Kovalenko, V., Kowalski, M., Kralik, I., Kravcakova, A., Kreis, L., Krivda, M., Krizek, F., Krizkova Gajdosova, K., Kroesen, M., Kruger, M., Kryshen, E., Krzewicki, M., Kucera, V., Kuhn, C., Kuijer, P. G., Kumaoka, T., Kumar, D., Kumar, L., Kumar, N., Kundu, S., Kurashvili, P., Kurepin, A., Kurepin, A. B., Kuryakin, A., Kushpil, S., Kvapil, J., Kweon, M. J., Kwon, J. Y., Kwon, Y., La Pointe, S. L., La Rocca, P., Lai, Y. S., Lakrathok, A., Lamanna, M., Langoy, R., Lapidus, K., Larionov, P., Laudi, E., Lautner, L., Lavicka, R., Lazareva, T., Lea, R., Lee, J., Lehrbach, J., Lemmon, R. C., Leon Monzon, I., Lesser, E. D., Lettrich, M., Levai, P., Li, X., Li, X. L., Lien, J., Lietava, R., Lim, B., Lim, S. H., Lindenstruth, V., Lindner, A., Lippmann, C., Liu, A., Liu, J., Lofnes, I. M., Loginov, V., Loizides, C., Loncar, P., Lopez, J. A., Lopez, X., Lopez Torres, E., Luhder, J. R., Lunardon, M., Luparello, G., Ma, Y. G., Maevskaya, A., Mager, M., Mahmoud, T., Maire, A., Malaev, M., Malik, Q. W., Malinina, L., Mal'Kevich, D., Mallick, N., Malzacher, P., Mandaglio, G., Manko, V., Manso, F., Manzari, V., Mao, Y., Mares, J., Margagliotti, G. V., Margotti, A., Marin, A., Markert, C., Marquard, M., Martin, N. A., Martinengo, P., Martinez, J. L., Martinez, M. I., Martinez Garcia, G., Masciocchi, S., Masera, M., Masoni, A., Massacrier, L., Mastroserio, A., Mathis, A. M., Matonoha, O., Matuoka, P. F. T., Matyja, A., Mayer, C., Mazuecos, A. L., Mazzaschi, F., Mazzilli, M., Mazzoni, M. A., Mdhluli, J. E., Mechler, A. F., Meddi, F., Melikyan, Y., Menchaca-Rocha, A., Meninno, E., Menon, A. S., Meres, M., Mhlanga, S., Miake, Y., Micheletti, L., Migliorin, L. C., Mihaylov, D. L., Mikhaylov, K., Mishra, A. N., Miskowiec, D., Modak, A., Mohanty, A. P., Mohanty, B., Mohisin Khan, M., Moravcova, Z., Mordasini, C., Moreira De Godoy, D. A., Moreno, L. A. P., Morozov, I., Morsch, A., Mrnjavac, T., Muccifora, V., Mudnic, E., Muhlheim, D., Muhuri, S., Mulligan, J. D., Mulliri, A., Munhoz, M. G., Munzer, R. H., Murakami, H., Murray, S., Musa, L., Musinsky, J., Myers, C. J., Myrcha, J. W., Naik, B., Nair, R., Nandi, B. K., Nania, R., Nappi, E., Naru, M. U., Nassirpour, A. F., Nath, A., Nattrass, C., Neagu, A., Nellen, L., Nesbo, S. V., Neskovic, G., Nesterov, D., Nielsen, B. S., Nikolaev, S., Nikulin, S., Nikulin, V., Noferini, F., Noh, S., Nomokonov, P., Norman, J., Novitzky, N., Nowakowski, P., Nyanin, A., Nystrand, J., Ogino, M., Ohlson, A., Okorokov, V. A., Oleniacz, J., Oliveira Da Silva, A. C., Oliver, M. H., Onnerstad, A., Oppedisano, C., Ortiz Velasquez, A., Osako, T., Oskarsson, A., Otwinowski, J., Oyama, K., Pachmayer, Y., Padhan, S., Pagano, D., Paic, G., Palasciano, A., Pan, J., Panebianco, S., Pareek, P., Park, J., Parkkila, J. E., Pathak, S. P., Patra, R. N., Paul, B., Pazzini, J., Pei, H., Peitzmann, T., Peng, X., Pereira, L. G., Pereira Da Costa, H., Peresunko, D., Perez, G. M., Perrin, S., Pestov, Y., Petracek, V., Petrovici, M., Pezzi, R. P., Piano, S., Pikna, M., Pillot, P., Pinazza, O., Pinsky, L., Pinto, C., Pisano, S., Ploskon, M., Planinic, M., Pliquett, F., Poghosyan, M. G., Polichtchouk, B., Politano, S., Poljak, N., Pop, A., Porteboeuf-Houssais, S., Porter, J., Pozdniakov, V., Prasad, S. K., Preghenella, R., Prino, F., Pruneau, C. A., Pshenichnov, I., Puccio, M., Qiu, S., Quaglia, L., Quishpe, R. E., Ragoni, S., Rakotozafindrabe, A., Ramello, L., Rami, F., Ramirez, S. A. R., Ramos, A. G. T., Rancien, T. A., Raniwala, R., Raniwala, S., Rasanen, S. S., Rath, R., Ravasenga, I., Read, K. F., Redelbach, A. R., Redlich, K., Rehman, A., Reichelt, P., Reidt, F., Reme-Ness, H. A., Renfordt, R., Rescakova, Z., Reygers, K., Riabov, A., Riabov, V., Richert, T., Richter, M., Riegler, W., Riggi, F., Ristea, C., Rode, S. P., Rodriguez Cahuantzi, M., Roed, K., Rogalev, R., Rogochaya, E., Rogoschinski, T. S., Rohr, D., Rohrich, D., Rojas, P. F., Rokita, P. S., Ronchetti, F., Rosano, A., Rosas, E. D., Rossi, A., Rotondi, A., Roy, A., Roy, P., Roy, S., Rubini, N., Rueda, O. V., Rui, R., Rumyantsev, B., Russek, P. G., Rustamov, A., Ryabinkin, E., Ryabov, Y., Rybicki, A., Rytkonen, H., Rzesa, W., Saarimaki, O. A. M., Sadek, R., Sadovsky, S., Saetre, J., Safarik, K., Saha, S. K., Saha, S., Sahoo, B., Sahoo, P., Sahoo, R., Sahoo, S., Sahu, D., Sahu, P. K., Saini, J., Sakai, S., Sambyal, S., Samsonov, V., Sarkar, D., Sarkar, N., Sarma, P., Sarti, V. M., Sas, M. H. P., Schambach, J., Scheid, H. S., Schiaua, C., Schicker, R., Schmah, A., Schmidt, C., Schmidt, H. R., Schmidt, M. O., Schmidt, M., Schmidt, N. V., Schmier, A. R., Schotter, R., Schukraft, J., Schutz, Y., Schwarz, K., Schweda, K., Scioli, G., Scomparin, E., Seger, J. E., Sekiguchi, Y., Sekihata, D., Selyuzhenkov, I., Senyukov, S., Seo, J. J., Serebryakov, D., Serksnyte, L., Sevcenco, A., Shaba, T. J., Shabanov, A., Shabetai, A., Shahoyan, R., Shaikh, W., Shangaraev, A., Sharma, A., Sharma, H., Sharma, M., Sharma, N., Sharma, S., Sheibani, O., Shigaki, K., Shimomura, M., Shirinkin, S., Shou, Q., Sibiriak, Y., Siddhanta, S., Siemiarczuk, T., Silva, T. F., Silvermyr, D., Simonetti, G., Singh, B., Singh, R., Singh, V. K., Singhal, V., Sinha, T., Sitar, B., Sitta, M., Skaali, T. B., Skorodumovs, G., Slupecki, M., Smirnov, N., Snellings, R. J. M., Soncco, C., Song, J., Songmoolnak, A., Soramel, F., Sorensen, S., Sputowska, I., Stachel, J., Stan, I., Steffanic, P. J., Stiefelmaier, S. F., Stocco, D., Storehaug, I., Storetvedt, M. M., Stylianidis, C. P., Suaide, A. A. P., Sugitate, T., Suire, C., Suljic, M., Sultanov, R., Sumbera, M., Sumberia, V., Sumowidagdo, S., Swain, S., Szabo, A., Szarka, I., Tabassam, U., Taghavi, S. F., Taillepied, G., Takahashi, J., Tambave, G. J., Tang, S., Tang, Z., Tarhini, M., Tarzila, M. G., Tauro, A., Tejeda Munoz, G., Telesca, A., Terlizzi, L., Terrevoli, C., Tersimonov, G., Thakur, S., Thomas, D., Tieulent, R., Tikhonov, A., Timmins, A. R., Tkacik, M., Toia, A., Topilskaya, N., Toppi, M., Torales-Acosta, F., Tork, T., Cruz-Torres, R., Torres, S. R., Trifiro, A., Tripathy, S., Tripathy, T., Trogolo, S., Trombetta, G., Trubnikov, V., Trzaska, W. H., Trzcinski, T. P., Trzeciak, B. A., Tumkin, A., Turrisi, R., Tveter, T. S., Ullaland, K., Uras, A., Urioni, M., Usai, G. L., Vala, M., Valle, N., Vallero, S., Van Der Kolk, N., Van Doremalen, L. V. R., Van Leeuwen, M., Vande Vyvre, P., Varga, D., Varga, Z., Varga-Kofarago, M., Vargas, A., Vasileiou, M., Vasiliev, A., Vazquez Doce, O., Vechernin, V., Vercellin, E., Vergara Limon, S., Vermunt, L., Vertesi, R., Verweij, M., Vickovic, L., Vilakazi, Z., Villalobos Baillie, O., Vino, G., Vinogradov, A., Virgili, T., Vislavicius, V., Vodopyanov, A., Volkel, B., Volkl, M. A., Voloshin, K., Voloshin, S. A., Volpe, G., Von Haller, B., Vorobyev, I., Voscek, D., Vrlakova, J., Wagner, B., Wang, C., Wang, D., Weber, M., Weelden, R. J. G. V., Wegrzynek, A., Wenzel, S. C., Wessels, J. P., Wiechula, J., Wikne, J., Wilk, G., Wilkinson, J., Willems, G. A., Willsher, E., Windelband, B., Winn, M., Witt, W. E., Wright, J. R., Wu, W., Wu, Y., Xu, R., Yalcin, S., Yamaguchi, Y., Yamakawa, K., Yang, S., Yano, S., Yin, Z., Yokoyama, H., Yoo, I. -K., Yoon, J. H., Yuan, S., Yuncu, A., Zaccolo, V., Zaman, A., Zampolli, C., Zanoli, H. J. C., Zardoshti, N., Zarochentsev, A., Zavada, P., Zaviyalov, N., Zbroszczyk, H., Zhalov, M., Zhang, S., Zhang, X., Zhang, Y., Zherebchevskii, V., Zhi, Y., Zhou, D., Zhou, Y., Zhu, J., Zhu, Y., Zichichi, A., Zinovjev, G., Zurlo, N., Université de Nantes (UN)-Université de Nantes (UN)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique (IMT Atlantique), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Acharya S., Adamova D., Adler A., Adolfsson J., Aglieri Rinella G., Agnello M., Agrawal N., Ahammed Z., Ahmad S., Ahn S.U., Ahuja I., Akbar Z., Akindinov A., Al-Turany M., Alam S.N., Aleksandrov D., Alessandro B., Alfanda H.M., Alfaro Molina R., Ali B., Ali Y., Alici A., Alizadehvandchali N., Alkin A., Alme J., Alt T., Altenkamper L., Altsybeev I., Anaam M.N., Andrei C., Andreou D., Andronic A., Angeletti M., Anguelov V., Antinori F., Antonioli P., Anuj C., Apadula N., Aphecetche L., Appelshauser H., Arcelli S., Arnaldi R., Arsene I.C., Arslandok M., Augustinus A., Averbeck R., Aziz S., Azmi M.D., Badala A., Baek Y.W., Bai X., Bailhache R., Bailung Y., Bala R., Balbino A., Baldisseri A., Balis B., Ball M., Banerjee D., Barbera R., Barioglio L., Barlou M., Barnafoldi G.G., Barnby L.S., Barret V., Bartels C., Barth K., Bartsch E., Baruffaldi F., Bastid N., Basu S., Batigne G., Batyunya B., Bauri D., Bazo Alba J.L., Bearden I.G., Beattie C., Belikov I., Bell Hechavarria A.D.C., Bellini F., Bellwied R., Belokurova S., Belyaev V., Bencedi G., Beole S., Bercuci A., Berdnikov Y., Berdnikova A., Berenyi D., Bergmann L., Besoiu M.G., Betev L., Bhaduri P.P., Bhasin A., Bhat I.R., Bhat M.A., Bhattacharjee B., Bhattacharya P., Bianchi L., Bianchi N., Bielcik J., Bielcikova J., Biernat J., Bilandzic A., Biro G., Biswas S., Blair J.T., Blau D., Blidaru M.B., Blume C., Boca G., Bock F., Bogdanov A., Boi S., Bok J., Boldizsar L., Bolozdynya A., Bombara M., Bond P.M., Bonomi G., Borel H., Borissov A., Bossi H., Botta E., Bratrud L., Braun-Munzinger P., Bregant M., Broz M., Bruno G.E., Buckland M.D., Budnikov D., Buesching H., Bufalino S., Bugnon O., Buhler P., Buthelezi Z., Butt J.B., Bysiak S.A., Caffarri D., Cai M., Caines H., Caliva A., Calvo Villar E., Camacho J.M.M., Camacho R.S., Camerini P., Canedo F.D.M., Carnesecchi F., Caron R., Castillo Castellanos J., Casula E.A.R., Catalano F., Ceballos Sanchez C., Chakraborty P., Chandra S., Chapeland S., Chartier M., Chattopadhyay S., Chauvin A., Chavez T.G., Cheshkov C., Cheynis B., Chibante Barroso V., Chinellato D.D., Chizzali E.S., Cho S., Chochula P., Christakoglou P., Christensen C.H., Christiansen P., Chujo T., Cicalo C., Cifarelli L., Cindolo F., Ciupek M.R., Clai G., Cleymans J., Colamaria F., Colburn J.S., Colella D., Collu A., Colocci M., Concas M., Conesa Balbastre G., Conesa Del Valle Z., Contin G., Contreras J.G., Coquet M.L., Cormier T.M., Cortese P., Cosentino M.R., Costa F., Costanza S., Crochet P., Cuautle E., Cui P., Cunqueiro L., Dainese A., Damas F.P.A., Danisch M.C., Danu A., Das I., Das P., Das S., Dash S., De S., De Caro A., De Cataldo G., De Cilladi L., De Cuveland J., De Falco A., De Gruttola D., De Marco N., De Martin C., De Pasquale S., Deb S., Degenhardt H.F., Deja K.R., Del Grande R., Dello Stritto L., Delsanto S., Deng W., Dhankher P., Di Bari D., Di Mauro A., Diaz R.A., Dietel T., Ding Y., Divia R., Dixit D.U., Djuvsland O., Dmitrieva U., Do J., Dobrin A., Donigus B., Dordic O., Dubey A.K., Dubla A., Dudi S., Dukhishyam M., Dupieux P., Dzalaiova N., Eder T.M., Ehlers R.J., Eikeland V.N., Eisenhut F., Elia D., Erazmus B., Ercolessi F., Erhardt F., Erokhin A., Ersdal M.R., Espagnon B., Eulisse G., Evans D., Evdokimov S., Fabbietti L., Faggin M., Faivre J., Fan F., Fantoni A., Fasel M., Fecchio P., Feliciello A., Feofilov G., Fernandez Tellez A., Ferrero A., Ferretti A., Feuillard V.J.G., Figiel J., Filchagin S., Finogeev D., Fionda F.M., Fiorenza G., Flor F., Flores A.N., Foertsch S., Foka P., Fokin S., Fragiacomo E., Frajna E., Fuchs U., Funicello N., Furget C., Furs A., Gaardhoje J.J., Gagliardi M., Gago A.M., Gal A., Galvan C.D., Ganoti P., Garabatos C., Garcia J.R.A., Garcia-Solis E., Garg K., Gargiulo C., Garibli A., Garner K., Gasik P., Gauger E.F., Gautam A., Gay Ducati M.B., Germain M., Ghosh J., Ghosh P., Ghosh S.K., Giacalone M., Gianotti P., Giubellino P., Giubilato P., Glaenzer A.M.C., Glassel P., Goh D.J.Q., Gonzalez V., Gonzalez-Trueba L.H., Gorbunov S., Gorgon M., Gorlich L., Gotovac S., Grabski V., Graczykowski L.K., Greiner L., Grelli A., Grigoras C., Grigoriev V., Grigoryan A., Grigoryan S., Groettvik O.S., Grosa F., Grosse-Oetringhaus J.F., Grosso R., Guardiano G.G., Guernane R., Guilbaud M., Gulbrandsen K., Gunji T., Gupta A., Gupta R., Guzman I.B., Guzman S.P., Gyulai L., Habib M.K., Hadjidakis C., Halimoglu G., Hamagaki H., Hamar G., Hamid M., Hannigan R., Haque M.R., Harlenderova A., Harris J.W., Harton A., Hasenbichler J.A., Hassan H., Hatzifotiadou D., Hauer P., Havener L.B., Hayashi S., Heckel S.T., Hellbar E., Helstrup H., Herman T., Hernandez E.G., Herrera Corral G., Herrmann F., Hetland K.F., Hillemanns H., Hills C., Hippolyte B., Hofman B., Hohlweger B., Honermann J., Hong G.H., Horak D., Hornung S., Horzyk A., Hosokawa R., Hristov P., Huang C., Hughes C., Huhn P., Humanic T.J., Hushnud H., Husova L.A., Hutson A., Hutter D., Iddon J.P., Ilkaev R., Ilyas H., Inaba M., Innocenti G.M., Ippolitov M., Isakov A., Islam M.S., Ivanov M., Ivanov V., Izucheev V., Jablonski M., Jacak B., Jacazio N., Jacobs P.M., Jadlovska S., Jadlovsky J., Jaelani S., Jahnke C., Jakubowska M.J., Janik M.A., Janson T., Jercic M., Jevons O., Jonas F., Jones P.G., Jowett J.M., Jung J., Jung M., Junique A., Jusko A., Kaewjai J., Kalinak P., Kalweit A., Kaplin V., Kar S., Karasu Uysal A., Karatovic D., Karavichev O., Karavicheva T., Karczmarczyk P., Karpechev E., Kazantsev A., Kebschull U., Keidel R., Keijdener D.L.D., Keil M., Ketzer B., Khabanova Z., Khan A.M., Khan S., Khanzadeev A., Kharlov Y., Khatun A., Khuntia A., Kileng B., Kim B., Kim D., Kim D.J., Kim E.J., Kim J., Kim J.S., Kim M., Kim S., Kim T., Kirsch S., Kisel I., Kiselev S., Kisiel A., Kitowski J.P., Klay J.L., Klein J., Klein S., Klein-Bosing C., Kleiner M., Klemenz T., Kluge A., Knospe A.G., Kobdaj C., Kohler M.K., Kollegger T., Kondratyev A., Kondratyeva N., Kondratyuk E., Konig J., Konigstorfer S.A., Konopka P.J., Kornakov G., Koryciak S.D., Koska L., Kotliarov A., Kovalenko O., Kovalenko V., Kowalski M., Kralik I., Kravcakova A., Kreis L., Krivda M., Krizek F., Krizkova Gajdosova K., Kroesen M., Kruger M., Kryshen E., Krzewicki M., Kucera V., Kuhn C., Kuijer P.G., Kumaoka T., Kumar D., Kumar L., Kumar N., Kundu S., Kurashvili P., Kurepin A., Kurepin A.B., Kuryakin A., Kushpil S., Kvapil J., Kweon M.J., Kwon J.Y., Kwon Y., La Pointe S.L., La Rocca P., Lai Y.S., Lakrathok A., Lamanna M., Langoy R., Lapidus K., Larionov P., Laudi E., Lautner L., Lavicka R., Lazareva T., Lea R., Lee J., Lehrbach J., Lemmon R.C., Leon Monzon I., Lesser E.D., Lettrich M., Levai P., Li X., Li X.L., Lien J., Lietava R., Lim B., Lim S.H., Lindenstruth V., Lindner A., Lippmann C., Liu A., Liu J., Lofnes I.M., Loginov V., Loizides C., Loncar P., Lopez J.A., Lopez X., Lopez Torres E., Luhder J.R., Lunardon M., Luparello G., Ma Y.G., Maevskaya A., Mager M., Mahmoud T., Maire A., Malaev M., Malik Q.W., Malinina L., Mal'Kevich D., Mallick N., Malzacher P., Mandaglio G., Manko V., Manso F., Manzari V., Mao Y., Mares J., Margagliotti G.V., Margotti A., Marin A., Markert C., Marquard M., Martin N.A., Martinengo P., Martinez J.L., Martinez M.I., Martinez Garcia G., Masciocchi S., Masera M., Masoni A., Massacrier L., Mastroserio A., Mathis A.M., Matonoha O., Matuoka P.F.T., Matyja A., Mayer C., Mazuecos A.L., Mazzaschi F., Mazzilli M., Mazzoni M.A., Mdhluli J.E., Mechler A.F., Meddi F., Melikyan Y., Menchaca-Rocha A., Meninno E., Menon A.S., Meres M., Mhlanga S., Miake Y., Micheletti L., Migliorin L.C., Mihaylov D.L., Mikhaylov K., Mishra A.N., Miskowiec D., Modak A., Mohanty A.P., Mohanty B., Mohisin Khan M., Moravcova Z., Mordasini C., Moreira De Godoy D.A., Moreno L.A.P., Morozov I., Morsch A., Mrnjavac T., Muccifora V., Mudnic E., Muhlheim D., Muhuri S., Mulligan J.D., Mulliri A., Munhoz M.G., Munzer R.H., Murakami H., Murray S., Musa L., Musinsky J., Myers C.J., Myrcha J.W., Naik B., Nair R., Nandi B.K., Nania R., Nappi E., Naru M.U., Nassirpour A.F., Nath A., Nattrass C., Neagu A., Nellen L., Nesbo S.V., Neskovic G., Nesterov D., Nielsen B.S., Nikolaev S., Nikulin S., Nikulin V., Noferini F., Noh S., Nomokonov P., Norman J., Novitzky N., Nowakowski P., Nyanin A., Nystrand J., Ogino M., Ohlson A., Okorokov V.A., Oleniacz J., Oliveira Da Silva A.C., Oliver M.H., Onnerstad A., Oppedisano C., Ortiz Velasquez A., Osako T., Oskarsson A., Otwinowski J., Oyama K., Pachmayer Y., Padhan S., Pagano D., Paic G., Palasciano A., Pan J., Panebianco S., Pareek P., Park J., Parkkila J.E., Pathak S.P., Patra R.N., Paul B., Pazzini J., Pei H., Peitzmann T., Peng X., Pereira L.G., Pereira Da Costa H., Peresunko D., Perez G.M., Perrin S., Pestov Y., Petracek V., Petrovici M., Pezzi R.P., Piano S., Pikna M., Pillot P., Pinazza O., Pinsky L., Pinto C., Pisano S., Ploskon M., Planinic M., Pliquett F., Poghosyan M.G., Polichtchouk B., Politano S., Poljak N., Pop A., Porteboeuf-Houssais S., Porter J., Pozdniakov V., Prasad S.K., Preghenella R., Prino F., Pruneau C.A., Pshenichnov I., Puccio M., Qiu S., Quaglia L., Quishpe R.E., Ragoni S., Rakotozafindrabe A., Ramello L., Rami F., Ramirez S.A.R., Ramos A.G.T., Rancien T.A., Raniwala R., Raniwala S., Rasanen S.S., Rath R., Ravasenga I., Read K.F., Redelbach A.R., Redlich K., Rehman A., Reichelt P., Reidt F., Reme-Ness H.A., Renfordt R., Rescakova Z., Reygers K., Riabov A., Riabov V., Richert T., Richter M., Riegler W., Riggi F., Ristea C., Rode S.P., Rodriguez Cahuantzi M., Roed K., Rogalev R., Rogochaya E., Rogoschinski T.S., Rohr D., Rohrich D., Rojas P.F., Rokita P.S., Ronchetti F., Rosano A., Rosas E.D., Rossi A., Rotondi A., Roy A., Roy P., Roy S., Rubini N., Rueda O.V., Rui R., Rumyantsev B., Russek P.G., Rustamov A., Ryabinkin E., Ryabov Y., Rybicki A., Rytkonen H., Rzesa W., Saarimaki O.A.M., Sadek R., Sadovsky S., Saetre J., Safarik K., Saha S.K., Saha S., Sahoo B., Sahoo P., Sahoo R., Sahoo S., Sahu D., Sahu P.K., Saini J., Sakai S., Sambyal S., Samsonov V., Sarkar D., Sarkar N., Sarma P., Sarti V.M., Sas M.H.P., Schambach J., Scheid H.S., Schiaua C., Schicker R., Schmah A., Schmidt C., Schmidt H.R., Schmidt M.O., Schmidt M., Schmidt N.V., Schmier A.R., Schotter R., Schukraft J., Schutz Y., Schwarz K., Schweda K., Scioli G., Scomparin E., Seger J.E., Sekiguchi Y., Sekihata D., Selyuzhenkov I., Senyukov S., Seo J.J., Serebryakov D., Serksnyte L., Sevcenco A., Shaba T.J., Shabanov A., Shabetai A., Shahoyan R., Shaikh W., Shangaraev A., Sharma A., Sharma H., Sharma M., Sharma N., Sharma S., Sheibani O., Shigaki K., Shimomura M., Shirinkin S., Shou Q., Sibiriak Y., Siddhanta S., Siemiarczuk T., Silva T.F., Silvermyr D., Simonetti G., Singh B., Singh R., Singh V.K., Singhal V., Sinha T., Sitar B., Sitta M., Skaali T.B., Skorodumovs G., Slupecki M., Smirnov N., Snellings R.J.M., Soncco C., Song J., Songmoolnak A., Soramel F., Sorensen S., Sputowska I., Stachel J., Stan I., Steffanic P.J., Stiefelmaier S.F., Stocco D., Storehaug I., Storetvedt M.M., Stylianidis C.P., Suaide A.A.P., Sugitate T., Suire C., Suljic M., Sultanov R., Sumbera M., Sumberia V., Sumowidagdo S., Swain S., Szabo A., Szarka I., Tabassam U., Taghavi S.F., Taillepied G., Takahashi J., Tambave G.J., Tang S., Tang Z., Tarhini M., Tarzila M.G., Tauro A., Tejeda Munoz G., Telesca A., Terlizzi L., Terrevoli C., Tersimonov G., Thakur S., Thomas D., Tieulent R., Tikhonov A., Timmins A.R., Tkacik M., Toia A., Topilskaya N., Toppi M., Torales-Acosta F., Tork T., Cruz-Torres R., Torres S.R., Trifiro A., Tripathy S., Tripathy T., Trogolo S., Trombetta G., Trubnikov V., Trzaska W.H., Trzcinski T.P., Trzeciak B.A., Tumkin A., Turrisi R., Tveter T.S., Ullaland K., Uras A., Urioni M., Usai G.L., Vala M., Valle N., Vallero S., Van Der Kolk N., Van Doremalen L.V.R., Van Leeuwen M., Vande Vyvre P., Varga D., Varga Z., Varga-Kofarago M., Vargas A., Vasileiou M., Vasiliev A., Vazquez Doce O., Vechernin V., Vercellin E., Vergara Limon S., Vermunt L., Vertesi R., Verweij M., Vickovic L., Vilakazi Z., Villalobos Baillie O., Vino G., Vinogradov A., Virgili T., Vislavicius V., Vodopyanov A., Volkel B., Volkl M.A., Voloshin K., Voloshin S.A., Volpe G., Von Haller B., Vorobyev I., Voscek D., Vrlakova J., Wagner B., Wang C., Wang D., Weber M., Weelden R.J.G.V., Wegrzynek A., Wenzel S.C., Wessels J.P., Wiechula J., Wikne J., Wilk G., Wilkinson J., Willems G.A., Willsher E., Windelband B., Winn M., Witt W.E., Wright J.R., Wu W., Wu Y., Xu R., Yalcin S., Yamaguchi Y., Yamakawa K., Yang S., Yano S., Yin Z., Yokoyama H., Yoo I.-K., Yoon J.H., Yuan S., Yuncu A., Zaccolo V., Zaman A., Zampolli C., Zanoli H.J.C., Zardoshti N., Zarochentsev A., Zavada P., Zaviyalov N., Zbroszczyk H., Zhalov M., Zhang S., Zhang X., Zhang Y., Zherebchevskii V., Zhi Y., Zhou D., Zhou Y., Zhu J., Zhu Y., Zichichi A., Zinovjev G., and Zurlo N.
- Subjects
Kjerne- og elementærpartikkelfysikk: 431 [VDP] ,Proton ,General Physics and Astronomy ,01 natural sciences ,High Energy Physics - Experiment ,ALICE ,scattering [p p] ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,correlation function ,Nuclear Experiment ,Physics ,strong interaction ,VDP::Kjerne- og elementærpartikkelfysikk: 431 ,Nuclear and elementary particle physics: 431 [VDP] ,VDP::Nuclear and elementary particle physics: 431 ,nuclear matter ,PHOTOPRODUCTION ,Particle Physics - Experiment ,correlation: two-particle ,QCD SUM-RULES ,VECTOR-MESONS ,COLLISIONS ,PARTICLES ,Particle physics ,p p: scattering ,Meson ,Strong interaction ,Correlation function (quantum field theory) ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,Physics and Astronomy(all) ,114 Physical sciences ,symmetry: chiral ,0103 physical sciences ,scattering length ,Phi(1020) ,coupling constant ,effective range ,experimental results ,13000 GeV-cms/nucleon ,Nuclear Physics - Experiment ,ddc:530 ,phi meson, particle physics, ALICE ,010306 general physics ,two-particle [correlation] ,Coupling constant ,chiral [symmetry] ,010308 nuclear & particles physics ,Scattering ,Scattering length ,Nuclear matter ,Strong Interaction ,High Energy Physics::Experiment - Abstract
Physical review letters 127(17), 172301 (2021). doi:10.1103/PhysRevLett.127.172301, This Letter presents the first experimental evidence of the attractive strong interaction between a proton and a �� meson. The result is obtained from two-particle correlations of combined $p$-����� $\bar{p}$-�� pairs measured in high-multiplicity pp collisions at $\sqrt{s}$ = 13 TeV by the ALICE Collaboration. The spin-averaged scattering length and effective range of the p-�� interaction are extracted from the fully corrected correlation function employing the Lednick��-Lyuboshits approach. In particular, the imaginary part of the scattering length vanishes within uncertainties, indicating that inelastic processes do not play a prominent role for the p-�� interaction. These data demonstrate that the interaction is dominated by elastic p-�� scattering. Furthermore, an analysis employing phenomenological Gaussian- and Yukawa-type potentials is conducted. Under the assumption of the latter, the N-�� coupling constant is found to be $g_{N-��}$ = 0.14 �� 0.03(stat) �� 0.02(syst). This work provides valuable experimental input to accomplish a self-consistent description of the N-�� interaction, which is particularly relevant for the more fundamental studies on partial restoration of chiral symmetry in nuclear medium., Published by APS, College Park, Md.
- Published
- 2021
23. Studies in Molecular Recognition: Hydrophobic Binding of Water-Soluble Guests by High Symmetry, Chiral Hosts
- Author
-
Shepodd, Timothy Jon
- Subjects
Chemistry - Abstract
A new class of high-symmetry, water-soluble receptors has been synthesized. The enantiomerically pure hosts are D₂-symmetric and are synthesized in 8 steps with an overall yield of 5-10%. An asymmetric Diels-Alder reaction between di-(+)-menthyl fumarate and 2,6-di-t-butyldimethylsiloxyanthracene leads to two diastereomeric Diels-Alder adducts that are elaborated to the key intermediates: (+)- and (-)-2,6-dihydroxy-11,12-dicarbomethoxy-9,10-ethenoanthracene. A number of hosts are synthesized from these intermediates when they are connected by variable linker units. These hosts possess chiral cavities (receptor sites) surrounded by an array of substituted aromatic rings. The ability of these hosts to complex water-soluble guests with different sizes, shapes, and degrees of preorganization has been quantified by NMR. The electron-rich hosts have a general affinity for electron-deficient guests. Hosts P and M show a moderate hydrophobic-type attraction towards a variety of aromatic and aliphatic guests (3-4 kcal/mol). Host P shows an added attraction towards trimethylammonium (TMA) substituted guests. In almost all cases studied, NMR-shift patterns indicate that when the hostguest complex forms, the polar TMA group lies deepest within the electron-rich, yet hydrophobic, receptor. Hosts P and M have a strong attraction towards adamantyltrimethylammonium iodide (ATMA). PR and PS have binding viaffinities of 6.6 ± 0.2 kcal/mol with ATMA and bind the guest, encapsulated within the receptor site, in one guest orientation. MR and MS have binding affinities of 5.5 ± 0.2 kcal/mol with ATMA and bind the guest in a non-specific fashion, yet they demonstrate a preferred attraction towards the TMA group of the guest. Aromatic-linked hosts PR, PS, MR and MS show an enhanced ion-dipole attraction towards charged quinolinium-type, flat aromatic guests as compared to neutral ones (P ≈ 1 kcal/mol and M ≈ 2 kcal/mol). Host C, with aliphatic linkers, does not experience an enhanced attraction to the charged flat guests. Hosts PR and PS demonstrate enantioselective binding with certain guests. For one case, a simple model for the cause of the enantioselectivity is presented.
- Published
- 1988
- Full Text
- View/download PDF
24. SU(3) analysis of four-quark operators: $K\to\pi\pi$ and vacuum matrix elements
- Author
-
Antonio Pich, Antonio Rodríguez-Sánchez, Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab), and Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Quark ,Nuclear and High Energy Physics ,Particle physics ,dispersion relation ,Hadron ,Lattice (group) ,QC770-798 ,01 natural sciences ,operator product expansion ,Matrix (mathematics) ,symmetry: chiral ,Kaon Physics ,High Energy Physics - Lattice ,effective field theory ,Nuclear and particle physics. Atomic energy. Radioactivity ,Dispersion relation ,0103 physical sciences ,CP: violation ,010306 general physics ,numerical calculations ,lattice ,Physics ,010308 nuclear & particles physics ,[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat] ,High Energy Physics::Phenomenology ,Observable ,Effective Field Theories ,perturbation theory: chiral ,Link (geometry) ,High Energy Physics - Phenomenology ,CP violation ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Chiral Lagrangians ,quark: four-fermion interaction ,High Energy Physics::Experiment ,flavor: SU(3) ,+pi+pi%22">K --> pi pi ,K: hadronic decay ,spectral representation - Abstract
Hadronic matrix elements of local four-quark operators play a central role in non-leptonic kaon decays, while vacuum matrix elements involving the same kind of operators appear in inclusive dispersion relations, such as those relevant in $\tau$-decay analyses. Using an $SU(3)_L\otimes SU(3)_R$ decomposition of the operators, we derive generic relations between these matrix elements, extending well-known results that link observables in the two different sectors. Two relevant phenomenological applications are presented. First, we determine the electroweak-penguin contribution to the kaon CP-violating ratio $\varepsilon'/\varepsilon$, using the measured hadronic spectral functions in $\tau$ decay. Second, we fit our $SU(3)$ dynamical parameters to the most recent lattice data on $K\to\pi\pi$ matrix elements. The comparison of this numerical fit with results from previous analytical approaches provides an interesting anatomy of the $\Delta I = \frac{1}{2}$ enhancement, confirming old suggestions about its underlying dynamical origin., Comment: 46 pages, 7 figures. Published version
- Published
- 2021
25. Study of hard and electromagnetic processes at CERN-SPS energies: an investigation of the high-$\mu_{\mathbf{B}}$ region of the QCD phase diagram with NA60+
- Author
-
Agnello, M., Antinori, F., Appelshäuser, H., Arnaldi, R., Bailhache, R., Barioglio, L., Beole, S., Beraudo, A., Bianchi, A., Bianchi, L., Botta, E., Bruna, E., Bufalino, S., Casula, E., Catalano, F., Chattopadhyay, S., Chauvin, A., Cicalo, C., Concas, M., Cortese, P., Dahms, T., Dainese, A., Das, A., Das, D., Das, I., Das Bose, L., De Falco, A., De Marco, N., Delsanto, S., Drees, A., Fabbietti, L., Fecchio, P., Ferretti, A., Feliciello, A., Gagliardi, M., Gasik, P., Geurts, F., Giubilato, P., Greco, V., Grosa, F., Hansen, H., Klein, J., Li, W., Lombardo, M.P., Masera, M., Masoni, A., Micheletti, L., Musa, L., Nardi, M., Onishi, H., Oppedisano, C., Paul, B., Plumari, S., Prino, F., Puccio, M., Ramello, L., Rapp, R., Ravasenga, I., Rossi, A., Roy, P., Scomparin, E., Siddhanta, S., Shahoyan, R., Sinha, T., Sitta, M., Specht, H., Trogolo, S., Turrisi, R., Uras, A., Usai, G., Vercellin, E., Wiechula, J., Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), NA60+, Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
- Subjects
deconfinement ,heavy ion: scattering ,charmed meson: elliptic flow ,High Energy Physics::Lattice ,quarkonium: production ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,nucl-ex ,symmetry: chiral ,quantum chromodynamics: critical phenomena ,semiconductor detector: pixel ,production: thermal ,transport theory ,detector: pixel ,matter: hadronic ,Nuclear Physics - Experiment ,Nuclear Experiment ,quark gluon: plasma ,High Energy Physics::Phenomenology ,Quark-gluon plasma ,resistive plate chamber ,CERN SPS ,magnet: torus ,QCD phase transition ,gas electron multiplier ,High Energy Physics::Experiment ,chiral symmetry restoration ,muon: spectrometer - Abstract
The exploration of the phase diagram of Quantum ChromoDynamics (QCD) is carried out by studying ultrarelativistic heavy-ion collisions. The energy range covered by the CERN SPS ($\sqrt{s_{\rm \scriptscriptstyle{NN}}} \sim$ 6-17 GeV) is ideal for the investigation of the region of the phase diagram corresponding to finite baryochemical potential ($\mu_{\rm B}$), and has been little explored up to now. We propose in this document a new experiment, NA60+, that would address several observables which are fundamental for the understanding of the phase transition from hadronic matter towards a Quark-Gluon Plasma (QGP) at SPS energies. In particular, we propose to study, as a function of the collision energy, the production of thermal dimuons from the created system, from which one would obtain a caloric curve of the QCD phase diagram that is sensitive to the order of the phase transition. In addition, the measurement of a $\rho$-a$_1$ mixing contribution would provide conclusive insights into the restoration of the chiral symmetry of QCD. In parallel, studies of heavy quark and quarkonium production would also be carried out, addressing the measurement of transport properties of the QGP and the investigation of the onset of the deconfinement transition. The document also defines an experimental set-up which couples a vertex telescope based on monolithic active pixel sensors (MAPS) to a muon spectrometer with tracking (GEM) and triggering (RPC) detectors within a large acceptance toroidal magnet. Results of physics performance studies for most observables accessible to NA60+ are discussed, showing that the results of the experiment would lead to a significant advance of our understanding of strong interaction physics. The document has been submitted as an input to the European Particle Physics Strategy Update 2018-2020 (http://europeanstrategyupdate.web.cern.ch/)., Comment: 14 pages, 9 figures, submitted as an input to the European Particle Physics Strategy Update 2018-2020
- Published
- 2021
26. Confrontation of Different Relativistic Descriptions of Nuclear Matter
- Author
-
Somasundaram, R., Margueron, J., Chanfray, G., Hansen, H., HEP, INSPIRE, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th] ,confinement: chiral ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,energy: symmetry ,nucleon: structure ,Nuclear Theory ,potential: scalar ,coupling constant ,lattice field theory ,potential: chiral ,hierarchy ,statistics: Bayesian ,field theory: scalar ,symmetry: chiral ,nuclear matter ,model: confinement ,model: chiral ,saturation: density - Abstract
In this work we explore different relativistic descriptions of nuclear matter along the lines originally proposed in Refs.[1,2] where chiral symmetry is incorporated within the Walecka type Relativistic Mean Field (RMF) model as well as the effect of confinement through the nucleon response. The parameters of this model are controlled by fundamental properties, such as the chiral potential, the Lattice-QCD predictions, the quark structure, and two saturation properties (density and energy). The predictions of this chiral+confinement model is compared to two other models: another chiral model - but without confinement effect - and the original RMF model. For these three models, we additionally take care of parameter uncertainties and propagate them to our predictions for dense matter properties employing Bayesian statistics. We show that the combination of chiral potential with nucleon response represents a microscopically motivated and economical way to treat in-medium corrections to the scalar equation of motion, accurately reproducing the other two models which are directly fitted to the empirical properties of nuclear matter. In addition, the order hierarchy in power of the scalar field in the scalar potential is respected, which is not always the case for models where the scalar potential is fitted to empirical data. While these models are calibrated to the same properties at saturation density, they differ in their predictions as the density increases. Interestingly, we also show that, by fixing the $\rho$ coupling constant from the quark structure of the nucleon, these three models reproduce only half of the empirical symmetry energy.
- Published
- 2021
27. Asymmetric Reactions of High-Symmetry Chiral Organosulfur Reagents.
- Author
-
De Lucchi, Ottorino
- Published
- 1993
- Full Text
- View/download PDF
28. Simple One-electron Invariants of Molecular Chirality
- Author
-
Luzanov, A. V. and Nerukh, Dmitry
- Published
- 2007
- Full Text
- View/download PDF
29. Electric conductivity in finite-density SU(2) lattice gauge theory with dynamical fermions
- Author
-
Buividovich, P. V., Smith, D., and von Smekal, L.
- Subjects
High Energy Physics - Theory ,conductivity: electric ,sea [quark] ,High Energy Physics::Lattice ,FOS: Physical sciences ,domain wall ,mass [pi] ,pi: mass ,condensation [diquark] ,symmetry: chiral ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics - Lattice ,density [fermion] ,quantum chromodynamics ,ddc:530 ,electric [conductivity] ,quark: sea ,chiral [symmetry] ,flavor ,fermion: density ,High Energy Physics - Lattice (hep-lat) ,High Energy Physics::Phenomenology ,lattice field theory ,temperature ,critical phenomena ,chemical [potential] ,chiral [spontaneous symmetry breaking] ,High Energy Physics - Phenomenology ,High Energy Physics - Theory (hep-th) ,SU(2) ,potential: chemical ,valence [quark] ,staggered ,quark: valence ,gauge field theory ,Lattice field theories, lattice QCD ,High Energy Physics::Experiment ,spontaneous symmetry breaking: chiral ,diquark: condensation - Abstract
Physical review / D 102(9), 094510 (1-21) (2020). doi:10.1103/PhysRevD.102.094510, We study the dependence of the electric conductivity on chemical potential in finite-density SU(2) gauge theory with Nf=2 flavors of rooted staggered sea quarks, in combination with Wilson-Dirac and domain-wall valence quarks. The pion mass is reasonably small with mπ/mρ≈0.4. We concentrate in particular on the vicinity of the chiral crossover, where we find the low-frequency electric conductivity to be most sensitive to small changes in fermion density. Working in the low-density QCD-like regime with spontaneously broken chiral symmetry, we obtain an estimate of the first nontrivial coefficient c(T) of the expansion of conductivity σ(T,μ)=σ(T,0)(1+c(T)(μ/T)2+O(μ4)) in powers of μ, which has rather weak temperature dependence and takes its maximal value c(T)≈0.10±0.07 around the critical temperature. At larger densities and lower temperatures, the conductivity quickly grows toward the diquark condensation phase and also becomes closer to the free-quark result. As a by-product of our study we confirm the conclusions of previous studies with heavier pion that for SU(2) gauge theory the ratio of crossover temperature to pion mass Tc/mπ≈0.4 at μ=0 is significantly smaller than in real QCD., Published by Inst., Melville, NY
- Published
- 2020
30. Improvement, generalization, and scheme conversion of Wilson-line operators on the lattice in the auxiliary field approach
- Author
-
Jeremy Green, Fernanda Steffens, and Karl Jansen
- Subjects
Quark ,High Energy Physics::Lattice ,parton: distribution function ,FOS: Physical sciences ,hep-lat ,discrete [effect] ,operator: local ,transverse momentum dependence ,01 natural sciences ,renormalization ,Renormalization ,quark ,symmetry: chiral ,Wilson loop ,Operator (computer programming) ,Lattice constant ,High Energy Physics - Lattice ,High Energy Physics - Phenomenology (hep-ph) ,effect: discrete ,Lattice (order) ,0103 physical sciences ,ddc:530 ,010306 general physics ,Mathematical physics ,lattice ,perturbation theory ,Particle Physics - Phenomenology ,Physics ,effect: linear ,chiral [symmetry] ,linear [effect] ,010308 nuclear & particles physics ,High Energy Physics - Lattice (hep-lat) ,nonlocal ,lattice field theory ,hep-ph ,Particle Physics - Lattice ,Lattice QCD ,Auxiliary field ,High Energy Physics - Phenomenology ,Distribution function ,local [operator] ,hadron ,distribution function [parton] - Abstract
Physical review / D D 101(7), 074509 (2020). doi:10.1103/PhysRevD.101.074509, Nonlocal quark bilinear operators connected by link paths are used for studying parton distribution functions (PDFs) and transverse momentum-dependent PDFs of hadrons using lattice QCD. The nonlocality makes it difficult to understand the renormalization and improvement of these operators using standard methods. In previous work, we showed that by introducing an auxiliary field on the lattice, one can understand an on-axis Wilson-line operator as the product of two local operators in an extended theory. In this paper, we provide details about the calculation in perturbation theory of the factor for conversion from our lattice-suitable renormalization scheme to the MS-bar scheme. Extending our work, we study Symanzik improvement of the extended theory to understand the pattern of discretization effects linear in the lattice spacing, $a$, which are present even if the lattice fermion action exactly preserves chiral symmetry. This provides a prospect for an eventual $O(a)$ improvement of lattice calculations of PDFs. We also generalize our approach to apply to Wilson lines along lattice diagonals and to piecewise-straight link paths., Published by Inst.302363, Melville, NY
- Published
- 2020
31. What's in the core of massive neutron stars?
- Author
-
Ma, Yong-Liang, Rho, Mannque, HEP, INSPIRE, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), University of Chinese Academy of Sciences [Beijing] (UCAS), Jilin Jianzhu University, and the National Science Foundation of China (NSFC) under Grant No. 11875147 and 11475071
- Subjects
High Energy Astrophysical Phenomena (astro-ph.HE) ,[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th] ,deconfinement ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Nuclear Theory ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,duality: quark hadron ,velocity: acoustic ,Nuclear Theory (nucl-th) ,[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,High Energy Physics - Phenomenology ,symmetry: chiral ,High Energy Physics - Phenomenology (hep-ph) ,neutron star: massive ,symmetry: conformal ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,fractional ,[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph] ,Astrophysics - High Energy Astrophysical Phenomena ,Nuclear Experiment ,[PHYS.ASTR] Physics [physics]/Astrophysics [astro-ph] - Abstract
When hadron-quark continuity is formulated in terms of a topology change at a density higher than twice the nuclear matter densiy $n_0$ the core of massive compact stars can be described in terms of quasiparticles of fractional baryon charges, behaving neither like pure baryons nor deconfined quarks. Hidden symmetries, both local gauge and pseudo-conformal (or broken scale), emerge and give rise to the long-standing quenched $g_A$ in nuclear Gamow-Teller transitions at $\sim n_0$ and to the pseudo-conformal sound velocity $v_{pcs}^2/c^2\approx 1/3$ at $\gsim 3n_0$. These properties are confronted with the recent observations in superallowed Gamow-Teller transitions and in astrophysical observations., The title is changed. Most part is rewritten
- Published
- 2020
32. HIGH-SYMMETRY CHIRAL ORGANOSULFUR COMPOUNDS: 6,7-DITHIO-DIBENZO[ c,e ][1,2]DITHIIN AND 5,6-DITHIO-DIBENZOTHIOPHENE.
- Author
-
Cossu, Sergio, Lucchi, Ottorino De, Piga, Elisabetta, and Valle, Giovanni
- Published
- 1991
- Full Text
- View/download PDF
33. THE PRICE FOR QUANTUM GROUP SYMMETRY: CHIRAL VERSUS 2D WZNW MODEL.
- Author
-
FURLAN, P.
- Subjects
QUANTUM groups ,SUPERSYMMETRY ,CHIRALITY ,QUANTIZATION (Physics) ,LIE groups - Published
- 1996
34. Quark and Polyakov-loop correlations in the Polyakov-Nambu-Jona-Lasinio model
- Author
-
Hansen, Hubert, Stiele, Rainer, Costa, Pedro, Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), and Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
deconfinement ,High Energy Physics::Lattice ,transition: chiral ,quark: correlation ,High Energy Physics::Phenomenology ,back reaction ,quark: mass ,High Energy Physics::Theory ,thermodynamics ,symmetry: chiral ,Jona-Lasinio-Nambu model: Polyakov loop ,symmetry breaking: effect ,Polyakov loop: susceptibility ,potential: chemical ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,temperature: 0 ,gauge field theory ,quantum chromodynamics: lattice ,spectral representation ,model: chiral ,critical phenomena: chiral - Abstract
The aim of this work is to shed light to some less known aspects of Polyakov-loop extended chiral models, especially on the correlation of the quark sector and the Polyakov loop. We show that the order of chiral and Polyakov-loop transition and their difference in temperature as seen in LQCD calculations could be realised with a critical scale of the Polyakov-loop potential larger than the one in pure gauge theory. Comparing results for the Polyakov-loop susceptibility with the self-consistent medium-dependent quark mass and keeping the later at a fixed value allows to disentangle chiral-symmetry restoration and center-symmetry breaking effects. This indicates a confined chirally restored phase which is also seen as a plateau in the quark contribution to thermodynamics and by sigma and pion spectral functions that coincide but have a small width. Furthermore, we discuss that from some large chemical potential on the explicit center symmetry breaking is so strong that statistical deconfinement is realised at infinitely small temperatures. Both, the missing sensitivity of the Polyakov-loop to the quark mass except close to the chiral transition and the Polyakov loop being zero at zero temperature at all chemical potentials it is interpreted as an indication of a missing mechanism to take into account the quark back-reaction on the Polyakov loop.
- Published
- 2019
35. A Solution to the Quenched ${g_A}$ Problem in Nuclei and Dense Baryonic Matter
- Author
-
Rho, Mannque, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), and HEP, INSPIRE
- Subjects
[PHYS.NUCL] Physics [physics]/Nuclear Theory [nucl-th] ,magnetic moment ,Nuclear Theory ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,new physics ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,Hilbert space ,coupling constant ,quenching ,FOS: Physical sciences ,renormalization ,Nuclear Theory (nucl-th) ,symmetry: chiral ,effective field theory ,fixed point ,double-beta decay: (0neutrino) ,Fermi liquid ,nuclear matter ,quantum chromodynamics: effect ,Nuclear Experiment ,pi: decay constant - Abstract
When scale symmetry is combined with chiral symmetry in a scale-chiral Lagrangian, it can be shown in Fermi-liquid fixed point theory that $g_A^{\rm eff}\approx 1$ in finite nuclei {\it as well as} in dense baryonic matter. This is suggested as a signal for emergence of hidden symmetries of QCD in baryonic matter from low to very high density. This calculation throws doubt on the "first principles" explanation of the quenching of $g_A$ in nuclei with two-body meson-exchange currents. It also has relevance to Gamow-Teller matrix elements in neutrinoless double $\beta$ decay., Comment: 9 pages, 2 figures; this version gives a firmer conclusion
- Published
- 2019
36. Discrete-time quantum walks as fermions of lattice gauge theory
- Author
-
Terry Farrelly, Pablo Arrighi, Armando Pérez, Pablo Arnault, Laboratoire d'Informatique et Systèmes (LIS), Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS), Institut Rhône-Alpin des systèmes complexes (IXXI), Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Lumière - Lyon 2 (UL2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université Joseph Fourier - Grenoble 1 (UJF)-École normale supérieure - Lyon (ENS Lyon), Ministerio de Economía y Competitividad (España), Ministerio de Ciencia, Innovación y Universidades (España), Generalitat Valenciana, École normale supérieure de Lyon (ENS de Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)-Aix Marseille Université (AMU), École normale supérieure - Lyon (ENS Lyon)-Université Lumière - Lyon 2 (UL2)-Université Jean Moulin - Lyon 3 (UJML), and Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
47.11.Qr ,High Energy Physics::Lattice ,FOS: Physical sciences ,fermion: lattice field theory ,01 natural sciences ,010305 fluids & plasmas ,symmetry: chiral ,Lattice (order) ,Lattice gauge theory ,0103 physical sciences ,unitarity ,Quantum walk ,Quantum field theory ,010306 general physics ,Fundamental concepts ,dimension: 1 ,time: discrete ,fermion: model ,fermion: staggered ,Chiral symmetries ,Wilson fermions ,Mathematical physics ,lattice ,Quantum walks ,Physics ,Quantum Physics ,Quantum cellular automata ,03.75.-b ,03.67.-a ,field theory: relativistic ,Fermion ,Invariant (physics) ,[PHYS.PHYS.PHYS-GEN-PH]Physics [physics]/Physics [physics]/General Physics [physics.gen-ph] ,space-time: dimension: 2 ,Bounded function ,Staggered fermions ,Lattice gas automata ,11.15.Ha ,Quantum simulation ,Quantum Physics (quant-ph) ,cellular automaton ,Lattice gauge theories ,11.30.Rd ,Quantum cellular automaton - Abstract
It is shown that discrete-time quantum walks can be used to digitize, i.e., to time discretize fermionic models of continuous-time lattice gauge theory. The resulting discrete-time dynamics is thus not only manifestly unitary, but also ultralocal, i.e. the particle's speed is upper bounded, as in standard relativistic quantum field theories. The lattice chiral symmetry of staggered fermions, which corresponds to a translational invariance, is lost after the requirement of ultralocality of the evolution; this fact is an instance of Meyer's 1996 no-go lemma stating that no non-trivial one-dimensional scalar quantum cellular automaton can be translationally invariant [1]. All results are presented in a single-particle framework and for a (1+1)-dimensional spacetime., 1 figure
- Published
- 2019
37. Uplifting Runaways
- Author
-
Iosif Bena, Emilian Dudas, Mariana Graña, Severin Lüst, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique [Palaiseau] (CPHT), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), and ANR-16-CE31-0004,Black-dS-String,Micro-états de trous noirs et solutions de Sitter en Théorie des Cordes(2016)
- Subjects
High Energy Physics - Theory ,vacuum state: de Sitter ,deconfinement ,warped ,tadpole ,FOS: Physical sciences ,General Physics and Astronomy ,conifold: deformation ,01 natural sciences ,General Relativity and Quantum Cosmology ,symmetry: chiral ,throat ,0103 physical sciences ,black hole ,010306 general physics ,compactification: flux ,scale: hierarchy ,cosmological constant ,010308 nuclear & particles physics ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,stability ,duality: holography ,collapse ,High Energy Physics - Theory (hep-th) ,string ,sphere ,spontaneous symmetry breaking: chiral - Abstract
We find a mechanism by which antibranes placed in a warped deformed conifold throat can destroy the stabilization of the size of the sphere at the tip, collapsing it to zero size. This conifold destabilization mechanism can be avoided by turning on a large amount of flux on the sphere, but tadpole cancelation makes this incompatible with a hierarchy of scales in a Type IIB flux compactification. This indicates that antibrane uplift cannot be used to construct stable de Sitter vacua with a small cosmological constant in perturbative String Theory. The values of V and V' for these KKLT-like scenarios can be parametrically small, but we find that V'/V is still consistent with the de Sitter swampland conjecture. Our results also suggest that there should exist a Klebanov-Strassler black hole, holographically dual to a deconfined phase with spontaneously broken chiral symmetry., 24 pages, 3 figures; v4: corrected factors of g_s and pi, removed the first appendix
- Published
- 2019
38. Renormalized approach to neutrinoless double- $\beta$ decay
- Author
-
Saori Pastore, Michael L. Graesser, Wouter Dekens, J. de Vries, M. Piarulli, U. van Kolck, Emanuele Mereghetti, Vincenzo Cirigliano, Robert B. Wiringa, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Particle physics ,Nuclear Theory ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,partial wave ,chemistry.chemical_element ,FOS: Physical sciences ,short-range ,helium ,01 natural sciences ,Nuclear Theory (nucl-th) ,symmetry: chiral ,High Energy Physics - Phenomenology (hep-ph) ,+p+p+electron+electron%22">n n --> p p electron electron ,double-beta decay: (0neutrino) ,Electromagnetism ,Ab initio quantum chemistry methods ,0103 physical sciences ,Effective field theory ,effective field theory: chiral ,010306 general physics ,Helium ,perturbation theory ,Physics ,Chiral symmetry ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,nucleus ,higher-order: 1 ,Electroweak Interaction ,beryllium ,regularization ,MAJORANA ,High Energy Physics - Phenomenology ,long-range ,chemistry ,Regularization (physics) ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,neutrino: Majorana ,High Energy Physics::Experiment ,Neutrino ,Symmetries - Abstract
The process at the heart of neutrinoless double-$\ensuremath{\beta}$ decay, $nn\ensuremath{\rightarrow}pp\phantom{\rule{0.16em}{0ex}}{e}^{\ensuremath{-}}{e}^{\ensuremath{-}}$ induced by a light Majorana neutrino, is investigated in pionless and chiral effective field theory. We show in various regularization schemes the need to introduce a short-range lepton-number-violating operator at leading order, confirming earlier findings. We demonstrate that such a short-range operator is only needed in spin-singlet $S$-wave transitions, while leading-order transitions involving higher partial waves depend solely on long-range currents. Calculations are extended to include next-to-leading-order corrections in perturbation theory, where to this order no additional undetermined parameters appear. We establish a connection based on chiral symmetry between neutrinoless double-$\ensuremath{\beta}$ decay and nuclear charge-independence breaking induced by electromagnetism. Data on the latter confirm the need for a leading-order short-range operator but do not allow for a full determination of the corresponding lepton-number-violating coupling. Using a crude estimate of this coupling, we perform ab initio calculations of the matrix elements for neutrinoless double-$\ensuremath{\beta}$ decay for $^{6}\mathrm{He}$ and $^{12}\mathrm{Be}$. We speculate on the phenomenological impact of the leading short-range operator on the basis of these results.
- Published
- 2019
39. Effective Field Theory Descriptions of Few-Nucleon Systems
- Author
-
A. Kievsky, Laura Elisa Marcucci, Mario Gattobigio, M. Viviani, Luca Girlanda, Institut de Physique de Nice (INPHYNI), Université Nice Sophia Antipolis (... - 2019) (UNS), Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (... - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Orr N., Ploszajczak M., Marqués F., Carbonell J., Girlanda, L., Gattobigio, M., Kievsky, A., Marcucci, L. E., and Viviani, M.
- Subjects
Chiral effective field theory, Pionless effective field theory, Universality ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,nucleon: interaction ,Nuclear Theory ,Degrees of freedom (physics and chemistry) ,01 natural sciences ,Theoretical physics ,symmetry: chiral ,Pion ,effective field theory ,nuclear physics ,0103 physical sciences ,quantum chromodynamics ,Effective field theory ,010306 general physics ,Nuclear Experiment ,quark gluon ,nucleus: interaction ,Quantum chromodynamics ,Physics ,010308 nuclear & particles physics ,Scattering length ,Goldstone particle ,scattering length ,Quark–gluon plasma ,Goldstone boson ,Nucleon - Abstract
International audience; The understanding of nuclear systems as composed of interacting nucleons has been considerably sharpened by the effective field theory (EFT) framework. The latter provides a link between the nuclear interaction and the underlying quantum chromodynamics, as the relevant degrees of freedom result, at least ideally, from a decimation process starting from fundamental quarks and gluons. Owing to chiral symmetry and the Goldstone bosons’ characters of the interchanged pions among nucleons, the properties of heavier nuclei can in principle be traced back to a restricted set of low-energy constants (LECs) to be determined in lighter systems in the framework of a systematic low-energy expansion. At smaller energy scales, in pionless EFT, the interactions simplify becoming of contact type. The low-energy expansion is organized differently, relying on the emergence of universal properties, characteristic of systems with large two-body scattering lengths. We will examine the two above schemes and discuss their relation, with the aim of devising viable power counting schemes for applications in nuclear physics.
- Published
- 2018
40. Scale-Chiral Effective Field Theory for Nuclear Interactions in the Veneziano Limit
- Author
-
Li, Yan-Ling, Wen, Peng-Sheng, Ma, Yong-Liang, Rho, Mannque, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Théorique - UMR CNRS 3681 ( IPHT ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), City College [Changchun], Jilin Jianzhu University, and Jilin University
- Subjects
[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Nuclear Theory ,higher-order: 0 ,effective Lagrangian ,High Energy Physics::Lattice ,High Energy Physics::Phenomenology ,FOS: Physical sciences ,perturbation theory: chiral ,expansion 1/N: color ,PACS numbers: 11.15.Pg, 11.30.Rd, 11.30.Qc, 12.39.Fe 21.30.Fe ,Nuclear Theory (nucl-th) ,symmetry: chiral ,High Energy Physics - Phenomenology ,High Energy Physics - Phenomenology (hep-ph) ,effective field theory ,Veneziano ,nuclear physics ,coupling constant: axial ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Gamow-Teller transition ,[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th] ,nucleus: interaction - Abstract
Following Golterman and Shamir, we develop scale-chiral perturbation theory in the large $N_c$ and large $N_f$ Veneziano limit that incorporates both light-quark baryons and hidden local symmetric bosons and derive a leading-order scale symmetry Lagrangian applicable in nuclear physics. Some applications in the medium-free space and baryonic matter are discussed., 8 pages
- Published
- 2018
41. INFN What Next
- Author
-
Dainese, A., Scomparin, E., Usai, G., Antonioli, P., Arnaldi, R., Beraudo, A., Bruna, E., Bruno, G.E., Bufalino, S., Di Nezza, P., Lombardo, M.P., Nania, R., Noferini, F., Oppedisano, C., Piano, S., Prino, F., Rossi, A., Agnello, M., Alberico, W.M., Alessandro, B., Alici, A., Andronico, G., Antinori, F., Arcelli, S., Badala, A., Barbano, A.M., Barbera, R., Barile, F., Basile, M., Becattini, F., Bedda, C., Bellini, F., Beole, S., Bianchi, L., Bianchin, C., Bonati, C., Bossu, F., Botta, E., Caffarri, D., Camerini, P., Carnesecchi, F., Casula, E., Cerello, P., Cicalo, C., Cifarelli, M.L., Cindolo, F., Colamaria, F., Colella, D., Colocci, M., Corrales Morales, Y., Cortese, P., De Caro, A., De Cataldo, G., De Falco, A., De Gruttola, D., D'Elia, M., De Marco, N., De Pasquale, S., Di Bari, D., Elia, D., Fantoni, A., Feliciello, A., Ferretti, A., Festanti, A., Fionda, F., Fiorenza, G., Fragiacomo, E., Fronze, G.G., Fusco Girard, M., Gagliardi, M., Gallio, M., Garg, K., Giubellino, P., Greco, V., Grossi, E., Guerzoni, B., Hatzifotiadou, D., Incani, E., Innocenti, G.M., Jacazio, N., Das, S. Kumar, La Rocca, P., Lea, R., Leardini, L., Leoncino, M., Lunardon, M., Luparello, G., Mantovani Sarti, V., Manzari, V., Marchisone, M., Margagliotti, G.V., Masera, M., Masoni, A., Mastroserio, A., Mazzilli, M., Mazzoni, M.A., Meninno, E., Mesiti, M., Milano, L., Moretto, S., Muccifora, V., Nappi, E., Nardi, M., Nicassio, M., Pagano, P., Pappalardo, G.S., Pastore, C., Paul, B., Petta, C., Pinazza, O., Plumari, S., Preghenella, R., Puccio, M., Puddu, G., Ramello, L., Ratti, C., Ravasenga, I., Riggi, F., Ronchetti, F., Rucci, A., Ruggieri, M., Rui, R., Sakai, S., Scapparone, E., Scardina, F., Scarlassara, F., Scioli, G., Siddhanta, S., Sitta, M., Soramel, F., Suljic, M., Terrevoli, C., Trogolo, S., Trombetta, G., Turrisi, R., Vercellin, E., Vino, G., Virgili, T., Volpe, G., Williams, M.C.S., Zampolli, C., Laboratoire de l'Accélérateur Linéaire (LAL), and Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
deconfinement ,heavy ion: scattering ,Nuclear Theory ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Physics::Instrumentation and Detectors ,hadron: exotic ,review ,hypernucleus ,FOS: Physical sciences ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,dilepton ,Nuclear Theory (nucl-th) ,symmetry: chiral ,ALICE ,jet ,heavy quark ,Nuclear Experiment (nucl-ex) ,hadron: production ,Nuclear Experiment ,Brookhaven RHIC Coll ,quark gluon: plasma ,energy: low ,lattice ,energy: high ,radiation: thermal ,dimuon ,critical phenomena ,CERN SPS ,CERN LHC Coll ,upgrade ,proposed experiment ,quarkonium - Abstract
This document was prepared by the community that is active in Italy, within INFN (Istituto Nazionale di Fisica Nucleare), in the field of ultra-relativistic heavy-ion collisions. The experimental study of the phase diagram of strongly-interacting matter and of the Quark-Gluon Plasma (QGP) deconfined state will proceed, in the next 10-15 years, along two directions: the high-energy regime at RHIC and at the LHC, and the low-energy regime at FAIR, NICA, SPS and RHIC. The Italian community is strongly involved in the present and future programme of the ALICE experiment, the upgrade of which will open, in the 2020s, a new phase of high-precision characterisation of the QGP properties at the LHC. As a complement of this main activity, there is a growing interest in a possible future experiment at the SPS, which would target the search for the onset of deconfinement using dimuon measurements. On a longer timescale, the community looks with interest at the ongoing studies and discussions on a possible fixed-target programme using the LHC ion beams and on the Future Circular Collider., Comment: 99 pages, 56 figures
- Published
- 2018
42. Quark–Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond
- Author
-
Anthony W. Thomas, Pierre A.M. Guichon, Jirina Stone, Institut de Recherches sur les lois Fondamentales de l'Univers (IRFU), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay, Institut de Recherches sur les lois Fondamentales de l'Univers ( IRFU ), and Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay
- Subjects
Equation of state ,Nuclear Theory ,Hadron ,7. Clean energy ,01 natural sciences ,nuclear matter: equation of state ,High Energy Physics - Phenomenology (hep-ph) ,energy: density ,Nuclear Experiment ,Nuclear matter ,[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th] ,energy: low ,Physics ,Hartree-Fock approximation ,Nuclear structure ,Quark–Meson-Coupling ,critical phenomena ,High Energy Physics - Phenomenology ,neutron star: mass ,potential: chemical ,many-body problem ,quark: wave function ,hypernucleus: ground state ,Quark ,Nuclear and High Energy Physics ,Particle physics ,Meson ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,spin: orbit ,FOS: Physical sciences ,Neutron stars ,Nuclear Theory (nucl-th) ,nuclear properties: ground state ,symmetry: chiral ,nuclear physics ,0103 physical sciences ,Nuclear force ,matter: hadronic ,Jona-Lasinio-Nambu model ,meson quark: coupling ,010306 general physics ,numerical calculations ,010308 nuclear & particles physics ,nuclear force ,High Energy Physics::Phenomenology ,nucleus: finite ,Neutron star ,nuclear matter: asymmetry ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] - Abstract
The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium., Comment: 84 pages, 11 figures, in print in Progress in Particle and Nuclear Physics
- Published
- 2018
43. Nucleon charges with dynamical overlap fermions
- Author
-
Hiroshi Ohki, Nodoka Yamanaka, Shoji Hashimoto, Takashi Kaneko, Institut de Physique Nucléaire d'Orsay (IPNO), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), JLQCD, Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique Nucléaire d'Orsay ( IPNO ), and Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
Strange quark ,Nuclear Theory ,High Energy Physics::Lattice ,01 natural sciences ,pi: mass ,High Energy Physics - Experiment ,High Energy Physics - Experiment (hep-ex) ,High Energy Physics - Phenomenology (hep-ph) ,Lattice field theories ,[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex] ,Nuclear Experiment ,quark: mass dependence ,[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th] ,charge: axial ,lattice ,Physics ,Quantum chromodynamics ,charge: scalar ,High Energy Physics - Lattice (hep-lat) ,lattice field theory ,[ PHYS.HLAT ] Physics [physics]/High Energy Physics - Lattice [hep-lat] ,Lattice QCD ,13.40.Em ,High Energy Physics - Phenomenology ,error: statistical ,14.20.Dh ,quark: propagator ,quark: overlap ,Nucleon ,Quark ,Particle physics ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Lattice field theory ,FOS: Physical sciences ,nucleon: charge ,12.38.Gc ,renormalization ,Nuclear Theory (nucl-th) ,Renormalization ,symmetry: chiral ,High Energy Physics - Lattice ,Pion ,quark: flavor: 3 ,lattice QCD ,[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex] ,0103 physical sciences ,quantum chromodynamics ,010306 general physics ,numerical calculations ,fermion: overlap ,flavor ,operator: mixing ,010308 nuclear & particles physics ,[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat] ,High Energy Physics::Phenomenology ,quark: mass ,Automatic Keywords ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,11.15.Ha ,[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,High Energy Physics::Experiment ,charge: tensor ,statistical - Abstract
We calculate the scalar and tensor charges of the nucleon in 2+1-flavor lattice QCD, for which the systematics of the renormalization of the disconnected diagram is well controlled. Numerical simulations are performed at a single lattice spacing a = 0.11 fm. We simulate four pion masses, which cover a range of $m_\pi \sim$ 290 - 540 MeV, and a single strange quark mass close to its physical value. The statistical accuracy is improved by employing the so-called low-mode averaging technique and the truncated solver method. We study up, down, and strange quark contributions to the nucleon charges by calculating disconnected diagrams using the all-to-all quark propagator. Chiral symmetry is exactly preserved by using the overlap quark action to avoid operator mixing among different flavors, which complicates the renormalization of scalar and tensor matrix elements and leads to possibly large contamination to the small strange quark contributions. We also study the nucleon axial charge with contribution from the disconnected diagram. Our results are in reasonable agreement with experiments and previous lattice studies., Comment: 39 pages, 17 figures
- Published
- 2018
44. Tensorial Gross-Neveu models
- Author
-
Razvan Gurau, Alessandro Sfondrini, Dario Benedetti, Sylvain Carrozza, Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Centre de Physique Théorique [Palaiseau] (CPHT), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Laboratoire de Physique Théorique d'Orsay [Orsay] ( LPT ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Centre de Physique Théorique [Palaiseau] ( CPHT ), and École polytechnique ( X ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
High Energy Physics - Theory ,Nuclear and High Energy Physics ,mass generation ,Field representation ,FOS: Physical sciences ,Gross-Neveu model: chiral ,1/N Expansion ,1/N expansion ,01 natural sciences ,Stability (probability) ,[ PHYS.HTHE ] Physics [physics]/High Energy Physics - Theory [hep-th] ,High Energy Physics::Theory ,symmetry: chiral ,0103 physical sciences ,lcsh:Nuclear and particle physics. Atomic energy. Radioactivity ,Renormalization Group ,010306 general physics ,dimension: 2 ,Mathematical physics ,vacuum state: stability ,Physics ,Chiral symmetry ,Field Theories in Lower Dimensions ,Nonperturbative Effects ,010308 nuclear & particles physics ,[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th] ,Mass generation ,Renormalization group ,O(N) ,Symmetry (physics) ,U(N) ,Dyson-Schwinger equation ,High Energy Physics - Theory (hep-th) ,lcsh:QC770-798 ,expansion 1/N ,four-fermion interaction - Abstract
We define and study various tensorial generalizations of the Gross-Neveu model in two dimensions, that is, models with four-fermion interactions and G3 symmetry, where we take either G = U(N) or G = O(N). Such models can also be viewed as two-dimensional generalizations of the Sachdev-Ye-Kitaev model, or more precisely of its tensorial counterpart introduced by Klebanov and Tarnopolsky, which is in part our motivation for studying them. Using the Schwinger-Dyson equations at large-N, we discuss the phenomenon of dynamical mass generation and possible combinations of couplings to avoid it. For the case G = U(N),we introduce an intermediate field representation and perform a stability analysis of the vacua. It turns out that the only apparently viable combination of couplings that avoids mass generation corresponds to an unstable vacuum. The stable vacuum breaks U(N)3 invariance, in contradiction with the Coleman-Mermin-Wagner theorem, but this is an artifact of the large-N expansion, similar to the breaking of continuous chiral symmetry in the chiral Gross-Neveu model., Journal of High Energy Physics, 2018 (1), ISSN:1126-6708, ISSN:1029-8479
- Published
- 2018
45. High symmetry chiral molecules
- Author
-
Farina, M. and Morandi, C.
- Published
- 1974
- Full Text
- View/download PDF
46. Higgs-Yukawa model on the lattice
- Author
-
Bastian Knippschild, Karl Jansen, C.-J. David Lin, and David Y.-J. Chu
- Subjects
O(4) ,QC1-999 ,High Energy Physics::Lattice ,Scalar (mathematics) ,FOS: Physical sciences ,Gaussian fixed point ,scaling: finite size ,model: Yukawa ,01 natural sciences ,finite size [scaling] ,thermal ,Theoretical physics ,symmetry: chiral ,High Energy Physics - Phenomenology (hep-ph) ,High Energy Physics - Lattice ,0103 physical sciences ,ddc:530 ,010306 general physics ,Scaling ,fermion: overlap ,lattice ,Physics ,chiral [symmetry] ,010308 nuclear & particles physics ,Yukawa [model] ,Operator (physics) ,High Energy Physics - Lattice (hep-lat) ,High Energy Physics::Phenomenology ,Yukawa potential ,Fermion ,critical phenomena ,High Energy Physics - Phenomenology ,Lattice (module) ,fixed point ,Higgs boson ,overlap [fermion] - Abstract
35th International Symposium on Lattice Field Theory, Lattice 2017, Granada, Spain, 18 Jun 2017 - 24 Jun 2017; The European physical journal / Web of Conferences 175, 08017 (2018). doi:10.1051/epjconf/201817508017, We present results from two projects on lattice calculations for the Higgs-Yukawa model. First we report progress on the search of first-order thermal phase transitions in the presence of a dimension-six operator, with the choices of bare couplings that lead to viable phenomenological predictions. In this project the simulations are performed using overlap fermions to implement the required chiral symmetry. Secondly, our study for applying finite-size scaling techniques near the Gaussian fixed point of the Higgs-Yukawa model is presented. We discuss the analytical formulae for the Higgs Yukawa model and show results for a first numerical study in the pure $O(4)$ scalar sector of the theory., Published by EDP Sciences, Les Ulis
- Published
- 2017
- Full Text
- View/download PDF
47. In Search of a Pristine Signal for (Scale-)Chiral Symmetry in Nuclei
- Author
-
Mannque Rho, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Physique Théorique - UMR CNRS 3681 ( IPHT ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), and Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Subjects
Nuclear and High Energy Physics ,Meson ,Nuclear Theory ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,FOS: Physical sciences ,General Physics and Astronomy ,Fixed point ,scale-chiral symmetry ,01 natural sciences ,hidden symmetries ,Nuclear Theory (nucl-th) ,Proton mass ,Theoretical physics ,symmetry: chiral ,High Energy Physics - Phenomenology (hep-ph) ,Pion ,Local symmetry ,nuclear physics ,0103 physical sciences ,hidden symmetry ,Tensor ,Vector meson ,010306 general physics ,Scaling ,[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th] ,nucleus: interaction ,Physics ,BR scaling ,010308 nuclear & particles physics ,scaling ,tensor forces ,vector meson ,High Energy Physics - Phenomenology ,fixed point ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Homogeneous space ,symmetry: local ,[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,force: tensor ,intrinsic density dependence (IDD) - Abstract
I describe the long-standing search for a "smoking-gun" signal for the manifestation of (scale-)chiral symmetry in nuclear interactions. It is prompted by Gerry Brown's last unpublished note, reproduced verbatim below, on the preeminent role of pions and vector ($\rho$,$\omega$) mesons in providing a simple and elegant description of strongly correlated nuclear interactions. In this note written in tribute to Gerry Brown, I first describe a case of an unambiguous signal in axial-charge transitions in nuclei and then combine his ideas with the more recent development on the role of hidden symmetries in nuclear physics. What transpires is the surprising conclusion that the Landau-Migdal fixed point interaction $G_0^\prime$, the nuclear tensor forces and Brown-Rho scaling, all encoded in scale-invariant hidden local symmetry, as Gerry put, "run the show and make all forces equal.", Comment: To appear in G.E. Brown Memorial Volume
- Published
- 2017
48. Challenges in QCD matter physics --The scientific programme of the Compressed Baryonic Matter experiment at FAIR
- Author
-
V. Jakovlev, R. Talukdar, Alberica Toia, V.M. Golovatyuk, P. Ivanov, Abhijit Bhattacharyya, M. Kohn, Yu. Onishchuk, M. Tanha, Suman Sau, E. Friske, L. Kumar, A. Roy, Valerica Baban, Yaping Wang, V. Blinov, D. Svirida, Pradip Kumar Sahu, D. Dementiev, A. Gomez Ramirez, M. Petris, Ming Shao, D. Blau, Yu. P. Tsyupa, A. Rost, D. P. Mahapatra, Y. F. Ryabov, D. Wielanek, Anju Bhasin, C. Lara, Saikat Biswas, Shusu Shi, E. P. Akishina, F. Seck, V. Jain, Hongfang Chen, O. Malyatina, B. Komkov, I. Carevic, V. Baublis, Raghunath Sahoo, D. Normanov, Tetyana Galatyuk, S. Amar-Youcef, Cristian Andrei, Yu. I. Bocharov, A. Vorobiev, M. Strikhanov, Y. Leifels, O. Petukhov, A. Petrovici, Dezso Varga, Oana Ristea, W. Verhoeven, J. Sánchez Rosado, Victor Golovtsov, S. Belogurov, E. Kryshen, M. Dey, Johannes Lehrbach, Y. P. Viyogi, A. V. Kazantsev, A. Himmi, M. Anđelić, Oleg Bezshyyko, Cheng Li, A. Raportirenko, Xu Cai, C. Kreidl, Daniela Bartos, T. Balog, Volker Lindenstruth, A. Chaus, M. Mohisin Khan, Mate Csanad, J. Pluta, A. Senger, Matthias Balzer, Christoph Blume, H. Appelshäuser, Di Jiang, B. Kämpfer, A. Lymanets, I. Berceanu, S. Gorbunov, S. Sarangi, V. Pospíšil, N. Heine, A. Veshikov, Yuanjing Li, V. Kushpil, Ch. Klein-Bösing, I. Selyuzhenkov, S. Razin, Guofeng Song, D. Belyakov, G. Berezin, V. Kyva, Andrei Ionut Herghelegiu, Heiko Engel, K. Schmidt, V. Klochkov, Alla Maevskaya, P.-A. Loizeau, L. Golinka-Bezshyyko, V.A. Karnaukhov, J. Bendarouach, C. Xiang, A.D. Sheremetiev, V. F. Chepurnov, Hr Schmidt, Zbigniew Sosin, M. Singla, I. Momot, O. Andreeva, I. Alexandrov, R. N. Singaraju, S. Avdeev, Evgeny Alexandrov, R. Płaneta, Gennady Ososkov, D. Hutter, A. Reinefeld, C.J. Schmidt, Andrei Dorokhov, Vikram Patel, K.-H. Becker, N. Kurepin, E. Lebedeva, C. P. Singh, Y. K. Sun, K. Jaaskelainen, Andras Szabo, J. Rożynek, Sanjeev Singh Sambyal, V. S. Negi, Krzysztof Piasecki, W. F. J. Müller, M. Baznat, N. Miftakhov, Feng Liu, N. Ahmad, L. Skoda, G. D. Kekelidze, Vladimir Ivanov, Krzysztof Kasinski, Xi-Wei Wang, D. Miskowiec, Serguei Volkov, Sudhir Raniwala, I. Tsakov, A. Nedosekin, Peter Senger, T. Barczyk, S. Dubnichka, C. Ristea, N.G. Tuturas, E. V. Atkin, D. Karmanov, W. Zabolotny, Tatiana Karavicheva, Subhasis Samanta, Yu.V. Zanevsky, S. Bähr, O. Batenkov, M. Petrovici, B. Milanovic, Muhammad Farooq, R. Karabowicz, I. Vassiliev, P. Staszel, Sheng Dong, Udo Wolfgang Kebschull, P. Koczon, Goutam Gangopadhyay, P. Zumbruch, Vladimir Plujko, Y. Berdnikov, Shue He, Volodymyr Vovchenko, V. Mialkovski, W. Zipper, T. Bus, O. Tarassenkova, S. K. Sahu, V. Militsija, Yu. Zaitsev, C. Müntz, S. K. Ghosh, Sushanta Tripathy, E. Rostchin, V. Shumikhin, I. Fröhlich, I. Panasenko, A. Laso Garcia, L. Dutka, Yu.S. Anisimov, B. Linnik, T. Tischler, A. Ivashkin, R. Kotte, Calin Besliu, T. Akishina, Rashmi Raniwala, Sheng Zheng, K. Koch, J. Kunkel, A. Shabunov, E. Lobanova, Wojciech Kucewicz, T. Breitner, M. Al-Turany, R. P. Adak, Claudiu Cornel Schiaua, S. Masciocchi, Zhongbao Yin, Xinjie Huang, Jens Wiechula, Nu Xu, I. Kisel, Christian Sturm, T. Mahmoud, V. Kalinin, A. Abuhoza, Mohd Danish Azmi, P. Zrelov, Jing Zhou, M. Dželalija, C. Deveaux, M. Goffe, Ke-Jun Wu, S. Strohauer, S. Bashir, D. Argintaru, B. Heß, A. Turowiecki, M. B. Golubeva, F. Ahmad, S. Gläßel, V. Plotnikov, Manuel Penschuck, Supriya Das, Grzegorz Kasprowicz, Vladislav Manko, O. Vasylyev, D. Kresan, L. Kudin, Yu. V. Gusakov, Dongdong Hu, Vladimir Nikulin, M. Ivanov, D. Gottschalk, Karl-Heinz Kampert, A. Kolosova, G. Caragheorgheopol, K. Dey, K. Mikhailov, Anand Kumar Dubey, J. Scholten, S. P. D. Figuli, T. Blank, Ajit Kumar, Vladimir Peshekhonov, Igor Pshenichnov, E. Badura, Michael Deveaux, I. Rostovtseva, M. Kiš, Jürgen Becker, Evgeny Karpechev, B. W. Kolb, Valery Pugatch, Xiaofeng Luo, I. Som, E. Ovcharenko, F.F. Guber, H. Büsching, H. Cherif, N. R. Panda, Zubayer Ahammed, R. Najman, Fouad Rami, M. Gumiński, J. Pieper, Jerzy Gajda, G. Kozlov, H. Jahan, A. Drozd, V. Butuzov, Joachim Stroth, I. K. Yoo, Thomas Janson, M. Petri, R. Holzmann, D. Finogeev, S. Golovnya, Ping Cao, E. Malankin, Buddhadeb Bhattacharjee, L. Meder, Junfeng Yang, Lei Zhao, C. Simon, S. Kuznetsov, I. Valin, M. Zyzak, H. Hartmann, T. Satława, Yi Wang, Anton Andronic, Daicui Zhou, Zebo Tang, M. Prokudin, V. Saveliev, Qiyan Li, I. M. Deppner, Mahitosh Mandal, F. Uhlig, J. A. Lucio Martínez, J. Book, L. Mik, S. Schatral, S. K. Pal, A. Petrovskiy, J. Pietraszko, B. Debnath, E. Usenko, O. Svoboda, Gy. Wolf, V.V. Elsha, J. Lehnert, Pengfei Lyu, S. Seddiki, Peter Fischer, Huanhuan Fan, D. Doering, J. Frühauf, C. Wendisch, Yu Zhang, V. Kozlov, P. Tlustý, Piotr Otfinowski, N. Baranova, Sergey Kiselev, J. Rautenberg, Dmitry Mal'kevich, I. Kadenko, I. Lobanov, Mikhail Zhalov, A. Rodriguez Rodriguez, D. Emschermann, Vikas Singhal, Pavel Akishin, M. Bach, P. Kravtsov, X. Zhu, C. Nandi, I. Korolko, Rongxing Yang, E. Nandy, D. Ivanischev, Anil Prakash, A. Semennikov, I. E. Yushmanov, S. Parzhitskiy, M. Vznuzdaev, A. Khvorostukhin, A. Kiryakov, Soma Mukherjee, LuYao Chen, M. Pugach, Piotr Kmon, J. Gebelein, V. Kleipa, C. Bergmann, Kai Schweda, S. Rabtsun, Victor Ivanov, Tivadar Kiss, M. Dreschmann, I. G. Alekseev, A. K. Kurilkin, A. Volochniuk, E. Krebs, A. Lebedev, V. Kramarenko, N. Topil'skaya, S. Das, S. Lebedev, S. Querchfeld, Madan M. Aggarwal, N.I. Zamiatin, Amrendra K. Singh, Swagata Mandal, A. Khanzadeev, C. Simons, Gilles Claus, U. Frankenfeld, V.V. Ivanov, A. Chernogorov, Pascal Dillenseger, V. Dobyrn, Z. Dubnichkova, S. Löchner, Bhartendu K. Singh, S. Ahmad, Rishat Sultanov, J. Kallunkathariyil, A. Wieloch, T. Matulewicz, R. Berendes, A. Shabanov, Saniya Khan, V. Friese, Anik Gupta, L. Kochenda, M. Kirejczyk, Pavel Kisel, Amlan Chakrabarti, Ashwini Kumar, Michal Koziel, A. Berdnikov, A. Sadovsky, T. O. Ablyazimov, S. Mahajan, M. Merkin, Robert Szczygiel, C. Pauly, Krzysztof Poźniak, F. Roether, Alexey Kurepin, Alexander Voronin, A. Bubak, Nikolai Shumeiko, Nicolas Winckler, A. V. Kryanev, Andrey Reshetin, A. Simakov, Sukalyan Chattopadhyay, E. M. Ilgenfritz, B. Sikora, Jihye Song, J. Hehner, Zhi Deng, M. Irfan, J. Saini, S. A. Lone, L. Naumann, D. Eschweiler, A. M. Marin Garcia, P. Kähler, O. Derenovskaya, A.P. Ierusalimov, Alexandru Jipa, K. Agarwal, T. Tolyhi, H. Malygina, Xingming Fan, Amalia Pop, Dmitry Golubkov, E. M. Verbitskaya, L. Radulescu, Ryszard S. Romaniuk, D. Pfeifer, Yifei Zhang, Rajarshi Ray, V. Zryuev, M. Teklishyn, M. Träger, S. Morozov, H. Flemming, A. Oancea, A. Wilms, P. Ghosh, A. Grzeszczuk, V. Mikhaylov, Patrick Simon Reichelt, Ankhi Roy, Sanguk Won, Vladimir Samsonov, T. Esanu, V. Akishina, D.V. Peshekhonov, A.I. Zinchenko, M. Żoładź, Xin Li, I. Sibiryak, J. Wüstenfeld, Aleksey Voronin, M. Korolev, Guangming Huang, A. Kugler, E. Kaptur, J. Michel, J. Tarasiuk, Manjit Kaur, A. Bychkov, F. Lemke, Bekhzod S Yuldashev, T. K. Bhattacharyya, S. Gorokhov, F. Schintke, P. Klaus, Adrian Byszuk, Ionel Lazanu, Dong Wang, Michael Dürr, M. Krieger, H. Deppe, Sibaji Raha, O. Sander, S. Kowalski, K. Wiśniewski, Alexander Malakhov, I. Filozova, Shengqin Feng, M. Calin, S. Reinecke, V. Kucher, M. Weber, A. Kovalchuk, V. Petráček, M. Adamczyk, K.K. Gudima, Johannes Peter Wessels, P. Sitzmann, J. Markert, V. K. Eremin, Alexandru Bercuci, Marc Winter, Mateusz Baszczyk, M.I. Ciobanu, E. Bao, M. Kuc, U. Brüning, O. V. Fateev, Piotr Maj, J. de Cuveland, M. G. Târzilă, Pavel Larionov, R. Averbeck, Jianping Cheng, Jacek Rauza, C. E. Muñoz Castillo, N. D'Ascenzo, O. Bertini, Wendi Deng, G. Kretschmar, I. Skwira-Chalot, W. Niebur, K. Oh, V. P. Ladygin, T. Morhardt, C. Höhne, M. G. Wiebusch, Partha Pratim Bhaduri, Dong Han, Oleg Karavichev, N. Herrmann, R. Visinka, F. Constantin, C. García Chávez, J. Brzychczyk, Sidharth Kumar Prasad, D. Soyk, V. V. Kirakosyan, W. Koenig, D. Bertini, Z. Majka, F. Khasanov, J. Eschke, P. Gryboś, E. Lavrik, V. Cătănescu, K. Siwek-Wilczyńska, P. K. Kurilkin, J.M. Heuser, Adeel Akram, Yu. Murin, Alexander Akindinov, A. K. Bhati, I. Kres, J. Förtsch, Rafal Kleczek, Jiajun Zheng, S. Manz, T. K. Nayak, Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), CBM, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), and Université de Strasbourg (UNISTRA)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
J/psi(3100) ,Phase transition ,matter: interaction ,Hadron ,Nuclear Theory ,hypernucleus ,7. Clean energy ,01 natural sciences ,Critical point (thermodynamics) ,transport theory ,hadron: gas ,Nuclear Experiment ,neutron star ,QCD matter ,Brookhaven RHIC Coll ,quark gluon: plasma ,Physics ,Large Hadron Collider ,fireball ,elliptic flow ,strong interaction ,Observable ,heavy ion ,CERN LHC Coll ,QCD matter, Quark-Gluon-Plasma (QGP), QCD phase diagram, strong interaction, hadronic matter, partonic matte, heavy-ion ,2-4.9 GeV/nucleon ,Nuclear and High Energy Physics ,Particle physics ,CBM ,charmonium ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,Strong interaction ,review ,nonperturbative ,[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex] ,symmetry: chiral ,quantum chromodynamics: critical phenomena ,strangeness ,0103 physical sciences ,density: high ,Darmstadt GSI FAIR ,structure ,010306 general physics ,equation of state ,quantum chromodynamics: matter ,010308 nuclear & particles physics ,High Energy Physics::Phenomenology ,nucleus ,temperature: high ,baryon ,Neutron star ,Automatic Keywords ,HADES ,charm - Abstract
International audience; Substantial experimental and theoretical efforts worldwide are devoted to explore the phase diagram of strongly interacting matter. At LHC and top RHIC energies, QCD matter is studied at very high temperatures and nearly vanishing net-baryon densities. There is evidence that a Quark-Gluon-Plasma (QGP) was created at experiments at RHIC and LHC. The transition from the QGP back to the hadron gas is found to be a smooth cross over. For larger net-baryon densities and lower temperatures, it is expected that the QCD phase diagram exhibits a rich structure, such as a first-order phase transition between hadronic and partonic matter which terminates in a critical point, or exotic phases like quarkyonic matter. The discovery of these landmarks would be a breakthrough in our understanding of the strong interaction and is therefore in the focus of various high-energy heavy-ion research programs. The Compressed Baryonic Matter (CBM) experiment at FAIR will play a unique role in the exploration of the QCD phase diagram in the region of high net-baryon densities, because it is designed to run at unprecedented interaction rates. High-rate operation is the key prerequisite for high-precision measurements of multi-differential observables and of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The goal of the CBM experiment at SIS100 ( $\sqrt{s_{NN}}=$ 2.7--4.9 GeV) is to discover fundamental properties of QCD matter: the phase structure at large baryon-chemical potentials ( $\mu_B > 500$ MeV), effects of chiral symmetry, and the equation of state at high density as it is expected to occur in the core of neutron stars. In this article, we review the motivation for and the physics programme of CBM, including activities before the start of data taking in 2024, in the context of the worldwide efforts to explore high-density QCD matter.
- Published
- 2017
49. The Synthesis and Stereochemistry of Chiral Organic Molecules with High Symmetry.
- Author
-
Eliel, Ernest L., Wilen, Samuel H., and Allinger, Norman L.
- Published
- 1984
- Full Text
- View/download PDF
50. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
- Author
-
Jeremy W. Holt, Mannque Rho, Wolfram Weise, Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Physique Théorique - UMR CNRS 3681 ( IPHT ), and Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Saclay-Commissariat à l'énergie atomique et aux énergies alternatives ( CEA )
- Subjects
Particle physics ,Chiral perturbation theory ,Field (physics) ,Nuclear Theory ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,General Physics and Astronomy ,FOS: Physical sciences ,Physics and Astronomy(all) ,01 natural sciences ,Nuclear Theory (nucl-th) ,Theoretical physics ,symmetry: chiral ,High Energy Physics - Phenomenology (hep-ph) ,nuclear physics ,Fermi liquid ,SU(3) ,Nambu–Jona-Lasinio model ,0103 physical sciences ,quantum chromodynamics ,Effective field theory ,effective field theory: chiral ,010306 general physics ,[ PHYS.NUCL ] Physics [physics]/Nuclear Theory [nucl-th] ,Physics ,Quantum chromodynamics ,Weinberg ,010308 nuclear & particles physics ,Skyrmion ,nucleus ,meson: mass spectrum ,perturbation theory: chiral ,gluon ,SU(2N) ,Goldstone particle ,U(1) ,High Energy Physics - Phenomenology ,matter: chiral ,SU(3) x SU(3) x U(1) ,U-1 ,Chiral symmetry breaking - Abstract
Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries., 108 pages, 50 figures, submitted to Physics Reports special volume dedicated to Gerry Brown
- Published
- 2016
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.