1. Exploring non-equilibrium quark-gluon plasma effects on charm transport coefficients
- Author
-
Taesoo Song, Elena Bratkovskaya, Pierre Moreau, Joerg Aichelin, Laboratoire de physique subatomique et des technologies associées (SUBATECH), Université de Nantes - Faculté des Sciences et des Techniques, Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), and Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
- Subjects
heavy ion: scattering ,Nuclear Theory ,Parton ,01 natural sciences ,7. Clean energy ,Langevin equation ,High Energy Physics - Phenomenology (hep-ph) ,hydrodynamics: viscosity ,energy: density ,Charm (quantum number) ,Nuclear Experiment ,quark gluon: plasma ,Physics ,Equation of state (cosmology) ,Momentum transfer ,diffusion ,momentum transfer ,lattice field theory ,mass: pole ,3. Good health ,High Energy Physics - Phenomenology ,25.75.Ld ,pressure: anisotropy ,spectral representation ,parton: density ,Quark ,Particle physics ,[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th] ,quasiparticle: model ,FOS: Physical sciences ,Relativistic Nuclear Collisions ,transverse momentum ,Charm quark ,Momentum ,Nuclear Theory (nucl-th) ,momentum spectrum: anisotropy ,0103 physical sciences ,010306 general physics ,parton: momentum spectrum ,equation of state ,heavy quark: momentum ,energy: kinetic ,010308 nuclear & particles physics ,25.75.Nq ,High Energy Physics::Phenomenology ,pressure: transverse ,[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph] ,Quark–gluon plasma ,High Energy Physics::Experiment - Abstract
In this article we investigate how the drag coefficient $A$ and $\hat{q}$, the transverse momentum transfer by unit length, of charm quarks are modified if the QGP is not in complete thermal equilibrium using the dynamical quasi-particle model (DQPM) which reproduces both, the equation-of-state of the QGP and the spatial diffusion coefficient of heavy quarks as predicted by lattice QCD calculations. We study three cases: a) the QGP has an anisotropic momentum distribution of the partons which leads to an anisotropic pressure b) the QGP partons have higher or lower kinetic energies as compared to the thermal expectation value, and c) the QGP partons have larger or smaller pole masses of their spectral function as compared to the pole mass from the DQPM at the QGP temperature. In the last two cases we adjust the number density of partons to obtain the same energy density as in an equilibrated QGP. In the first scenario we find that if the transverse pressure exceeds the longitudinal one for small heavy quark momenta $A$ becomes larger and $\hat{q}$ smaller as compared to an isotropic pressure. For heavy quarks with large momentum both, $A$ and $\hat{q}$ , approach unity. If the partons have less kinetic energy or a smaller pole mass as compared to a system in equilibrium charm quarks lose more energy. In the former case $\hat{q}$ decreases whereas in the latter case it increases for charm quark with a low or intermediate transverse momentum. Thus each non-equilibrium scenario affects $A$ and $\hat{q}$ of charm quarks in a different way. The modifications in our scenarios are of the order 20-50\% at temperatures relevant for heavy ion reactions. These modifications have to be considered if one wants to determine these coefficients by comparing heavy ion data with theoretical predictions from viscous hydrodynamics or Langevin equations., 18 pages, 12 figures
- Published
- 2019
- Full Text
- View/download PDF