1. Seismic surface wave focal spot imaging: numerical resolution experiments
- Author
-
Bruno Giammarinaro, Christina Tsarsitalidou, Gregor Hillers, Julien de Rosny, Léonard Seydoux, Stefan Catheline, Michel Campillo, Philippe Roux, Institut Langevin - Ondes et Images (UMR7587) (IL), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut National de la Santé et de la Recherche Médicale (INSERM), Institut des Sciences de la Terre (ISTerre), Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel-Université Grenoble Alpes (UGA), ANR-19-P3IA-0003,MIAI,MIAI @ Grenoble Alpes(2019), Institute of Seismology, Department of Geosciences and Geography, and Helsinki Institute of Urban and Regional Studies (Urbaria)
- Subjects
1171 Geosciences ,FAULT ZONE ,Wave propagation ,Seismic noise ,RETRIEVAL ,Refocusing ,Seismic interferometry ,Surface waves ,114 Physical sciences ,GREENS-FUNCTION ,NOISE CORRELATION ,WESTERN ,Body waves ,Geophysics ,Geochemistry and Petrology ,Numerical modelling ,[SDU]Sciences of the Universe [physics] ,TOMOGRAPHY ,CROSS-CORRELATION ,Focal spot ,ARRAY ,Surface waves and free oscillations ,PASSIVE ELASTOGRAPHY ,CRUSTAL STRUCTURE - Abstract
SUMMARY Numerical experiments of seismic wave propagation in a laterally homogeneous layered medium explore subsurface imaging at subwavelength distances for dense seismic arrays. We choose a time-reversal approach to simulate fundamental mode Rayleigh surface wavefields that are equivalent to the cross-correlation results of three-component ambient seismic field records. We demonstrate that the synthesized 2-D spatial autocorrelation fields in the time domain support local or so-called focal spot imaging. Systematic tests involving clean isotropic surface wavefields but also interfering body wave components and anisotropic incidence assess the accuracy of the phase velocity and dispersion estimates obtained from focal spot properties. The results suggest that data collected within half a wavelength around the origin is usually sufficient to constrain the used Bessel functions models. Generally, the cleaner the surface wavefield the smaller the fitting distances that can be used to accurately estimate the local Rayleigh wave speed. Using models based on isotropic surface wave propagation we find that phase velocity estimates from vertical–radial component data are less biased by P-wave energy compared to estimates obtained from vertical–vertical component data, that even strong anisotropic surface wave incidence yields phase velocity estimates with an accuracy of 1 per cent or better, and that dispersion can be studied in the presence of noise. Estimates using a model to resolve potential medium anisotropy are significantly biased by anisotropic surface wave incidence. The overall accurate results obtained from near-field measurements using isotropic medium assumptions imply that dense array seismic Rayleigh wave focal spot imaging can increase the depth sensitivity compared to ambient noise surface wave tomography. The analogy to elastography focal spot medical imaging implies that a high station density and clean surface wavefields support subwavelength resolution of lateral medium variations.
- Published
- 2023
- Full Text
- View/download PDF