37 results on '"Zucco, C"'
Search Results
2. Short-term mortality risk in children and young adults with type 1 diabetes: The population-based Registry of the Province of Turin, Italy
- Author
-
Bruno, G., Cerutti, F., Merletti, F., Novelli, G., Panero, F., Zucco, C., and Cavallo-Perin, P.
- Published
- 2009
- Full Text
- View/download PDF
3. Kinetic and NMR spectroscopic studies on simple enols
- Author
-
Zucco, C.
- Subjects
547 ,Organic chemistry - Published
- 1982
4. Preface
- Author
-
Cannataro, M., Guzzi, P.H., Agapito, G., Zucco, C., and Milano, M.
- Published
- 2022
- Full Text
- View/download PDF
5. Effects on the incidence of cardiovascular events of the addition of pioglitazone versus sulfonylureas in patients with type 2 diabetes inadequately controlled with metformin (TOSCA.IT): a randomised, multicentre trial
- Author
-
Vaccaro, O, Masulli, M, Nicolucci, A, Bonora, E, Del Prato, S, Maggioni, Ap, Rivellese, Aa, Squatrito, S, Giorda, Cb, Sesti, G, Mocarelli, P, Lucisano, G, Sacco, M, Signorini, S, Cappellini, F, Perriello, G, Babini, Ac, Lapolla, A, Gregori, G, Giordano, C, Corsi, L, Buzzetti, R, Clemente, G, Di Cianni, G, Iannarelli, R, Cordera, R, La Macchia, O, Zamboni, C, Scaranna, C, Boemi, M, Iovine, C, Lauro, D, Leotta, S, Dall'Aglio, E, Cannarsa, E, Tonutti, L, Pugliese, G, Bossi, Ac, Anichini, R, Dotta, F, Di Benedetto, A, Citro, G, Antenucci, D, Ricci, L, Giorgino, F, Santini, C, Gnasso, A, De Cosmo, S, Zavaroni, D, Vedovato, M, Consoli, A, Calabrese, M, di Bartolo, P, Fornengo, P, Riccardi, G, IT) study group, Thiazolidinediones Or Sulfonylureas Cardiovascular Accidents Intervention Trial (TOSCA., Collaborators: Vaccaro O, Italian Diabetes Society., D'Angelo, F, Giansanti, R, Tanase, L, Lanari, L, Testa, I, Pancani, F, Ranchelli, A, Vagheggi, P, Scatona, A, Fontana, L, Laviola, L, Tarantino, L, Ippolito, C, Gigantelli, V, Manicone, M, Conte, E, Trevisan, R, Rota, R, Corsi, A, Dodesini, Ar, Reggiani, Gm, Montesi, L, Mazzella, N, Forlani, G, Caselli, C, Di Luzio, R, Mazzotti, A, Aiello, A, Barrea, A, Musto, A, D'Amico, F, Sinagra, T, Longhitano, S, Trowpea, V, Sparti, M, Italia, S, Lisi, E, Grasso, G, Pezzino, V, Insalaco, F, Carallo, C, Scicchitano, C, De Franceschi MS, Calbucci, G, Ripani, R, Cuneo, G, Corsi, S, Romeo, F, Lesina, A, Comoglio, M, Bonetto, C, Robusto, A, Nada, E, Asprino, V, Cetraro, R, Impieri, M, Lucchese, G, Donnarumma, G, Tizio, B, Lenza, L, Paraggio, P, Tomasi, F, Dozio, N, Scalambra, E, Mannucci, E, Lamanna, C, Cignarelli, M, Macchia, O, Fariello, S, Sorrentino, Mr, Franzetti, I, Radin, R, Annunziata, F, Bonabello, La, Durante, A, Dolcino, M, Gallo, F, Mazzucchelli, C, Aleo, A, Melga, P, Briatore, L, Maggi, D, Storace, D, Cecoli, F, D'Ugo, E, Pupillo, M, Baldassarre, Mpa, Salvati, F, Minnucci, A, De Luca, A, Zugaro, A, Santarelli, L, Bosco, A, Petrella, V, La Verghetta GG, De Gregorio, A, D'Andrea, S, Giuliani, Ae, Polidoro, Wl, Sperandio, A, Sciarretta, F, Pezzella, A, Carlone, A, Potenziani, S, Venditti, C, Foffi, C, Carbone, S, Cipolloni, L, Moretti, C, Leto, G, Serra, R, Petrachi, F, Romano, I, Lacaria, E, Russo, L, Goretti, C, Sannino, C, Dolci, M, Bruselli, L, Mori, Ml, Baccetti, F, Del Freo, M, Cucinotta, D, Giunta, L, Ruffo, Mc, Cannizzaro, D, Pintaudi, B, Perrone, G, Pata, P, Ragonese, F, Lettina, G, Mancuso, T, Coppolino, A, Piatti, Pm, Monti, L, Stuccillo, M, Lucotti, P, Setola, M, Crippa, Gv, Loi, C, Oldani, M, Bottalico, Ml, Pellegata, B, Bonomo, M, Menicatti, Lsm, Resi, V, Bertuzzi, F, Disoteo, Eo, Pizzi, G, Annuzzi, G, Capaldo, B, Nappo, R, Auciello, Sm, Turco, Aa, Costagliola, L, Corte, Gd, Vallefuoco, P, Nappi, F, Vitale, M, Cocozza, S, Ciano, O, Massimino, E, Garofalo, N, Avogaro, A, Guarneri, G, Fedele, D, Sartore, G, Chilelli, Nc, Burlina, S, Bonsembiante, B, Galluzzo, A, Torregrossa, V, Mancastroppa, G, Arsenio, L, Cioni, F, Caronna, S, Papi, M, Babini, M, Santeusanio, F, Calagreti, G, Timi, A, Tantucci, A, Marino, C, Ginestra, F, Di Biagio, R, Taraborelli, M, Miccoli, R, Bianchi, C, Garofolo, M, Politi, Ks, Penno, G, Livraga, S, Calzoni, F, Mancastroppa, Glf, Corsini, E, Tedeschi, A, Gaglianò, Ms, Ippolito, G, Salutini, E, Cervellino, F, Natale, M, Salvatore, V, Zampino, A, Sinisi, R, Arcangeli, A, Zogheri, A, Guizzotti, S, Longo, R, Di Bartolo, P, Pellicano, F, Scolozzi, P, Termine, S, Luberto, A, Ballardini, G, Trojani, C, Mazzuca, P, Bruglia, M, Ciamei, M, Genghini, S, Zannoni, C, Rangel, G, Salvi, L, Zappaterreno, A, Cordone, S, Simonelli, P, Meggiorini, M, Frasheri, A, Di Pippo, C, Maglio, C, Mazzitelli, G, Rinaldi, Me, Galli, A, Romano, M, D'Angelo, P, Suraci, C, Bacci, S, Palena, Ap, Genovese, S, Mancino, M, Rondinelli, M, Capone, F, Calabretto, E, Bulgheroni, M, Bucciarelli, L, Ceccarelli, E, Fondelli, C, Santacroce, C, Guarino, E, Nigi, L, Lalli, C, Di Vizia, G, Scarponi, M, Montani, V, Di Bernardino, P, Romagni, P, Dolcetti, K, Forte, E, Tamburo, L, Perin, Pc, Prinzis, T, Gruden, G, Bruno, G, Zucco, C, Perotta, M, Marena, S, Monsignore, S, Panero, F, Ponzi, F, Carpinteri, R, Casagrande, Ml, Coletti, Mf, Balini, A, Filopanti, M, Madaschi, S, Pulcina, A, Grimaldi, F, Venturini, G, Agus, S, Pagnutti, S, Guidotti, F, Cavarape, A, Cigolini, M, Pichiri, I, Brangani, C, Fainelli, G, Tomasetto, E, Zoppini, G, Galletti, A, Perrone, D, Capra, C, Bianchini, F, Ceseri, M, Di Nardo, B, Sasso, E, Bartolomei, B, Suliman, I, Fabbri, G, Romano, G, Maturo, N, Nunziata, G, Capobianco, G, De Simone, G, Villa, V, Rota, G, Pentangelo, C, Carbonara, O, Caiazzo, G, Cutolo, M, Sorrentino, T, Mastrilli, V, Amelia, U, Masi, S, Corigliano, G, Gaeta, I, Armentano, V, Calatola, P, Capuano, G, Angiulli, B, Auletta, P, Petraroli, E, Iodice, Ce, Agrusta, M., Vaccaro, Olga, Masulli, Maria, Nicolucci, Antonio, Bonora, Enzo, Del Prato, Stefano, Maggioni, Aldo P, Rivellese, Angela A, Squatrito, Sebastiano, Giorda, Carlo B, Sesti, Giorgio, Mocarelli, Paolo, Lucisano, Giuseppe, Sacco, Michele, Signorini, Stefano, Cappellini, Fabrizio, Perriello, Gabriele, Babini, Anna Carla, Lapolla, Annunziata, Gregori, Giovanna, Giordano, Carla, Corsi, Laura, Buzzetti, Raffaella, Clemente, Gennaro, Di Cianni, Graziano, Iannarelli, Rossella, Cordera, Renzo, La Macchia, Olga, Zamboni, Chiara, Scaranna, Cristiana, Boemi, Massimo, Iovine, Ciro, Lauro, Davide, Leotta, Sergio, Dall'Aglio, Elisabetta, Cannarsa, Emanuela, Tonutti, Laura, Pugliese, Giuseppe, Bossi, Antonio C, Anichini, Roberto, Dotta, Francesco, Di Benedetto, Antonino, Citro, Giuseppe, Antenucci, Daniela, Ricci, Lucia, Giorgino, Francesco, Santini, Costanza, Gnasso, Agostino, De Cosmo, Salvatore, Zavaroni, Donatella, Vedovato, Monica, Consoli, Agostino, Calabrese, Maria, Di Bartolo, Paolo, Fornengo, Paolo, Riccardi, Gabriele, Maggioni, Aldo Pietro, D'Angelo, Federica, Giansanti, Roberto, Tanase, Laura, Lanari, Luigi, Testa, Ivano, Pancani, Francesca, Ranchelli, Anna, Vagheggi, Paolo, Scatona, Alessia, Fontana, Lucia, Laviola, Luigi, Tarantino, Lucia, Ippolito, Claudia, Gigantelli, Vittoria, Manicone, Mariangela, Conte, Eleonora, Trevisan, Roberto, Rota, Rossella, Corsi, Anna, Dodesini, Alessandro R., Reggiani, Giulio Marchesini, Montesi, Luca, Mazzella, Natalia, Forlani, Gabriele, Caselli, Chiara, Di Luzio, Raffaella, Mazzotti, Arianna, Aiello, Antimo, Barrea, Angelina, Musto, Antonio, D'Amico, Fiorentina, Sinagra, Tiziana, Longhitano, Sara, Trowpea, Vanessa, Sparti, Maria, Italia, Salvatore, Lisi, Enrico, Grasso, Giuseppe, Pezzino, Vincenzo, Insalaco, Federica, Carallo, Claudio, Scicchitano, Caterina, De Franceschi, Maria Serena, Calbucci, Giovanni, Ripani, Raffaella, Cuneo, Giacomo, Corsi, Simona, Giorda, Carlo B., Romeo, Francesco, Lesina, Annalisa, Comoglio, Marco, Bonetto, Caterina, Robusto, Anna, Nada, Elisa, Asprino, Vincenzo, Cetraro, Rosa, Impieri, Michelina, Lucchese, Giuseppe, Donnarumma, Giovanna, Tizio, Biagio, Lenza, Lazzaro, Paraggio, Pia, Tomasi, Franco, Dozio, Nicoletta, Scalambra, Egle, Mannucci, Edoardo, Lamanna, Caterina, Cignarelli, Mauro, Macchia, Olga La, Fariello, Stefania, Sorrentino, Maria Rosaria, Franzetti, Ivano, Radin, Raffaella, Annunziata, Francesca, Bonabello, Laura Affinito, Durante, Arianna, Dolcino, Mara, Gallo, Fiorenza, Mazzucchelli, Chiara, Aleo, Anna, Melga, Pierluigi, Briatore, Lucia, Maggi, Davide, Storace, Daniela, Cecoli, Francesca, D'Ugo, Ercole, Pupillo, Mario, Baldassarre, Maria Pompea Antonia, Salvati, Filippo, Minnucci, Anita, De Luca, Angelo, Zugaro, Antonella, Santarelli, Livia, Bosco, Angela, Petrella, Vittorio, La Verghetta, Grazia Giovanna, De Gregorio, Antonella, D'Andrea, Settimio, Giuliani, Anna Elisa, Polidoro, W. Lorella, Sperandio, Alessandra, Sciarretta, Filomena, Pezzella, Alfonso, Carlone, Angela, Potenziani, Stella, Venditti, Chiara, Foffi, Chiara, Carbone, Salvatore, Cipolloni, Laura, Moretti, Chiara, Leto, Gaetano, Serra, Rosalia, Petrachi, Francesca, Romano, Isabella, Lacaria, Emilia, Russo, Laura, Goretti, Chiara, Sannino, Claudia, Dolci, Maria, Bruselli, Laura, Mori, Mary L., Baccetti, Fabio, Del Freo, Maria, Cucinotta, Domenico, Giunta, Loretta, Ruffo, Maria Concetta, Cannizzaro, Desiree, Pintaudi, Basilio, Perrone, Giovanni, Pata, Pietro, Ragonese, Francesco, Lettina, Gabriele, Mancuso, Teresa, Coppolino, Aldo, Piatti, Pier Marco, Monti, Lucilla, Stuccillo, Michela, Lucotti, Pietro, Setola, Manuela, Crippa, Giulia Valentina, Loi, Cinzia, Oldani, Matteo, Bottalico, Maria Luisa, Pellegata, Beatrice, Bonomo, Matteo, Menicatti, Laura Silvia Maria, Resi, Veronica, Bertuzzi, Federico, Disoteo, Eugenia Olga, Pizzi, Gianluigi, Rivellese, Angela Albarosa, Annuzzi, Giovanni, Capaldo, Brunella, Nappo, Rossella, Auciello, Stefania Michela, Turco, Anna Amelia, Costagliola, Lucia, Corte, Giuseppina Della, Vallefuoco, Pasquale, Nappi, Francesca, Vitale, Marilena, Cocozza, Sara, Ciano, Ornella, Massimino, Elena, Garofalo, Nadia, Avogaro, Angelo, Guarneri, Gabriella, Fedele, Domenico, Sartor, Giovanni, Chilelli, Nino Cristiano, Burlina, Silvia, Bonsembiante, Barbara, Galluzzo, Aldo, Torregrossa, Vittoria, Mancastroppa, Giovanni, Arsenio, Leone, Cioni, Federico, Caronna, Silvana, Papi, Matteo, Babini, Massimiliano, Santeusanio, Fausto, Calagreti, Gioia, Timi, Alessia, Tantucci, Alice, Marino, Cecilia, Ginestra, Federica, Di Biagio, Rosamaria, Taraborelli, Merilda, Miccoli, Roberto, Bianchi, Cristina, Garofolo, Monia, Politi, Konstantina Savina, Penno, Giuseppe, Livraga, Stefania, Calzoni, Fabio, Mancastroppa, Giovanni Luigi Francesco, Corsini, Elisa, Tedeschi, Anna, Gaglianã², Maria Sole, Ippolito, Giulio, Salutini, Elisabetta, Cervellino, Francesco, Natale, Maria, Salvatore, Vita, Zampino, Armando, Sinisi, Rosa, Arcangeli, Adolfo, Zogheri, Alessia, Guizzotti, Sandra, Longo, Rossella, Pellicano, Francesca, Scolozzi, Patrizia, Termine, Simona, Luberto, Alessandra, Ballardini, Giorgio, Trojani, Cristina, Mazzuca, Paolo, Bruglia, Matteo, Ciamei, Monica, Genghini, Silvia, Zannoni, Chiara, Vitale, Martina, Rangel, Graziela, Salvi, Laura, Zappaterreno, Alessandra, Cordone, Samantha, Simonelli, Paola, Meggiorini, Marilla, Frasheri, Aurora, Di Pippo, Clelia, Maglio, Cristina, Mazzitelli, Giulia, Rinaldi, Maria Elena, Galli, Angelica, Romano, Maria, D'Angelo, Paola, Suraci, Concetta, Bacci, Simonetta, Palena, Antonio Pio, Genovese, Stefano, Mancino, Monica, Rondinelli, Maurizio, Capone, Filippo, Calabretto, Elisabetta, Bulgheroni, Monica, Bucciarelli, Loredana, Ceccarelli, Elena, Fondelli, Cecilia, Santacroce, Clorinda, Guarino, Elisa, Nigi, Laura, Lalli, Carlo, Di Vizia, Giovanni, Scarponi, Maura, Montani, Valeria, Di Bernardino, Paolo, Romagni, Paola, Dolcetti, Katia, Forte, Elisa, Tamburo, Lucilla, Perin, Paolo Cavallo, Prinzis, Tania, Gruden, Gabriella, Bruno, Graziella, Zucco, Chiara, Perotta, Massimo, Marena, Saverio, Monsignore, Simona, Panero, Francesco, Ponzi, Fulvia, Bossi, Antonio Carlo, Carpinteri, Rita, Casagrande, Maria Linda, Coletti, Maria Francesca, Balini, Annalisa, Filopanti, Marcello, Madaschi, Sara, Pulcina, Anna, Grimaldi, Franco, Venturini, Giorgio, Agus, Sandra, Pagnutti, Stefania, Guidotti, Francesca, Cavarape, Alessandro, Cigolini, Massimo, Pichiri, Isabella, Brangani, Corinna, Fainelli, Giulia, Tomasetto, Elena, Zoppini, Giacomo, Galletti, Anna, Perrone, Dominica, Capra, Claudio, Bianchini, Francesca, Ceseri, Martina, Di Nardo, Barbara, Sasso, Elisa, Bartolomei, Barbara, Suliman, Irina, Fabbri, Gianna, Romano, Geremia, Maturo, Nicola, Nunziata, Giuseppe, Capobianco, Giuseppe, De Simone, Giuseppina, Villa, Valeria, Rota, Giuseppe, Pentangelo, Carmine, Carbonara, Ornella, Caiazzo, Gennaro, Cutolo, Michele, Sorrentino, Tommasina, Mastrilli, Valeria, Amelia, Umberto, Masi, Stefano, Corigliano, Gerardo, Gaeta, Iole, Armentano, Vincenzo, Calatola, Pasqualino, Capuano, Gelsomina, Angiulli, Bruno, Auletta, Pasquale, Petraroli, Ettore, Iodice, Cinzia E., Agrusta, Mariano, Vaccaro, O, Masulli, M, Nicolucci, A, Bonora, E, Del Prato, S, Maggioni, A, Rivellese, A, Squatrito, S, Giorda, C, Sesti, G, Mocarelli, P, Lucisano, G, Sacco, M, Signorini, S, Cappellini, F, Perriello, G, Babini, A, Lapolla, A, Gregori, G, Giordano, C, Corsi, L, Buzzetti, R, Clemente, G, Di Cianni, G, Iannarelli, R, Cordera, R, La Macchia, O, Zamboni, C, Scaranna, C, Boemi, M, Iovine, C, Lauro, D, Leotta, S, Dall'Aglio, E, Cannarsa, E, Tonutti, L, Pugliese, G, Bossi, A, Anichini, R, Dotta, F, Di Benedetto, A, Citro, G, Antenucci, D, Ricci, L, Giorgino, F, Santini, C, Gnasso, A, De Cosmo, S, Zavaroni, D, Vedovato, M, Consoli, A, Calabrese, M, di Bartolo, P, Fornengo, P, Riccardi, G, D'Angelo, F, Giansanti, R, Tanase, L, Lanari, L, Testa, I, Pancani, F, Ranchelli, A, Vagheggi, P, Scatona, A, Fontana, L, Laviola, L, Tarantino, L, Ippolito, C, Gigantelli, V, Manicone, M, Conte, E, Trevisan, R, Rota, R, Dodesini, A, Reggiani, G, Montesi, L, Mazzella, N, Forlani, G, Caselli, C, Di Luzio, R, Mazzotti, A, Aiello, A, Barrea, A, Musto, A, D'Amico, F, Sinagra, T, Longhitano, S, Trowpea, V, Sparti, M, Italia, S, Lisi, E, Grasso, G, Pezzino, V, Insalaco, F, Carallo, C, Scicchitano, C, De Franceschi, M, Calbucci, G, Ripani, R, Cuneo, G, Corsi, S, Romeo, F, Lesina, A, Comoglio, M, Bonetto, C, Robusto, A, Nada, E, Asprino, V, Cetraro, R, Impieri, M, Lucchese, G, Donnarumma, G, Tizio, B, Lenza, L, Paraggio, P, Tomasi, F, Dozio, N, Scalambra, E, Mannucci, E, Lamanna, C, Cignarelli, M, Macchia, O, Fariello, S, Sorrentino, M, Franzetti, I, Radin, R, Annunziata, F, Bonabello, L, Durante, A, Dolcino, M, Gallo, F, Mazzucchelli, C, Aleo, A, Melga, P, Briatore, L, Maggi, D, Storace, D, Cecoli, F, D'Ugo, E, Pupillo, M, Baldassarre, M, Salvati, F, Minnucci, A, De Luca, A, Zugaro, A, Santarelli, L, Bosco, A, Petrella, V, La Verghetta, G, D'Andrea, S, Giuliani, A, Polidoro, W, Sperandio, A, Sciarretta, F, Pezzella, A, Carlone, A, Potenziani, S, Venditti, C, Foffi, C, Carbone, S, Cipolloni, L, Moretti, C, Leto, G, Serra, R, Petrachi, F, Romano, I, Lacaria, E, Russo, L, Goretti, C, Sannino, C, Dolci, M, Bruselli, L, Mori, M, Baccetti, F, Del Freo, M, Cucinotta, D, Giunta, L, Ruffo, M, Cannizzaro, D, Pintaudi, B, Perrone, G, Pata, P, Ragonese, F, Lettina, G, Mancuso, T, Coppolino, A, Piatti, P, Monti, L, Stuccillo, M, Lucotti, P, Setola, M, Crippa, G, Loi, C, Oldani, M, Bottalico, M, Pellegata, B, Bonomo, M, Menicatti, L, Resi, V, Bertuzzi, F, Disoteo, E, Pizzi, G, Annuzzi, G, Capaldo, B, Nappo, R, Auciello, S, Turco, A, Costagliola, L, Corte, G, Vallefuoco, P, Nappi, F, Vitale, M, Cocozza, S, Ciano, O, Massimino, E, Garofalo, N, Avogaro, A, Guarneri, G, Fedele, D, Sartore, G, Chilelli, N, Burlina, S, Bonsembiante, B, Galluzzo, A, Torregrossa, V, Mancastroppa, G, Arsenio, L, Cioni, F, Caronna, S, Papi, M, Santeusanio, F, Calagreti, G, Timi, A, Tantucci, A, Marino, C, Ginestra, F, Di Biagio, R, Taraborelli, M, Miccoli, R, Bianchi, C, Garofolo, M, Politi, K, Penno, G, Livraga, S, Calzoni, F, Corsini, E, Tedeschi, A, Gagliano, M, Ippolito, G, Salutini, E, Cervellino, F, Natale, M, Salvatore, V, Zampino, A, Sinisi, R, Arcangeli, A, Zogheri, A, Guizzotti, S, Longo, R, Pellicano, F, Scolozzi, P, Termine, S, Luberto, A, Ballardini, G, Trojani, C, Mazzuca, P, Bruglia, M, Ciamei, M, Genghini, S, Zannoni, C, Rangel, G, Salvi, L, Zappaterreno, A, Cordone, S, Simonelli, P, Meggiorini, M, Frasheri, A, Di Pippo, C, Maglio, C, Mazzitelli, G, Rinaldi, M, Galli, A, Romano, M, D'Angelo, P, Suraci, C, Bacci, S, Palena, A, Genovese, S, Mancino, M, Rondinelli, M, Capone, F, Calabretto, E, Bulgheroni, M, Bucciarelli, L, Ceccarelli, E, Fondelli, C, Santacroce, C, Guarino, E, Nigi, L, Lalli, C, Di Vizia, G, Scarponi, M, Montani, V, Di Bernardino, P, Romagni, P, Dolcetti, K, Forte, E, Tamburo, L, Perin, P, Prinzis, T, Gruden, G, Bruno, G, Zucco, C, Perotta, M, Marena, S, Monsignore, S, Panero, F, Ponzi, F, Carpinteri, R, Casagrande, M, Coletti, M, Balini, A, Filopanti, M, Madaschi, S, Pulcina, A, Grimaldi, F, Venturini, G, Agus, S, Pagnutti, S, Guidotti, F, Cavarape, A, Cigolini, M, Pichiri, I, Brangani, C, Fainelli, G, Tomasetto, E, Zoppini, G, Galletti, A, Perrone, D, Capra, C, Bianchini, F, Ceseri, M, Di Nardo, B, Sasso, E, Bartolomei, B, Suliman, I, Fabbri, G, Romano, G, Maturo, N, Nunziata, G, Capobianco, G, De Simone, G, Villa, V, Rota, G, Pentangelo, C, Carbonara, O, Caiazzo, G, Cutolo, M, Sorrentino, T, Mastrilli, V, Amelia, U, Masi, S, Corigliano, G, Gaeta, I, Armentano, V, Calatola, P, Capuano, G, Angiulli, B, Auletta, P, Petraroli, E, Iodice, C, Agrusta, M, di Bartolo, Paolo, Polidoro, w Lorella, Sartore, Giovanni, and Gaglianò, Maria Sole
- Subjects
Male ,Diabetes and Metabolism, ipoglycemic drugs, cardiovascualr event ,Settore MED/09 - Medicina Interna ,endocrine system diseases ,IMPACT ,pioglitazone versus sulfonylureas ,Endocrinology, Diabetes and Metabolism ,GLIMEPIRIDE ,Diabetes, cardiovascular events, metformin, pioglitazone, sulphonylureas ,Type 2 diabetes ,030204 cardiovascular system & hematology ,Internal Medicine ,Endocrinology ,law.invention ,Settore MED/13 - Endocrinologia ,Glibenclamide ,0302 clinical medicine ,Randomized controlled trial ,law ,GLYCEMIC CONTROL ,Gliclazide ,Internal medicine ,diabetes and metabolism ,RISK ,education.field_of_study ,diabetes ,Incidence ,endocrinology, diabetes and metabolism ,endocrinology ,Middle Aged ,INSULIN ,Metformin ,Treatment Outcome ,Editorial ,sulphonylureas ,Cardiovascular Diseases ,Combination ,Drug Therapy, Combination ,Female ,Type 2 ,medicine.drug ,medicine.medical_specialty ,Population ,030209 endocrinology & metabolism ,Aged ,Diabetes Mellitus, Type 2 ,Humans ,Hypoglycemic Agents ,Pioglitazone ,Sulfonylurea Compounds ,Thiazolidinediones ,Cardiovascular events ,03 medical and health sciences ,GLUCOSE-LOWERING DRUGS ,Drug Therapy ,Diabetes Mellitus ,medicine ,sulfonylureas ,education ,TOSCA.IT ,business.industry ,MORTALITY ,nutritional and metabolic diseases ,Insulin resistance ,medicine.disease ,Surgery ,Glimepiride ,business ,FOLLOW-UP - Abstract
Background The best treatment option for patients with type 2 diabetes in whom treatment with metformin alone fails to achieve adequate glycaemic control is debated. We aimed to compare the long-term effects of pioglitazone versus sulfonylureas, given in addition to metformin, on cardiovascular events in patients with type 2 diabetes. Methods TOSCA.IT was a multicentre, randomised, pragmatic clinical trial, in which patients aged 50â75 years with type 2 diabetes inadequately controlled with metformin monotherapy (2â3 g per day) were recruited from 57 diabetes clinics in Italy. Patients were randomly assigned (1:1), by permuted blocks randomisation (block size 10), stratified by site and previous cardiovascular events, to add-on pioglitazone (15â45 mg) or a sulfonylurea (5â15 mg glibenclamide, 2â6 mg glimepiride, or 30â120 mg gliclazide, in accordance with local practice). The trial was unblinded, but event adjudicators were unaware of treatment assignment. The primary outcome, assessed with a Cox proportional-hazards model, was a composite of first occurrence of all-cause death, non-fatal myocardial infarction, non-fatal stroke, or urgent coronary revascularisation, assessed in the modified intention-to-treat population (all randomly assigned participants with baseline data available and without any protocol violations in relation to inclusion or exclusion criteria). This study is registered with ClinicalTrials.gov, number NCT00700856. Findings Between Sept 18, 2008, and Jan 15, 2014, 3028 patients were randomly assigned and included in the analyses. 1535 were assigned to pioglitazone and 1493 to sulfonylureas (glibenclamide 24 [2%], glimepiride 723 [48%], gliclazide 745 [50%]). At baseline, 335 (11%) participants had a previous cardiovascular event. The study was stopped early on the basis of a futility analysis after a median follow-up of 57·3 months. The primary outcome occurred in 105 patients (1·5 per 100 person-years) who were given pioglitazone and 108 (1·5 per 100 person-years) who were given sulfonylureas (hazard ratio 0·96, 95% CI 0·74â1·26, p=0·79). Fewer patients had hypoglycaemias in the pioglitazone group than in the sulfonylureas group (148 [10%] vs 508 [34%], p
- Published
- 2017
- Full Text
- View/download PDF
6. Addition of either pioglitazone or a sulfonylurea in type 2 diabetic patients inadequately controlled with metformin alone: impact on cardiovascular events. A randomized controlled trial
- Author
-
Vaccaro, O, Masulli, M, Bonora, E, Del Prato, S, Giorda, Cb, Maggioni, Ap, Mocarelli, P, Nicolucci, A, Rivellese, Aa, Squatrito, S, Riccardi, G, IT study group, T. O. S. C. A., Sud, Cm, Imbaro, S, Garofalo, N, Ferrannini, E, Howard, B, Gerdts, E, Imperatore, G, Tavazzi, L, Pellegrini, F, Fabbri, G, Levantesi, G, Turazza, F, Gentile, S, Panico, S, Brambilla, P, Signorini, S, Cappellini, F, Parma, C, D'Alonzo, D, Di Nardo, B, Ferrari, S, Franciosi, M, Pecce, R, Valentini, M, Ceseri, M, Bianchini, F, Baldini, E, Atzori, A, Boemi, M, D'Angelo, F, Giansanti, R, Ricci, L, Ranchelli, A, Di Berardino, P, Cannarsa, E, Giorgino, F, Manicone, M, Tarantino, L, Trevisan, R, Scaranna, C, Forlani, G, Montesi, L, Aiello, A, Barrea, A, Sinagra, T, Longhitano, S, Sesti, G, Gnasso, A, Carallo, C, Scicchitano, C, Santini, C, Calbucci, G, Ripani, R, Corsi, L, Corsi, S, Romeo, F, Asprino, V, Donnarumma, G, Tizio, B, Clemente, G, Tomasi, F, Dozio, N, Mannucci, E, Lamanna, C, Cignarelli, M, Macchia, Ol, Fariello, S, Cordera, R, Mazzucchelli, C, Pupillo, M, Zugaro, A, Bosco, A, De Luca, A, Iannarelli, R, Giuliani, A, Polidoro, L, Sperandio, A, Sciarretta, F, Raffaella, B, Venditti, C, Di Cianni, G, Goretti, C, Dolci, Ma, Bruselli, L, Mori, M, Baccetti, F, Gregori, G, Venezia, A, Cucinotta, D, Pintaudi, B, Ragonese, F, Pata, P, Piatti, Pm, Luccotti, P, Orsi, E, Bonomo, M, Menicatti, L, Turco, Aa, Ciano, O, Vallefuoco, P, Corigliano, G, Pentangelo, C, Petraroli, E, Auletta, P, Carbonara, O, Capobianco, G, Caiazzo, G, Angiulli, B, De Simone, G, Michele, C, Mastrilli, V, Nunziata, G, Romano, G, Gaeta, I, Sorrentino, T, Iovine, C, Nappi, F, Paolisso, G, Rizzo, Mr, Avogaro, A, Vedovato, M, Lapolla, A, Sartore, G, Burlina, S, Chilelli, Nc, Galluzzoy, A, Giordano, C, Torregrossa, V, Arsenio, L, Dall'Aglio, E, Cioni, F, Babini, M, Moncastroppa, G, Perriello, G, Timi, A, Consoli, A, Ginestra, F, Zavaroni, D, Calzoni, F, Miccoli, R, Bianchi, C, Politi, S, Anichini, R, Tedeschi, A, Citro, G, Zampino, A, Rosa, S, Natale, M, Giocoli, Cl, Caruso, E, Tramontano, L, Imbroinise, A, Perna, Cd, Calabrese, M, Zogheri, A, Luberto, A, Ballardini, G, Babini, Ac, Zannoni, C, Pugliese, G, Salvi, L, Mazzitelli, G, Zappaterreno, A, Frontoni, S, Ventricini, A, Lauro, D, Galli, A, Rinaldi, Me, Leotta, S, Fontana, L, Goretti, S, Pozzilli, P, Leonetti, F, Morano, S, Filetti, S, Cosmo, Sd, Bacci, S, Palena, Ap, Calatola, P, Capuano, G, Amelia, U, Dotta, Francesco, Guarino, E, Ceccarelli, E, Lalli, C, Scarponi, M, Forte, E, Potenziani, S, Perin, Pc, Marena, S, Zucco, C, Perotto, M, Bossi, A, Filopanti, M, Grimaldi, F, Tonutti, L, Cavarape, A, Cigolini, M, Pichiri, I, Brangani, C, Tomasetto, E, Capra, C, Cigolini, M., Vaccaro, O1, Masulli, M, Bonora, E, Del Prato, S, Giorda, Cb, Maggioni, Ap, Mocarelli, P, Nicolucci, A, Rivellese, Aa, Squatrito, S, Riccardi, G, Collaborators Riccardi G, T. O. S. C. A. IT study g. r. o. u. p., Sud, Cm, Imbaro, S, Vaccaro, O, Garofalo, N, Ferrannini, E, Howard, B, Gerdts, E, Imperatore, G, Tavazzi, L, Pellegrini, F, Fabbri, G, Levantesi, G, Turazza, F, Gentile, Sandro, Panico, S, Brambilla, P, Signorini, S, Cappellini, F, Parma, C, D'Alonzo, D, Di Nardo, B, Ferrari, S, Franciosi, M, Pecce, R, Valentini, M, Ceseri, M, Bianchini, F, Baldini, E, Atzori, A, Boemi, M, D'Angelo, F, Giansanti, R, Ricci, L, Ranchelli, A, Di Berardino, P, Cannarsa, E, Giorgino, F, Manicone, M, Tarantino, L, Trevisan, R, Scaranna, C, Forlani, G, Montesi, L, Aiello, A, Barrea, A, Sinagra, T, Longhitano, S, Sesti, G, Gnasso, A, Carallo, C, Scicchitano, C, Santini, C, Calbucci, G, Ripani, R, Corsi, L, Corsi, S, Romeo, F, Asprino, V, Donnarumma, G, Tizio, B, Clemente, G, Tomasi, F, Dozio, N, Mannucci, E, Lamanna, C, Cignarelli, M, Macchia, Ol, Fariello, S, Cordera, R, Mazzucchelli, C, Pupillo, M, Zugaro, A, Bosco, A, De Luca, A, Iannarelli, R, Giuliani, A, Polidoro, L, Sperandio, A, Sciarretta, F, Raffaella, B, Venditti, C, Di Cianni, G, Goretti, C, Dolci, Ma, Bruselli, L, Mori, M, Baccetti, F, Gregori, G, Venezia, A, Cucinotta, D, Pintaudi, B, Ragonese, F, Pata, P, Piatti, Pm, Luccotti, P, Orsi, E, Bonomo, M, Menicatti, L, Turco, Aa, Ciano, O, Vallefuoco, P, Corigliano, G, Pentangelo, C, Petraroli, E, Auletta, P, Carbonara, O, Capobianco, G, Caiazzo, G, Angiulli, B, De Simone, G, Michele, C, Mastrilli, V, Nunziata, G, Romano, G, Gaeta, I, Sorrentino, T, Iovine, C, Nappi, F, Paolisso, Giuseppe, Rizzo, Maria Rosaria, Avogaro, A, Vedovato, M, Lapolla, A, Sartore, G, Burlina, S, Chilelli, Nc, Galluzzoy, A, Giordano, C, Torregrossa, V, Arsenio, L, Dall'Aglio, E, Cioni, F, Babini, M, Moncastroppa, G, Perriello, G, Timi, A, Consoli, A, Ginestra, F, Zavaroni, D, Calzoni, F, Miccoli, R, Bianchi, C, Politi, S, Anichini, R, Tedeschi, A, Citro, G, Zampino, A, Rosa, S, Natale, M, Giocoli, Cl, Caruso, E, Tramontano, L, Imbroinise, A, Perna, Cd, Calabrese, M, Zogheri, A, Luberto, A, Ballardini, G, Babini, Ac, Zannoni, C, Pugliese, G, Salvi, L, Mazzitelli, G, Zappaterreno, A, Frontoni, S, Ventricini, A, Lauro, D, Galli, A, Rinaldi, Me, Leotta, S, Fontana, L, Goretti, S, Pozzilli, P, Leonetti, F, Morano, S, Filetti, S, Cosmo, Sd, Bacci, S, Palena, Ap, Calatola, P, Capuano, G, Amelia, U, Dotta, F, Guarino, E, Ceccarelli, E, Lalli, C, Scarponi, M, Forte, E, Potenziani, S, Perin, Pc, Marena, S, Zucco, C, Perotto, M, Bossi, A, Filopanti, M, Grimaldi, F, Tonutti, L, Cavarape, A, Cigolini, M, Pichiri, I, Brangani, C, Tomasetto, E, Capra, C, Cigolini M., Author information, Vaccaro, Olga, Masulli, Maria, Rivellese, ANGELA ALBAROSA, Riccardi, Gabriele, Giorda, C, Maggioni, A, Rivellese, A, Giorda, CB, Maggioni, AP, and Rivellese, AA
- Subjects
Blood Glucose ,Male ,BIO/12 - BIOCHIMICA CLINICA E BIOLOGIA MOLECOLARE CLINICA ,Endocrinology, Diabetes and Metabolism ,pioglitazone, sulfonylurea, type 2 diabetes, metformin, cardiovascular events ,Medicine (miscellaneous) ,Type 2 diabetes ,Settore MED/13 - Endocrinologia ,Body Mass Index ,law.invention ,Randomized controlled trial ,Risk Factors ,law ,Surveys and Questionnaires ,Cardiovascular Disease ,pioglitazone ,piogllitazone ,Stroke ,Diabetes, Therapy, Pioglitazone ,Nutrition and Dietetics ,Diabetes ,Thiazolidinedione ,cardiovascular events ,Type 2 Diabetes Mellitus ,sulphonylureas ,Middle Aged ,Metformin ,Sulfonylurea Compound ,Treatment Outcome ,Tolerability ,Cardiovascular Diseases ,Drug Therapy, Combination ,Female ,type 2 diabetes ,Cardiology and Cardiovascular Medicine ,Human ,medicine.drug ,medicine.medical_specialty ,Endpoint Determination ,sulfonylurea ,cardiovascualr event ,Sudden death ,Follow-Up Studie ,Internal medicine ,Diabetes mellitus ,medicine ,Humans ,Hypoglycemic Agents ,sulfonylureas ,interventio trial ,randomized controlled trial ,Aged ,Hypoglycemic Agent ,Questionnaire ,business.industry ,Risk Factor ,medicine.disease ,Surgery ,Sulfonylurea Compounds ,Diabetes Mellitus, Type 2 ,Quality of Life ,Thiazolidinediones ,Therapy ,business ,metformin ,Pioglitazone ,Follow-Up Studies - Abstract
Background and aims Metformin is the first-line therapy in type 2 diabetes. In patients inadequately controlled with metformin, the addition of a sulfonylurea or pioglitazone are equally plausible options to improve glycemic control. However, these drugs have profound differences in their mechanism of action, side effects, and impact on cardiovascular risk factors. A formal comparison of these two therapies in terms of cardiovascular morbidity and mortality is lacking. The TOSCA.IT study was designed to explore the effects of adding pioglitazone or a sulfonylurea on cardiovascular events in type 2 diabetic patients inadequately controlled with metformin. Methods Multicentre, randomized, open label, parallel group trial of 48 month duration. Type 2 diabetic subjects, 50–75 years, BMI 20–45 Kg/m 2 , on secondary failure to metformin monotherapy will be randomized to add-on a sulfonylurea or pioglitazone. The primary efficacy outcome is a composite endpoint of all-cause mortality, nonfatal myocardial infarction, nonfatal stroke, and unplanned coronary revascularization. Principal secondary outcome is a composite ischemic endpoint of sudden death, fatal and non-fatal myocardial infarction and stroke, endovascular or surgical intervention on the coronary, leg or carotid arteries, major amputations. Side effects, quality of life and economic costs will also be evaluated. Efficacy, safety, tolerability, and study conduct will be monitored by an independent Data Safety Monitoring Board. End points will be adjudicated by an independent external committee. Conclusions TOSCA.IT is the first on-going study investigating the head-to-head comparison of adding a sulfonylurea or pioglitazone to existing metformin treatment in terms of hard cardiovascular outcomes. Registration: Clinicaltrials.gov ID NCT00700856.
- Published
- 2012
7. Oral hypoglycemic drugs: pathophysiological basis of their mechanism of action
- Author
-
Lorenzati, B, Zucco, C, Miglietta, S, Lamberti, F, and Bruno, Graziella
- Published
- 2010
8. What is the clinical usefulness of the metabolic syndrome? A large population-based study
- Author
-
Bruno, Graziella, Fornengo, P, Segre, O, Novelli, G, Panero, F, Perotto, M, Zucco, C, Bargero, G, and CAVALLO PERIN, Paolo
- Published
- 2009
9. C-reactive protein and 5-year survival in type 2 diabetes: the Casale Monferrato Study
- Author
-
Bruno, Graziella, Fornengo, P, Novelli, G, Panero, F, Perotto, M, Segre, O, Zucco, C, Deambrogio, P, Bargero, G, and CAVALLO PERIN, Paolo
- Published
- 2009
10. Acknowledgments
- Author
-
Cannataro, M., Guzzi, P.H., Agapito, G., Zucco, C., and Milano, M.
- Published
- 2022
- Full Text
- View/download PDF
11. Prescriptions costs and socioeconomic differences in prevalence of diabetes: the population-based Torino study
- Author
-
Bruno, Graziella, Karaghiosoff, L, Pomero, F, Segre, O, Zucco, C, Merletti, Franco, Costa, Giuseppe, and Gnavi, R.
- Published
- 2007
12. What is the clinical usefulness of the metabolic syndrome? The Casale Monferrato study.
- Author
-
Bruno G, Fornengo P, Segre O, Novelli G, Panero F, Perotto M, Zucco C, Bargero G, and Cavallo-Perin P
- Published
- 2009
- Full Text
- View/download PDF
13. C-reactive protein and 5-year survival in type 2 diabetes: the Casale Monferrato Study.
- Author
-
Bruno G, Fornengo P, Novelli G, Panero F, Perotto M, Segre O, Zucco C, Deambrogio P, Bargero G, Perin PC, Bruno, Graziella, Fornengo, Paolo, Novelli, Giulia, Panero, Francesco, Perotto, Massimo, Segre, Olivia, Zucco, Chiara, Deambrogio, PierCarlo, Bargero, Giuseppe, and Perin, Paolo Cavallo
- Abstract
Objective: To determine to what extent plasma C-reactive protein (CRP) values influence 5-year all-cause and cardiovascular mortality in type 2 diabetic individuals, independently of albumin excretion rate (AER) and other cardiovascular risk factors, and its incremental usefulness for predicting individual risk of mortality.Research Design and Methods: Measurements of CRP were performed in 2,381 of 3,249 (73.3%) subjects as part of the population-based Casale Monferrato Study. Its association with 5-year all-cause and cardiovascular mortality was assessed with multivariate Cox proportional hazards modeling. The C statistic and measures of calibration and global fit were also assessed.Results: Results are based on 496 deaths in 11.717 person-years of observations (median follow-up 5.4 years). With respect to subjects with CRP < or =3 mg/l, those with higher values had an adjusted hazard ratio (HR) of 1.51 (95% CI 1.18-1.92) for all-cause mortality and 1.44 (0.99-2.08) for cardiovascular mortality. In normoalbuminuric subjects, respective HRs of CRP were 1.56 (1.13-2.15) and 1.65 (1.00-2.74), AER being neither a modifier nor a confounder of CRP association. In analysis limited to diabetic subjects without cardiovascular disease (CVD), adjusted HRs were 1.67 (1.24-2.24) for all-cause mortality and 1.36 (0.83-2.24) for cardiovascular mortality. The improvement in individual risk assessment was marginal when measured with various statistical measures of model discrimination, calibration, and global fit.Conclusions: CRP measurement is independently associated with short-term mortality risk in type 2 diabetic individuals, even in normoalbuminuric subjects and in those without a previous diagnosis of CVD. Its clinical usefulness in individual assessment of 5-year risk of mortality, however, is limited. [ABSTRACT FROM AUTHOR]- Published
- 2009
- Full Text
- View/download PDF
14. Bis(μ-acetato){μ-2,6-bis[(2-hydroxybenzyl)-(2-pyridylmethyl)aminomethyl]-4-methylphenolato}diindium(III) nitrate dihydrate.
- Author
-
Bortoluzzi, A. J., Neves, A., Vencato, I., Zucco, C., and Hörner, M.
- Published
- 1999
- Full Text
- View/download PDF
15. 1-Chloro-2,4-dimorpholino-5-nitrobenzene.
- Author
-
Zucco, C., Neves, A., Vencato, I., Szpoganicz, B., and Bertoldi, F. C.
- Published
- 1999
- Full Text
- View/download PDF
16. ChemInform Abstract: The Reactions of 2,2,2-Trichloro-1-phenylethanone with O, C, and S Nucleophiles.
- Author
-
HESS, S. C., NOME, F., ZUCCO, C., and REZENDE, M. C.
- Published
- 1990
- Full Text
- View/download PDF
17. ChemInform Abstract: Carboxylation of Arenes.
- Author
-
MENEGHELI, P., REZENDE, M. C., and ZUCCO, C.
- Published
- 1988
- Full Text
- View/download PDF
18. ChemInform Abstract: Kinetic and Thermodynamic Parameters for the Alcoholysis of 2,2,2-Trichloro-1-arylethanones.
- Author
-
UIEARA, M., ZUCCO, C., ZANETTE, D., REZENDE, M. C., and NOME, F.
- Published
- 1987
- Full Text
- View/download PDF
19. ChemInform Abstract: Aromatic Nucleophilic Substitutions under Microwave Irradiation.
- Author
-
SALMORIA, G. V., DALL'OGLIO, E., and ZUCCO, C.
- Published
- 1998
- Full Text
- View/download PDF
20. ChemInform Abstract: The Reaction of Hexachloroacetone with Diamines.
- Author
-
REZENDE, M. C., MARQUES, C. A., DALL'OGLIO, E. L., and ZUCCO, C.
- Published
- 1997
- Full Text
- View/download PDF
21. ChemInform Abstract: Mechanism of Reaction of Hydroxide Ion with Dinitrochlorobenzenes.
- Author
-
BACALOGLU, R., BLASKO, A., BUNTON, C., DORWIN, E., ORTEGA, F., and ZUCCO, C.
- Published
- 1991
- Full Text
- View/download PDF
22. ChemInform Abstract: Generation of Simple Enols in Solution.
- Author
-
CAPON, B., GUO, B.-Z., KWOK, F. C., SIDDHANTA, A. K., and ZUCCO, C.
- Published
- 1988
- Full Text
- View/download PDF
23. ChemInform Abstract: Mechanistic Studies on the Basic Hydrolysis of 2,2,2-Trichloro-1-arylethanones.
- Author
-
ZUCCO, C., LIMA, C. F., REZENDE, M. C., VIANNA, J. F., and NOME, F.
- Published
- 1988
- Full Text
- View/download PDF
24. ChemInform Abstract: The Use of 2,2,2-Trichloro-1-arylethanones as Benzoylating Agents.
- Author
-
REBELO, R. A., REZENDE, M. C., NOME, F., and ZUCCO, C.
- Published
- 1988
- Full Text
- View/download PDF
25. Effects of offshore wind farm construction and operation on harbour porpoises and seals in Denmark
- Author
-
Teilmann, J., Tougaard, J., Carstensen, J., Edren, Susi M.C., Dietz, R., Skov, H., Henriksen, O. D., Zucco, C., Wende, W., Merck, T., Köchling, I., and Köppel, J.
- Published
- 2006
26. Assessing the effects and impacts of offshore wind farms on seabirds and resting birds
- Author
-
Fox, A. D., Desholm, M., Kahlert, J., Petersen, I. K., Christensen, T. K., Zucco, C., Wende, W., Merck, T., Köchling, I., and Köppel, J.
- Published
- 2006
27. Investigating Topic Modeling Techniques to Extract Meaningful Insights in Italian Long COVID Narration.
- Author
-
Scarpino I, Zucco C, Vallelunga R, Luzza F, and Cannataro M
- Abstract
Through an adequate survey of the history of the disease, Narrative Medicine (NM) aims to allow the definition and implementation of an effective, appropriate, and shared treatment path. In the present study different topic modeling techniques are compared, as Latent Dirichlet Allocation (LDA) and topic modeling based on BERT transformer, to extract meaningful insights in the Italian narration of COVID-19 pandemic. In particular, the main focus was the characterization of Post-acute Sequelae of COVID-19, (i.e., PASC) writings as opposed to writings by health professionals and general reflections on COVID-19, (i.e., non-PASC) writings, modeled as a semi-supervised task. The results show that the BERTopic-based approach outperforms the LDA-base approach by grouping in the same cluster the 97.26% of analyzed documents, and reaching an overall accuracy of 91.97%.
- Published
- 2022
- Full Text
- View/download PDF
28. An Extensive Assessment of Network Embedding in PPI Network Alignment.
- Author
-
Milano M, Zucco C, Settino M, and Cannataro M
- Abstract
Network alignment is a fundamental task in network analysis. In the biological field, where the protein-protein interaction (PPI) is represented as a graph, network alignment allowed the discovery of underlying biological knowledge such as conserved evolutionary pathways and functionally conserved proteins throughout different species. A recent trend in network science concerns network embedding, i.e., the modelling of nodes in a network as a low-dimensional feature vector. In this survey, we present an overview of current PPI network embedding alignment methods, a comparison among them, and a comparison to classical PPI network alignment algorithms. The results of this comparison highlight that: (i) only five network embeddings for network alignment algorithms have been applied in the biological context, whereas the literature presents several classical network alignment algorithms; (ii) there is a need for developing an evaluation framework that may enable a unified comparison between different algorithms; (iii) the majority of the proposed algorithms perform network embedding through matrix factorization-based techniques; (iv) three out of five algorithms leverage external biological resources, while the remaining two are designed for domain agnostic network alignment and tested on PPI networks; (v) two algorithms out of three are stated to perform multi-network alignment, while the remaining perform pairwise network alignment.
- Published
- 2022
- Full Text
- View/download PDF
29. International Comparisons of Harmonized Laboratory Value Trajectories to Predict Severe COVID-19: Leveraging the 4CE Collaborative Across 342 Hospitals and 6 Countries: A Retrospective Cohort Study.
- Author
-
Weber GM, Hong C, Palmer NP, Avillach P, Murphy SN, Gutiérrez-Sacristán A, Xia Z, Serret-Larmande A, Neuraz A, Omenn GS, Visweswaran S, Klann JG, South AM, Loh NHW, Cannataro M, Beaulieu-Jones BK, Bellazzi R, Agapito G, Alessiani M, Aronow BJ, Bell DS, Bellasi A, Benoit V, Beraghi M, Boeker M, Booth J, Bosari S, Bourgeois FT, Brown NW, Bucalo M, Chiovato L, Chiudinelli L, Dagliati A, Devkota B, DuVall SL, Follett RW, Ganslandt T, García Barrio N, Gradinger T, Griffier R, Hanauer DA, Holmes JH, Horki P, Huling KM, Issitt RW, Jouhet V, Keller MS, Kraska D, Liu M, Luo Y, Lynch KE, Malovini A, Mandl KD, Mao C, Maram A, Matheny ME, Maulhardt T, Mazzitelli M, Milano M, Moore JH, Morris JS, Morris M, Mowery DL, Naughton TP, Ngiam KY, Norman JB, Patel LP, Pedrera Jimenez M, Ramoni RB, Schriver ER, Scudeller L, Sebire NJ, Serrano Balazote P, Spiridou A, Tan AL, Tan BW, Tibollo V, Torti C, Trecarichi EM, Vitacca M, Zambelli A, Zucco C, Kohane IS, Cai T, and Brat GA
- Abstract
Objectives: To perform an international comparison of the trajectory of laboratory values among hospitalized patients with COVID-19 who develop severe disease and identify optimal timing of laboratory value collection to predict severity across hospitals and regions., Design: Retrospective cohort study., Setting: The Consortium for Clinical Characterization of COVID-19 by EHR (4CE), an international multi-site data-sharing collaborative of 342 hospitals in the US and in Europe., Participants: Patients hospitalized with COVID-19, admitted before or after PCR-confirmed result for SARS-CoV-2., Primary and Secondary Outcome Measures: Patients were categorized as "ever-severe" or "never-severe" using the validated 4CE severity criteria. Eighteen laboratory tests associated with poor COVID-19-related outcomes were evaluated for predictive accuracy by area under the curve (AUC), compared between the severity categories. Subgroup analysis was performed to validate a subset of laboratory values as predictive of severity against a published algorithm. A subset of laboratory values (CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin) was compared between North American and European sites for severity prediction., Results: Of 36,447 patients with COVID-19, 19,953 (43.7%) were categorized as ever-severe. Most patients (78.7%) were 50 years of age or older and male (60.5%). Longitudinal trajectories of CRP, albumin, LDH, neutrophil count, D-dimer, and procalcitonin showed association with disease severity. Significant differences of laboratory values at admission were found between the two groups. With the exception of D-dimer, predictive discrimination of laboratory values did not improve after admission. Sub-group analysis using age, D-dimer, CRP, and lymphocyte count as predictive of severity at admission showed similar discrimination to a published algorithm (AUC=0.88 and 0.91, respectively). Both models deteriorated in predictive accuracy as the disease progressed. On average, no difference in severity prediction was found between North American and European sites., Conclusions: Laboratory test values at admission can be used to predict severity in patients with COVID-19. Prediction models show consistency across international sites highlighting the potential generalizability of these models., Competing Interests: COMPETING INTEREST STATEMENT There are no competing interests to report.
- Published
- 2021
- Full Text
- View/download PDF
30. COVID-19 Community Temporal Visualizer: a new methodology for the network-based analysis and visualization of COVID-19 data.
- Author
-
Milano M, Zucco C, and Cannataro M
- Abstract
Understanding the evolution of the spread of the COVID-19 pandemic requires the analysis of several data at the spatial and temporal levels. Here, we present a new network-based methodology to analyze COVID-19 data measures containing spatial and temporal features and its application on a real dataset. The goal of the methodology is to analyze sets of homogeneous datasets (i.e. COVID-19 data taken in different periods and in several regions) using a statistical test to find similar/dissimilar datasets, mapping such similarity information on a graph and then using a community detection algorithm to visualize and analyze the spatio-temporal evolution of data. We evaluated diverse Italian COVID-19 data made publicly available by the Italian Protezione Civile Department at https://github.com/pcm-dpc/COVID-19/. Furthermore, we considered the climate data related to two periods and we integrated them with COVID-19 data measures to detect new communities related to climate changes. In conclusion, the application of the proposed methodology provides a network-based representation of the COVID-19 measures by highlighting the different behaviour of regions with respect to pandemics data released by Protezione Civile and climate data. The methodology and its implementation as R function are publicly available at https://github.com/mmilano87/analyzeC19D., Competing Interests: Conflict of interestThe authors declare that they have not conflict of interests., (© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2021.)
- Published
- 2021
- Full Text
- View/download PDF
31. COVID-WAREHOUSE: A Data Warehouse of Italian COVID-19, Pollution, and Climate Data.
- Author
-
Agapito G, Zucco C, and Cannataro M
- Subjects
- COVID-19, Coronavirus Infections virology, Environmental Pollution, Humans, Italy, Pneumonia, Viral virology, Public Health, SARS-CoV-2, Wind, Betacoronavirus isolation & purification, Climate, Coronavirus Infections epidemiology, Data Warehousing, Pandemics, Pneumonia, Viral epidemiology
- Abstract
The management of the COVID-19 pandemic presents several unprecedented challenges in different fields, from medicine to biology, from public health to social science, that may benefit from computing methods able to integrate the increasing available COVID-19 and related data (e.g., pollution, demographics, climate, etc.). With the aim to face the COVID-19 data collection, harmonization and integration problems, we present the design and development of COVID-WAREHOUSE, a data warehouse that models, integrates and stores the COVID-19 data made available daily by the Italian Protezione Civile Department and several pollution and climate data made available by the Italian Regions. After an automatic ETL (Extraction, Transformation and Loading) step, COVID-19 cases, pollution measures and climate data, are integrated and organized using the Dimensional Fact Model, using two main dimensions: time and geographical location. COVID-WAREHOUSE supports OLAP (On-Line Analytical Processing) analysis, provides a heatmap visualizer, and allows easy extraction of selected data for further analysis. The proposed tool can be used in the context of Public Health to underline how the pandemic is spreading, with respect to time and geographical location, and to correlate the pandemic to pollution and climate data in a specific region. Moreover, public decision-makers could use the tool to discover combinations of pollution and climate conditions correlated to an increase of the pandemic, and thus, they could act in a consequent manner. Case studies based on data cubes built on data from Lombardia and Puglia regions are discussed. Our preliminary findings indicate that COVID-19 pandemic is significantly spread in regions characterized by high concentration of particulate in the air and the absence of rain and wind, as even stated in other works available in literature.
- Published
- 2020
- Full Text
- View/download PDF
32. A Comprehensive Machine-Learning-Based Software Pipeline to Classify EEG Signals: A Case Study on PNES vs. Control Subjects.
- Author
-
Varone G, Gasparini S, Ferlazzo E, Ascoli M, Tripodi GG, Zucco C, Calabrese B, Cannataro M, and Aguglia U
- Subjects
- Algorithms, Humans, Seizures physiopathology, Support Vector Machine, Electroencephalography methods, Machine Learning, Seizures diagnosis, Software
- Abstract
The diagnosis of psychogenic nonepileptic seizures (PNES) by means of electroencephalography (EEG) is not a trivial task during clinical practice for neurologists. No clear PNES electrophysiological biomarker has yet been found, and the only tool available for diagnosis is video EEG monitoring with recording of a typical episode and clinical history of the subject. In this paper, a data-driven machine learning (ML) pipeline for classifying EEG segments (i.e., epochs) of PNES and healthy controls (CNT) is introduced. This software pipeline consists of a semiautomatic signal processing technique and a supervised ML classifier to aid clinical discriminative diagnosis of PNES by means of an EEG time series. In our ML pipeline, statistical features like the mean, standard deviation, kurtosis, and skewness are extracted in a power spectral density (PSD) map split up in five conventional EEG rhythms (delta, theta, alpha, beta, and the whole band, i.e., 1-32 Hz). Then, the feature vector is fed into three different supervised ML algorithms, namely, the support vector machine (SVM), linear discriminant analysis (LDA), and Bayesian network (BN), to perform EEG segment classification tasks for CNT vs. PNES. The performance of the pipeline algorithm was evaluated on a dataset of 20 EEG signals (10 PNES and 10 CNT) that was recorded in eyes-closed resting condition at the Regional Epilepsy Centre, Great Metropolitan Hospital of Reggio Calabria, University of Catanzaro, Italy. The experimental results showed that PNES vs. CNT discrimination tasks performed via the ML algorithm and validated with random split (RS) achieved an average accuracy of 0.97 ± 0.013 (RS-SVM), 0.99 ± 0.02 (RS-LDA), and 0.82 ± 0.109 (RS-BN). Meanwhile, with leave-one-out (LOO) validation, an average accuracy of 0.98 ± 0.0233 (LOO-SVM), 0.98 ± 0.124 (LOO-LDA), and 0.81 ± 0.109 (LOO-BN) was achieved. Our findings showed that BN was outperformed by SVM and LDA. The promising results of the proposed software pipeline suggest that it may be a valuable tool to support existing clinical diagnosis., Competing Interests: All the authors declare no conflict of interest.
- Published
- 2020
- Full Text
- View/download PDF
33. Delayed discharge: a rising cause of concern in general internal medicine wards.
- Author
-
Panero F, Gruden G, Zucco C, Prinzis T, Perotto M, Greco E, and Bruno G
- Subjects
- Aged, Aged, 80 and over, Female, Humans, Internal Medicine statistics & numerical data, Italy, Male, Regression Analysis, Statistics, Nonparametric, Time Factors, Length of Stay statistics & numerical data, Patient Discharge statistics & numerical data
- Published
- 2013
34. Oral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of ActionOral Hypoglycemic Drugs: Pathophysiological Basis of Their Mechanism of Action.
- Author
-
Lorenzati B, Zucco C, Miglietta S, Lamberti F, and Bruno G
- Abstract
Type 2 diabetes is a syndrome characterized by relative insulin deficiency, insulin resistance and increased hepatic glucose output. Medications used to treat the disease are designed to correct one or more of these metabolic abnormalities. Current recommendations of the American Diabetes Association (ADA) and European Association for the Study of Diabetes (EASD) include diet and exercise as first-line therapy plus hypoglycemic drugs. Actually there are seven distinct classes of anti-hyperglicemic agents, each of them displaying unique pharmacologic properties. The aim of this review is to describe the pathophysiological basis of their mechanism of action, a necessary step to individualize treatment of diabetic people, taking into proper consideration potential benefits and secondary effects of drugs.
- Published
- 2010
- Full Text
- View/download PDF
35. Fasting plasma C-peptide and micro- and macrovascular complications in a large clinic-based cohort of type 1 diabetic patients.
- Author
-
Panero F, Novelli G, Zucco C, Fornengo P, Perotto M, Segre O, Grassi G, Cavallo-Perin P, and Bruno G
- Subjects
- Adult, Age of Onset, Blood Pressure, Body Mass Index, Cardiovascular Diseases epidemiology, Cohort Studies, Diabetes Mellitus, Type 1 physiopathology, Diabetic Nephropathies epidemiology, Diabetic Neuropathies epidemiology, Fasting, Female, Humans, Hypertension epidemiology, Insulin-Secreting Cells metabolism, Italy, Male, Multivariate Analysis, Odds Ratio, Regression Analysis, C-Peptide blood, Diabetes Mellitus, Type 1 blood, Diabetes Mellitus, Type 1 complications, Diabetic Angiopathies epidemiology
- Abstract
Objective: A protective effect of residual beta-cell function on microvascular complications of type 1 diabetes has been suggested. Our aim was to retrospectively evaluate the association of fasting plasma C-peptide values with micro- and macrovascular complications., Research Design and Methods: We recruited a clinic-based cohort of 471 type 1 diabetic patients born after 1945 and cared for in the period 1994-2004. Centralized measurements and standardized procedures of ascertainment of micro- and macrovascular complications were employed. Individual cumulative averages of A1C up to 2007 were calculated., Results: Residual beta-cell secretion was detected even many years after diabetes diagnosis. In multivariate linear regression analysis, fasting plasma C-peptide values were positively associated with age at diagnosis (beta = 0.02; P < 0.0001) and triglycerides (beta = 0.20; P = 0.05) and inversely associated with diabetes duration (beta = -0.03; P < 0.0001) and HDL cholesterol (beta = -0.006; P = 0.03). The final model explained 21% of fasting C-peptide variability. With respect to fasting C-peptide values in the lowest tertile (<0.06 nmol/l), higher values were associated with lower prevalence of microvascular complications (odds ratio [OR] 0.59 [95% CI 0.37-0.94]) independently of age, sex, diabetes duration, individual cumulative A1C average during the study period, hypertension, and cardiovascular diseases. No association was evident with macrovascular complications (0.77 [0.38-1.58])., Conclusions: Our study shows an independent protective effect of residual beta-cell function on the development of microvascular complications in type 1 diabetes, suggesting the potential beneficial effect of treatment that allows the preservation of even modest beta-cell function over time.
- Published
- 2009
- Full Text
- View/download PDF
36. Structural characterization of beta-glucans of Agaricus brasiliensis in different stages of fruiting body maturity and their use in nutraceutical products.
- Author
-
Camelini CM, Maraschin M, de Mendonça MM, Zucco C, Ferreira AG, and Tavares LA
- Subjects
- Agaricus growth & development, Dietary Supplements, Magnetic Resonance Spectroscopy, Spectroscopy, Fourier Transform Infrared, Spores, Fungal growth & development, Agaricus chemistry, Spores, Fungal chemistry, beta-Glucans analysis
- Abstract
beta-Glucans of Agaricus brasiliensis fruiting bodies in different stages of maturity were isolated and characterized by FTIR and NMR. These fractions had greater amount of (1-->6)-beta-glucan and the (1-->3)-beta-glucan increased with fruiting bodies maturation. Yields of beta-glucans increased from 42 mg beta-glucans g(-1) fruiting bodies (dry wt) in immature stage to 43 mg g(-1) in mature stage with immature spores, and decreased to 40 mg g(-1) in mature stage with spore maturation. Mature fruiting bodies, which included these glucans, have potential therapeutical benefits for use in nutraceutical products.
- Published
- 2005
- Full Text
- View/download PDF
37. Phosphate diester hydrolysis and DNA damage promoted by new cis-aqua/hydroxy copper(II) complexes containing tridentate imidazole-rich ligands.
- Author
-
Scarpellini M, Neves A, Hörner R, Bortoluzzi AJ, Szpoganics B, Zucco C, Nome Silva RA, Drago V, Mangrich AS, Ortiz WA, Passos WA, de Oliveira MC, and Terenzi H
- Subjects
- Anaerobiosis, Animals, Cattle, Crystallography, X-Ray, DNA chemistry, DNA drug effects, DNA genetics, Electron Spin Resonance Spectroscopy, Esters chemistry, Hydrolysis, Indicators and Reagents, Kinetics, Ligands, Magnetic Resonance Spectroscopy, Magnetics, Models, Molecular, Molecular Conformation, Plasmids genetics, Potentiometry, Spectrophotometry, Infrared, Copper chemistry, DNA Damage drug effects, Imidazoles chemistry, Imidazoles pharmacology, Organometallic Compounds chemistry, Phosphates chemistry
- Abstract
The tridentate Schiff base [(2-(imidazol-4-yl)ethyl)(1-methylimidazol-2-yl)methyl)imine (HISMIMI) and its reduced form HISMIMA were synthesized and characterized, as well their mononuclear cis-dihalo copper(II) complexes 1 and 2, respectively. In addition, the dinuclear [CuII(mu-OH)2CuII](2+) complexes (3) and (4) obtained from complexes 1 and 2, respectively, were also isolated and characterized by several physicochemical techniques, including magnetochemistry, electrochemistry, and EPR and UV-vis spectroscopies. The crystal structures of 1 and 2 were determined by X-ray crystallography and revealed two neutral complexes with their tridentate chelate ligands meridionally coordinated. Completing the coordination spheres of the square-pyramidal structures, a chloride ion occupies the apical position and another is bonded in the basal plane. In addition, complexes 1 and 2 were investigated by infrared, electronic, and EPR spectroscopies, cyclic voltammetry, and potentiometric equilibrium studies. The hydrolytic activity on phosphate diester cleavage of 1 and 2 was investigated utilizing 2,4-BDNPP as substrate. These experiments were carried out at 50 degrees C, and the data treatment was based on the Michaelis-Menten approach, giving the following kinetic parameters (complex 1/complex 2): vmax (mol L(-1) s(-1))=16.4x10(-9)/7.02x10(-9); KM (mol L(-1))=17.3x10(-3)/3.03x10(-3); kcat (s(-1))=3.28x10(-4)/1.40x10(-4). Complex 1 effectively promoted the hydrolytic cleavage of double-strand plasmid DNA under anaerobic and aerobic conditions, with a rate constant of 0.28 h(-1) for the decrease of form I, which represents about a 10(7) rate increase compared with the estimated uncatalyzed rate of hydrolysis.
- Published
- 2003
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.