594 results on '"Zhu, X. Y."'
Search Results
2. Hyperbolic exciton polaritons in a van der Waals magnet
- Author
-
Ruta, Francesco L., Zhang, Shuai, Shao, Yinming, Moore, Samuel L., Acharya, Swagata, Sun, Zhiyuan, Qiu, Siyuan, Geurs, Johannes, Kim, Brian S. Y., Fu, Matthew, Chica, Daniel G., Pashov, Dimitar, Xu, Xiaodong, Xiao, Di, Delor, Milan, Zhu, X-Y., Millis, Andrew J., Roy, Xavier, Hone, James C., Dean, Cory R., Katsnelson, Mikhail I., van Schilfgaarde, Mark, and Basov, D. N.
- Published
- 2023
- Full Text
- View/download PDF
3. Optical spin hall effect in exciton–polariton condensates in lead halide perovskite microcavities.
- Author
-
Xiang, Bo, Li, Yiliu, Spencer, M. S., Dai, Yanan, Bai, Yusong, Basov, Dmitri N., and Zhu, X.-Y.
- Subjects
SPIN Hall effect ,BOSE-Einstein condensation ,LEAD halides ,CIRCULAR polarization ,QUANTUM fluids ,PEROVSKITE ,FLUX pinning - Abstract
An exciton–polariton condensate is a hybrid light–matter state in the quantum fluid phase. The photonic component endows it with characters of spin, as represented by circular polarization. Spin-polarization can form stochastically for quasi-equilibrium exciton–polariton condensates at parallel momentum vector k
|| ∼ 0 from bifurcation or deterministically for propagating condensates at k|| > 0 from the optical spin-Hall effect (OSHE). Here, we report deterministic spin-polarization in exciton–polariton condensates at k|| ∼ 0 in microcavities containing methylammonium lead bromide perovskite (CH3 NH3 PbBr3 ) single crystals under non-resonant and linearly polarized excitation. We observe two energetically split condensates with opposite circular polarizations and attribute this observation to the presence of strong birefringence, which introduces a large OSHE at k|| ∼ 0 and pins the condensates in a particular spin state. Such spin-polarized exciton–polariton condensates may serve not only as circularly polarized laser sources but also as effective alternatives to ultracold atom Bose–Einstein condensates in quantum simulators of many-body spin–orbit coupling processes. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF
4. Simultaneous macroscale and microscale wave–ion interaction in near-earth space plasmas
- Author
-
Liu, Z.-Y., Zong, Q.-G., Rankin, R., Zhang, H., Wang, Y. F., Zhou, X.-Z., Fu, S.-Y., Yue, C., Zhu, X.-Y., Pollock, C. J., Fuselier, S. A., and Le, G.
- Published
- 2022
- Full Text
- View/download PDF
5. Decoding ultrafast polarization responses in lead halide perovskites by the two-dimensional optical Kerr effect
- Author
-
Maehrlein, Sebastian F., Joshi, Prakriti P., Huber, Lucas, Wang, Feifan, Cherasse, Marie, Liu, Yufeng, Juraschek, Dominik M., Mosconi, Edoardo, Meggiolaro, Daniele, De Angelis, Filippo, and Zhu, X.-Y.
- Published
- 2021
6. Stereochemical expression of ns2 electron pairs in metal halide perovskites
- Author
-
Fu, Yongping, Jin, Song, and Zhu, X.-Y.
- Published
- 2021
- Full Text
- View/download PDF
7. Amplitude analysis and branching fraction measurement of Ds+→ K−K+π+π+π−
- Author
-
Ablikim, M., Achasov, M. N., Adlarson, P., Ahmed, S., Albrecht, M., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, X. H., Bai, Y., Bakina, O., Baldini Ferroli, R., Balossino, I., Ban, Y., Begzsuren, K., Berger, N., Bertani, M., Bettoni, D., Bianchi, F., Bloms, J., Bortone, A., Boyko, I., Briere, R. A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Chelkov, G., Chen, D. Y., Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, X. R., Chen, Y. B., Chen, Z. J, Cheng, W. S., Cibinetto, G., Cossio, F., Cui, X. F., Dai, H. L., Dai, X. C., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, Y., Dong, C., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, S. X., Fan, Y. L., Fang, J., Fang, S. S., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fritsch, M., Fu, C. D., Gao, Y., Gao, Y., Gao, Y., Gao, Y. G., Garzia, I., Ge, P. T., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Greco, M., Gu, L. M., Gu, M. H., Gu, S., Gu, Y. T., Guan, C. Y, Guo, A. Q., Guo, L. B., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. L., Heinsius, F. H., Heinz, C. H., Held, T., Heng, Y. K., Herold, C., Himmelreich, M., Holtmann, T., Hou, G. Y., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Z., Hussain, T., Hüsken, N, Ikegami Andersson, W., Imoehl, W., Irshad, M., Jaeger, S., Janchiv, S., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jiang, H. B., Jiang, X. S., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., Kalantar-Nayestanaki, N., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Keshk, I. K., Khoukaz, A., Kiese, P., Kiuchi, R., Kliemt, R., Koch, L., Kolcu, O. B., Kopf, B., Kuemmel, M., Kuessner, M., Kupsc, A., Kurth, M. G., Kühn, W., Lane, J. J., Lange, J. S., Larin, P., Lavania, A., Lavezzi, L., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H., Li, H. B., Li, H. J., Li, J. L., Li, J. Q., Li, J. S., Li, Ke, Li, L. K., Li, Lei, Li, P. R., Li, S. Y., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Z. Y., Liang, H., Liang, H., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Lin, C. X., Liu, B. J., Liu, C. X., Liu, D., Liu, F. H., Liu, Fang, Liu, Feng, Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, L., Liu, M. H., Liu, P. L., Liu, Q., Liu, Q., Liu, S. B., Liu, Shuai, Liu, T., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. D., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Luo, C. L., Luo, M. X., Luo, P. W., Luo, T., Luo, X. L., Lyu, X. R., Ma, F. C., Ma, H. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. X., Ma, X. Y., Maas, F. E., Maggiora, M., Maldaner, S., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Min, T. J., Mitchell, R. E., Mo, X. H., Mo, Y. J., Muchnoi, N. Yu, Muramatsu, H., Nakhoul, S., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Pathak, A., Patteri, P., Pelizaeus, M., Peng, H. P., Peters, K., Pettersson, J., Ping, J. L., Ping, R. G., Poling, R., Prasad, V., Qi, H., Qi, H. R., Qi, K. H., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qian, Z., Qiao, C. F., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Rashid, K. H., Ravindran, K., Redmer, C. F., Rivetti, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Rump, M., Sang, H. S., Sarantsev, A., Schelhaas, Y., Schnier, C., Schoenning, K., Scodeggio, M., Shan, D. C., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, M., Shen, C. P., Shen, H. F., Shen, P. X., Shen, X. Y., Shi, H. C., Shi, R. S., Shi, X., Shi, X. D, Song, J. J., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Su, K. X., Su, P. P., Sui, F. F., Sun, G. X., Sun, H. K., Sun, J. F., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, W. Y., Sun, X, Sun, Y. J., Sun, Y. K., Sun, Y. Z., Sun, Z. T., Tan, Y. H., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y. T., Uman, I., Wang, B., Wang, C. W., Wang, D. Y., Wang, H. J., Wang, H. P., Wang, K., Wang, L. L., Wang, M., Wang, M. Z., Wang, Meng, Wang, W., Wang, W. H., Wang, W. P., Wang, X., Wang, X. F., Wang, X. L., Wang, Y., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. Q., Wang, Y. Y., Wang, Z., Wang, Z. Y., Wang, Ziyi, Wang, Zongyuan, Wei, D. H., Weidner, F., Wen, S. P., White, D. J., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, Z., Xia, L., Xiao, H., Xiao, S. Y., Xiao, Z. J., Xie, X. H., Xie, Y. G., Xie, Y. H., Xing, T. Y., Xu, G. F., Xu, Q. J., Xu, W., Xu, X. P., Xu, Y. C., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, Xu, Yang, H. J., Yang, H. X., Yang, L., Yang, S. L., Yang, Y. X., Yang, Yifan, Yang, Zhi, Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yuan, C. Z., Yuan, L., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, X., Zeng, Y., Zhang, A. Q., Zhang, B. X., Zhang, Guangyi, Zhang, H., Zhang, H. H., Zhang, H. H., Zhang, H. Y., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, S., Zhang, S. F., Zhang, Shulei, Zhang, X. D., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Yan, Zhang, Yao, Zhang, Z. H., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, Q., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, Y., Zheng, Y. H., Zhong, B., Zhong, C., Zhou, L. P., Zhou, Q., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, S. H., Zhu, T. J., Zhu, W. J., Zhu, W. J., Zhu, X. Y., Zhu, Y. C., Zhu, Z. A., Zou, B. S., and Zou, J. H.
- Published
- 2022
- Full Text
- View/download PDF
8. Amplitude analysis and branching-fraction measurement of Ds+→ π+π0η′
- Author
-
Ablikim, M., Achasov, M. N., Adlarson, P., Ahmed, S., Albrecht, M., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, X. H., Bai, Y., Bakina, O., Ferroli, R. B., Balossino, I., Ban, Y., Begzsuren, K., Berger, N., Bertani, M., Bettoni, D., Bianchi, F., Bloms, J., Bortone, A., Boyko, I., Briere, R. A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Chelkov, G., Chen, D. Y., Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, X. R., Chen, Y. B., Chen, Z. J., Cheng, W. S., Cibinetto, G., Cossio, F., Cui, X. F., Dai, H. L., Dai, X. C., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, Y., Dong, C., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, S. X., Fan, Y. L., Fang, J., Fang, S. S., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fritsch, M., Fu, C. D., Gao, Y., Gao, Y., Gao, Y., Gao, Y. G., Garzia, I., Ge, P. T., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Greco, M., Gu, L. M., Gu, M. H., Gu, S., Gu, Y. T., Guan, C. Y., Guo, A. Q., Guo, L. B., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. L., Heinsius, F. H., Heinz, C. H., Held, T., Heng, Y. K., Herold, C., Himmelreich, M., Holtmann, T., Hou, G. Y., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Z., Hussain, T., Hüsken, N., Andersson, W. I., Imoehl, W., Irshad, M., Jaeger, S., Janchiv, S., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jiang, H. B., Jiang, X. S., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., Kalantar-Nayestanaki, N., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Keshk, I. K., Khoukaz, A., Kiese, P., Kiuchi, R., Kliemt, R., Koch, L., Kolcu, O. B., Kopf, B., Kuemmel, M., Kuessner, M., Kupsc, A., Kurth, M. G., Kühn, W., Lane, J. J., Lange, J. S., Larin, P., Lavania, A., Lavezzi, L., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, C., Li, D. M., Li, F., Li, G., Li, H., Li, H., Li, H. B., Li, H. J., Li, J. L., Li, J. Q., Li, J. S., Li, K., Li, L. K., Li, L., Li, P. R., Li, S. Y., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, X., Li, Z. Y., Liang, H., Liang, H., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Lin, C. X., Liu, B. J., Liu, C. X., Liu, D., Liu, F. H., Liu, F., Liu, F., Liu, H. B., Liu, H. M., Liu, H., Liu, H., Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, L., Liu, M. H., Liu, P. L., Liu, Q., Liu, Q., Liu, S. B., Liu, S., Liu, T., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. D., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Luo, C. L., Luo, M. X., Luo, P. W., Luo, T., Luo, X. L., Lyu, X. R., Ma, F. C., Ma, H. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. X., Ma, X. Y., Maas, F. E., Maggiora, M., Maldaner, S., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Min, T. J., Mitchell, R. E., Mo, X. H., Mo, Y. J., Muchnoi, N. Y., Muramatsu, H., Nakhoul, S., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Pathak, A., Patteri, P., Pelizaeus, M., Peng, H. P., Peters, K., Pettersson, J., Ping, J. L., Ping, R. G., Poling, R., Prasad, V., Qi, H., Qi, H. R., Qi, K. H., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qian, Z., Qiao, C. F., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Rashid, K. H., Ravindran, K., Redmer, C. F., Rivetti, A., Rodin, V., Rolo, M., Rong, G., Rosner, C., Rump, M., Sang, H. S., Sarantsev, A., Schelhaas, Y., Schnier, C., Schoenning, K., Scodeggio, M., Shan, D. C., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, M., Shen, C. P., Shen, H. F., Shen, P. X., Shen, X. Y., Shi, H. C., Shi, R. S., Shi, X., Shi, X. D., Song, J. J., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Su, K. X., Su, P. P., Sui, F. F., Sun, G. X., Sun, H. K., Sun, J. F., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, W. Y., Sun, X., Sun, Y. J., Sun, Y. K., Sun, Y. Z., Sun, Z. T., Tan, Y. H., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y. T., Uman, I., Wang, B., Wang, C. W., Wang, D. Y., Wang, H. J., Wang, H. P., Wang, K., Wang, L. L., Wang, M., Wang, M. Z., Wang, M., Wang, W., Wang, W. H., Wang, W. P., Wang, X., Wang, X. F., Wang, X. L., Wang, Y., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. Q., Wang, Y. Y., Wang, Z., Wang, Z. Y., Wang, Z., Wang, Z., Wei, D. H., Weidner, F., Wen, S. P., White, D. J., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, Z., Xia, L., Xiao, H., Xiao, S. Y., Xiao, Z. J., Xie, X. H., Xie, Y. G., Xie, Y. H., Xing, T. Y., Xu, G. F., Xu, Q. J., Xu, W., Xu, X. P., Xu, Y. C., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, X., Yang, H. J., Yang, H. X., Yang, L., Yang, S. L., Yang, Y. X., Yang, Y., Yang, Z., Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yuan, C. Z., Yuan, L., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, X. Z., Zeng, Y., Zhang, A. Q., Zhang, B. X., Zhang, G., Zhang, H., Zhang, H. H., Zhang, H. H., Zhang, H. Y., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. Y., Zhang, J. Z., Zhang, J., Zhang, J., Zhang, L. M., Zhang, L. Q., Zhang, L., Zhang, S., Zhang, S. F., Zhang, S., Zhang, X. D., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Y., Zhang, Y., Zhang, Z. H., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, L., Zhao, L., Zhao, M. G., Zhao, Q., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, Y., Zheng, Y. H., Zhong, B., Zhong, C., Zhou, L. P., Zhou, Q., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, S. H., Zhu, T. J., Zhu, W. J., Zhu, W. J., Zhu, X. Y., Zhu, Y. C., Zhu, Z. A., Zou, B. S., and Zou, J. H.
- Published
- 2022
- Full Text
- View/download PDF
9. Disorder of excitons and trions in monolayer MoSe2.
- Author
-
Wang, Jue, Manolatou, Christina, Bai, Yusong, Hone, James, Rana, Farhan, and Zhu, X.-Y.
- Subjects
EXCITON theory ,BINDING energy ,OPTICAL spectra ,TRANSITION metals ,SPATIAL variation - Abstract
The optical spectra of transition metal dichalcogenide monolayers are dominated by excitons and trions. Here, we establish the dependence of these optical transitions on the disorder from hyperspectral imaging of h-BN encapsulated monolayer MoSe
2 . While both exciton and trion energies vary spatially, these two quantities are almost perfectly correlated, with spatial variation in the trion binding energy of only ∼0.18 meV. In contrast, variation in the energy splitting between the two lowest energy exciton states is one order of magnitude larger at ∼1.7 meV. Statistical analysis and theoretical modeling reveal that disorder results from dielectric and bandgap fluctuations, not electrostatic fluctuations. Our results shed light on disorder in high quality TMDC monolayers, its impact on optical transitions, and the many-body nature of excitons and trions. [ABSTRACT FROM AUTHOR]- Published
- 2022
- Full Text
- View/download PDF
10. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions
- Author
-
Bai, Yusong, Zhou, Lin, Wang, Jue, Wu, Wenjing, McGilly, Leo J., Halbertal, Dorri, Lo, Chiu Fan Bowen, Liu, Fang, Ardelean, Jenny, Rivera, Pasqual, Finney, Nathan R., Yang, Xu-Chen, Basov, D. N., Yao, Wang, Xu, Xiaodong, Hone, James, Pasupathy, Abhay N., and Zhu, X.-Y.
- Published
- 2020
- Full Text
- View/download PDF
11. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties
- Author
-
Fu, Yongping, Zhu, Haiming, Chen, Jie, Hautzinger, Matthew P., Zhu, X.-Y., and Jin, Song
- Published
- 2019
- Full Text
- View/download PDF
12. Femtosecond exciton dynamics in WSe2 optical waveguides
- Author
-
Sternbach, Aaron J., Latini, Simone, Chae, Sanghoon, Hübener, Hannes, De Giovannini, Umberto, Shao, Yinming, Xiong, Lin, Sun, Zhiyuan, Shi, Norman, Kissin, Peter, Ni, Guang-Xin, Rhodes, Daniel, Kim, Brian, Yu, Nanfang, Millis, Andrew J., Fogler, Michael M., Schuck, Peter J., Lipson, Michal, Zhu, X.-Y., Hone, James, Averitt, Richard D., Rubio, Angel, and Basov, D. N.
- Published
- 2020
- Full Text
- View/download PDF
13. How lasing happens in CsPbBr3 perovskite nanowires
- Author
-
Schlaus, Andrew P., Spencer, Michael S., Miyata, Kiyoshi, Liu, Fang, Wang, Xiaoxia, Datta, Ipshita, Lipson, Michal, Pan, Anlian, and Zhu, X.-Y.
- Published
- 2019
- Full Text
- View/download PDF
14. Do patients with bipolar disorders have an increased risk of myocardial infarction? A systematic review and meta-analysis.
- Author
-
JIANG, C.-Y., ZHU, X.-Y., and WU, J.-L.
- Abstract
OBJECTIVE: Research shows that patients with bipolar disorders (BD) may have an altered risk of cardiovascular diseases; however, the association between the two is not clear. In this study, we reviewed evidence on the association between BD and subsequent risk of myocardial infarction (MI). MATERIALS AND METHODS: Studies published on PubMed, Embase, Scopus, CENTRAL, and Web of Science were identified up to 30th August 2023. Random-effects meta-analysis was done to calculate the pooled odds ratio (OR). RESULTS: A total of six studies with 19,862,894 individuals were included. Of these, 46,627 were diagnosed with BD (0.23%). The median follow-up of the studies varied from 7.6 to 20 years. Meta-analysis of all six studies showed that BD patients do not have a higher risk of MI as compared to the general population (OR: 1.36, 95% CI: 0.99, 1.86). The overall analysis had substantial heterogeneity with I 2 =86%. No publication bias was noted among the studies. Results did not change during sensitivity analysis. CONCLUSIONS: Current evidence fails to show an association between BD and subsequent risk of MI. The high heterogeneity in the meta-analysis and lack of adjustment of all important confounders are significant limitations that need to be overcome by future studies. [ABSTRACT FROM AUTHOR]
- Published
- 2023
15. Determine electric field directions at semiconductor surfaces by femtosecond frequency domain interferometric second harmonic (FDISH) generation
- Author
-
Nelson, C.A. and Zhu, X.-Y.
- Published
- 2016
- Full Text
- View/download PDF
16. Screening in crystalline liquids protects energetic carriers in hybrid perovskites
- Author
-
Zhu, Haiming, Miyata, Kiyoshi, Fu, Yongping, Wang, Jue, Joshi, Prakriti P., Niesner, Daniel, Williams, Kristopher W., Jin, Song, and Zhu, X.-Y.
- Published
- 2016
17. MOLECULAR CLONING AND EXPRESSION OF THE STRESS GENE HSP70 IN THE MARINE CRAB CHARYBDIS JAPONICA (A. MILNE-EDWARDS, 1861) (DECAPODA: BRACHYURA: PORTUNIDAE) IN RESPONSE TO AMMONIA-N, NITRITE-N, AND SULFIDE EXPOSURE
- Author
-
Xu, Xing H., Zhu, X. Y., Xu, Guo C., Xu, Jia T., Tang, Yao, and Huo, Wei
- Published
- 2016
18. Photoemission from excitons in organic semiconductors
- Author
-
Zhu, X.-Y.
- Published
- 2015
- Full Text
- View/download PDF
19. The ultrafast Kerr effect in anisotropic and dispersive media.
- Author
-
Huber, Lucas, Maehrlein, Sebastian F., Wang, Feifan, Liu, Yufeng, and Zhu, X.-Y.
- Subjects
ANISOTROPY ,OPTICAL resonance ,CONDENSED matter ,CRYSTALS ,DEGREES of freedom ,KERR electro-optical effect ,FOUR-wave mixing - Abstract
The ultrafast optical Kerr effect (OKE) is widely used to investigate the structural dynamics and interactions of liquids, solutions, and solids by observing their intrinsic nonlinear temporal responses through nearly collinear four-wave mixing. Non-degenerate mixing schemes allow for background free detection and can provide information on the interplay between a material's internal degrees of freedom. Here, we show a source of temporal dynamics in the OKE signal that is not reflective of the internal degrees of freedom but arises from a group index and momentum mismatch. It is observed in two-color experiments on condensed media with sizable spectral dispersion, a common property near an optical resonance. In particular, birefringence in crystalline solids is able to entirely change the character of the OKE signal via the off-diagonal tensor elements of the nonlinear susceptibility. We develop a detailed description of the phase-mismatched ultrafast OKE and show how to extract quantitative information on the spectrally resolved birefringence and group index from time-resolved experiments in one and two dimensions. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
20. Ferroelectric large polarons
- Author
-
Miyata, Kiyoshi and Zhu, X.-Y.
- Published
- 2018
- Full Text
- View/download PDF
21. Clinical separation of cGvHD and GvL and better GvHD-free/relapse-free survival (GRFS) after unrelated cord blood transplantation for AML
- Author
-
Zheng, C-C, Zhu, X-Y, Tang, B-L, Zhang, X-H, Zhang, L, Geng, L-Q, Liu, H-L, and Sun, Z-M
- Published
- 2017
- Full Text
- View/download PDF
22. Author Correction: Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions
- Author
-
Bai, Yusong, Zhou, Lin, Wang, Jue, Wu, Wenjing, McGilly, Leo J., Halbertal, Dorri, Lo, Chiu Fan Bowen, Liu, Fang, Ardelean, Jenny, Rivera, Pasqual, Finney, Nathan R., Yang, Xu-Chen, Basov, D. N., Yao, Wang, Xu, Xiaodong, Hone, James, Pasupathy, Abhay N., and Zhu, X.-Y.
- Published
- 2020
- Full Text
- View/download PDF
23. Evidence of unconventional pairing in the quasi two-dimensional CuIr$_2$Te$_4$ superconductor
- Author
-
Shang, T., Chen, Y., Xie, W., Gawryluk, D. J., Gupta, R., Khasanov, R., Zhu, X. Y., Zhang, H., Zhen, Z. X., Yu, B. C., Zhou, Z., Xu, Y., Zhan, Q. F., Pomjakushina, E., Yuan, H. Q., and Shiroka, T.
- Subjects
Superconductivity (cond-mat.supr-con) ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed Matter - Superconductivity ,FOS: Physical sciences - Abstract
The CuIr$_{2-x}$Ru$_x$Te$_4$ superconductors (with a $T_c$ around 2.8 K) can host charge-density waves, whose onset and interplay with superconductivity are not well known at a microscopic level. Here, we report a comprehensive study of the $x$ = 0 and 0.05 cases, whose superconductivity was characterized via electrical-resistivity-, magnetization-, and heat-capacity measurements, while their microscopic superconducting properties were studied via muon-spin rotation and relaxation ($\mu$SR). In CuIr$_{2-x}$Ru$_x$Te$_4$, both the temperature-dependent electronic specific heat and the superfluid density (determined via transverse-field $\mu$SR) are best described by a two-gap (s+d)-wave model, comprising a nodeless gap and a gap with nodes. The multigap superconductivity is also supported by the temperature dependence of the upper critical field $H_\mathrm{c2}(T)$. However, under applied pressure, a charge-density-wave order starts to develop and, as a consequence, the superconductivity of CuIr$_2$Te$_4$ achieves a more conventional s-wave character. From a series of experiments, we provide ample evidence that the CuIr$_{2-x}$Ru$_x$Te$_4$ family belongs to the rare cases, where an unconventional superconducting pairing is found near a charge-density-wave quantum critical point., Comment: 10 pages, 12 figures
- Published
- 2022
24. Evidence for Exciton Crystals in a 2D Semiconductor Heterotrilayer
- Author
-
Bai, Yusong, Liu, Song, Guo, Yinjie, Pack, Jordan, Wang, Jue, Dean, Cory R., Hone, James, and Zhu, X. -Y.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed Matter - Mesoscale and Nanoscale Physics ,Mesoscale and Nanoscale Physics (cond-mat.mes-hall) ,FOS: Physical sciences - Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDC) and their moire interfaces have been demonstrated for correlated electron states, including Mott insulators and electron/hole crystals commensurate with moire superlattices. Here we present spectroscopic evidences for ordered bosons - interlayer exciton crystals in a WSe2/MoSe2/WSe2 trilayer, where the enhanced Coulomb interactions over those in heterobilayers have been predicted to result in exciton ordering. While the dipolar interlayer excitons in the heterobilayer may be ordered by the periodic moire traps, their mutual repulsion results in de-trapping at exciton density larger than 10^11 cm^-2 to form mobile exciton gases and further to electron-hole plasmas, both accompanied by broadening in photoluminescence (PL) peaks and large increases in mobility. In contrast, ordered interlayer excitons in the trilayer are characterized by negligible mobility and by sharper PL peaks persisting to nex larger than 10^12 cm^-2. We find that an optically dark state attributed to the predicted quadrupolar exciton crystal transitions to the bright dipolar excitons either with increasing nex or by an applied electric field. These ordered interlayer excitons may serve as models for the exploration of quantum phase transitions and quantum coherent phenomena., 16 pages, 4 figures, SI
- Published
- 2022
25. Amplitude analysis and branching fraction measurement of <math> <msubsup> <mi>D</mi> <mi>s</mi> <mo>+</mo> </msubsup> </math> $$ {D}_s^{+} $$ → K − K + π + π + π −
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ahmed, S., Albrecht, M., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, X. H., Bai, Y., Bakina, O., Ferroli, R. Baldini, Balossino, I., Ban, Y., Begzsuren, K., Berger, N., Bertani, M., Bettoni, D., Bianchi, F., Bloms, J., Bortone, A., Boyko, I., Briere, R. A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Chelkov, G., Chen, D. Y., Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, X. R., Chen, Y. B., Chen, Z. J, Cheng, W. S., Cibinetto, G., Cossio, F., Cui, X. F., Dai, H. L., Dai, X. C., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, Y., Dong, C., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, S. X., Fan, Y. L., Fang, J., Fang, S. S., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fritsch, M., Fu, C. D., Gao, Y., Gao, Y. G., Garzia, I., Ge, P. T., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Greco, M., Gu, L. M., Gu, M. H., Gu, S., Gu, Y. T., Guan, C. Y, Guo, A. Q., Guo, L. B., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. L., Heinsius, F. H., Heinz, C. H., Held, T., Heng, Y. K., Herold, C., Himmelreich, M., Holtmann, T., Hou, G. Y., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Z., Hussain, T., Hüsken, N, Andersson, W. Ikegami, Imoehl, W., Irshad, M., Jaeger, S., Janchiv, S., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jiang, H. B., Jiang, X. S., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., Kalantar-Nayestanaki, N., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Keshk, I. K., Khoukaz, A., Kiese, P., Kiuchi, R., Kliemt, R., Koch, L., Kolcu, O. B., Kopf, B., Kuemmel, M., Kuessner, M., Kupsc, A., Kurth, M. G., Kühn, W., Lane, J. J., Lange, J. S., Larin, P., Lavania, A., Lavezzi, L., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, J. L., Li, J. Q., Li, J. S., Li, Ke, Li, L. K., Li, Lei, Li, P. R., Li, S. Y., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Z. Y., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Lin, C. X., Liu, B. J., Liu, C. X., Liu, D., Liu, F. H., Liu, Fang, Liu, Feng, Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, L., Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, Shuai, Liu, T., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. D., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Luo, C. L., Luo, M. X., Luo, P. W., Luo, T., Luo, X. L., Lyu, X. R., Ma, F. C., Ma, H. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. X., Ma, X. Y., Maas, F. E., Maggiora, M., Maldaner, S., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Min, T. J., Mitchell, R. E., Mo, X. H., Mo, Y. J., Muchnoi, N. Yu., Muramatsu, H., Nakhoul, S., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pelizaeus, M., Peng, H. P., Peters, K., Pettersson, J., Ping, J. L., Ping, R. G., Poling, R., Prasad, V., Qi, H., Qi, H. R., Qi, K. H., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qian, Z., Qiao, C. F., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Rashid, K. H., Ravindran, K., Redmer, C. F., Rivett, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Rump, M., Sang, H. S., Sarantsev, A., Schelhaas, Y., Schnier, C., Schoenning, K., Scodeggio, M., Shan, D. C., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, M., Shen, C. P., Shen, H. F., Shen, P. X., Shen, X. Y., Shi, H. C., Shi, R. S., Shi, X., Shi, X. D, Song, J. J., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Su, K. X., Su, P. P., Sui, F. F., Sun, G. X., Sun, H. K., Sun, J. F., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, X, Sun, Y. J., Sun, Y. K., Sun, Y. Z., Sun, Z. T., Tan, Y. H., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y. T., Uman, I., Wang, B., Wang, C. W., Wang, D. Y., Wang, H. J., Wang, H. P., Wang, K., Wang, L. L., Wang, M., Wang, M. Z., Wang, Meng, Wang, W., Wang, W. H., Wang, W. P., Wang, X., Wang, X. F., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. Q., Wang, Y. Y., Wang, Z., Wang, Z. Y., Wang, Ziyi, Wang, Zongyuan, Wei, D. H., Weidner, F., Wen, S. P., White, D. J., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, Z., Xia, L., Xiao, H., Xiao, S. Y., Xiao, Z. J., Xie, X. H., Xie, Y. G., Xie, Y. H., Xing, T. Y., Xu, G. F., Xu, Q. J., Xu, W., Xu, X. P., Xu, Y. C., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, Xu, Yang, H. J., Yang, H. X., Yang, L., Yang, S. L., Yang, Y. X., Yang, Yifan, Yang, Zhi, Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yuan, C. Z., Yuan, L., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, X. Zeng, Zeng, Y., Zhang, A. Q., Zhang, B. X., Zhang, Guangyi, Zhang, H., Zhang, H. H., Zhang, H. Y., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, S., Zhang, S. F., Zhang, Shulei, Zhang, X. D., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Yan, Zhang, Yao, Zhang, Z. H., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, Q., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, Y., Zheng, Y. H., Zhong, B., Zhong, C., Zhou, L. P., Zhou, Q., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, S. H., Zhu, T. J., Zhu, W. J., Zhu, X. Y., Zhu, Y. C., Zhu, Z. A., Zou, B. S., Zou, J. H., Energy and Sustainability Research Institute Groni, and Nuclear Energy
- Subjects
Subatomär fysik ,Nuclear and High Energy Physics ,e-e Experiments ,e(+)-e(-) Experiments ,Particle and Resonance Production ,Subatomic Physics ,Charm Physics ,e+-e− Experiments ,High Energy Physics::Experiment ,Branching fraction ,High Energy Physics - Experiment - Abstract
Using e+e− annihilation data corresponding to a total integrated luminosity of 6.32 fb−1 collected at the center-of-mass energies between 4.178 and 4.226 GeV with the BESIII detector, we perform an amplitude analysis of the decay $$ {D}_s^{+} $$ D s + → K−K+π+π+π− and determine the relative fractions and phases of different intermediate processes. Absolute branching fraction of $$ {D}_s^{+} $$ D s + → K−K+π+π+π− decay is measured to be (6.60 ± 0.47stat.± 0.38syst.) × 10−3. The dominant intermediate process is $$ {D}_s^{+} $$ D s + → a1(1260)+ϕ, ϕ → K−K+, a1(1260)+→ ρπ+, ρ → π+π−, with a branching fraction of (5.15 ± 0.41stat.± 0.32syst.) × 10−3.
- Published
- 2022
26. Fully-gapped superconducting state in interstitial-carbon-doped Zr5Pt3
- Author
-
Shang, T., Philippe, J., Zhu, X. Y., Zhang, H., Yu, B. C., Zhen, Z. X., Ott, H. -R., Kitagawa, J., and Shiroka, T.
- Subjects
Superconductivity (cond-mat.supr-con) ,Condensed Matter - Strongly Correlated Electrons ,Strongly Correlated Electrons (cond-mat.str-el) ,Condensed Matter::Superconductivity ,Condensed Matter - Superconductivity ,FOS: Physical sciences - Abstract
We report a comprehensive study of the Zr$_5$Pt$_3$C$_x$ superconductors, with interstitial carbon comprised between 0 and 0.3. At a macroscopic level, their superconductivity, with $T_c$ ranging from 4.5 to 6.3 K, was investigated via electrical-resistivity-, magnetic-susceptibility-, and specific-heat measurements. The upper critical fields $\mu_0H_\mathrm{c2}$ $\sim$ 7 T were determined mostly from measurements of the electrical resistivity in applied magnetic fields. The microscopic electronic properties were investigated by means of muon-spin rotation and relaxation ($\mu$SR) and nuclear magnetic resonance (NMR) techniques. In the normal state, NMR relaxation data indicate an almost ideal metallic behavior, confirmed by band-structure calculations, which suggest a relatively high electronic density of states at the Fermi level, dominated by the Zr 4$d$ orbitals. The low-temperature superfluid density, obtained via transverse-field $\mu$SR, suggests a fully-gapped superconducting state in Zr$_5$Pt$_3$ and Zr$_5$Pt$_3$C$_{0.3}$, with a zero-temperature gap $\Delta_0$ = 1.20 and 0.60 meV and a magnetic penetration depth $\lambda_0$ = 333 and 493 nm, respectively. The exponential dependence of the NMR relaxation rates below $T_c$ further supports a nodeless superconductivity. The absence of spontaneous magnetic fields below the onset of superconductivity, as determined from zero-field $\mu$SR measurements, confirms a preserved time-reversal symmetry in the superconducting state of Zr$_5$Pt$_3$C$_x$. In contrast to a previous study, our $\mu$SR and NMR results suggest a conventional superconductivity in the Zr$_5$Pt$_3$C$_x$ family, independent of the C content., Comment: 9 pages, 11 figures, accepted by Phys. Rev. B
- Published
- 2022
27. Enhanced magnetoelastic effect in Laves (Tb,Dy)Fe2 alloys with the joint introduction of Pr and Nd
- Author
-
Song, X. H., Liu, J. J., Wei, S. H., Zhu, X. Y., Li, F., Zhang, Z. R., Si, P. Z., and Ren, W. J.
- Published
- 2016
- Full Text
- View/download PDF
28. Quantifying space charge accumulation in organic bulk heterojunctions by nonlinear optical microscopy
- Author
-
Morris, J.D., Atallah, Timothy L., Park, Heungman, Ooi, Zien, Dodabalapur, Ananth, and Zhu, X.-Y.
- Published
- 2013
- Full Text
- View/download PDF
29. Search for new hadronic decays of $h_{c}$ and observation of $h_{c}\to p\bar{p}\eta$
- Author
-
Ablikim, M., Achasov, M. N., Adlarson, P., Ahmed, S., Albrecht, M., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, X. H., Bai, Y., Bakina, O., Ferroli, R. Baldini, Balossino, I., Ban, Y., Begzsuren, K., Berger, N., Bertani, M., Bettoni, D., Bianchi, F., Bloms, J., Bortone, A., Boyko, I., Briere, R. A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Chelkov, G., Chen, D. Y., Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, X. R., Chen, Y. B., Chen, Z. J, Cheng, W. S., Cibinetto, G., Cossio, F., Cui, X. F., Dai, H. L., Dai, X. C., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, Y., Dong, C., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, S. X., Fan, Y. L., Fang, J., Fang, S. S., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fritsch, M., Fu, C. D., Gao, Y., Gao, Y. G., Garzia, I., Ge, P. T., Geng, C., Gersabeck, E. M., Gilman, A, Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Greco, M., Gu, L. M., Gu, M. H., Gu, S., Gu, Y. T., Guan, C. Y, Guo, A. Q., Guo, L. B., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. L., Heinsius, F. H., Heinz, C. H., Held, T., Heng, Y. K., Herold, C., Himmelreich, M., Holtmann, T., Hou, G. Y., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Z., Hussain, T., Hüsken, N, Andersson, W. Ikegami, Imoehl, W., Irshad, M., Jaeger, S., Janchiv, S., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jiang, H. B., Jiang, X. S., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., Kalantar-Nayestanaki, N., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Keshk, I. K., Khoukaz, A., Kiese, P., Kiuchi, R., Kliemt, R., Koch, L., Kolcu, O. B., Kopf, B., Kuemmel, M., Kuessner, M., Kupsc, A., Kurth, M. G., Kühn, W., Lane, J. J., Lange, J. S., Larin, P., Lavania, A., Lavezzi, L., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, J. L., Li, J. Q., Li, J. S., Li, Ke, Li, L. K., Li, Lei, Li, P. R., Li, S. Y., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Z. Y., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Lin, C. X., Liu, B. J., Liu, C. X., Liu, D., Liu, F. H., Liu, Fang, Liu, Feng, Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, L., Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, Shuai, Liu, T., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. D., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Luo, C. L., Luo, M. X., Luo, P. W., Luo, T., Luo, X. L., Lyu, X. R., Ma, F. C., Ma, H. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. X., Ma, X. Y., Maas, F. E., Maggiora, M., Maldaner, S., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Min, T. J., Mitchell, R. E., Mo, X. H., Mo, Y. J., Muchnoi, N. Yu., Muramatsu, H., Nakhoul, S., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pelizaeus, M., Peng, H. P., Peters, K., Pettersson, J., Ping, J. L., Ping, R. G., Poling, R., Prasad, V., Qi, H., Qi, H. R., Qi, K. H., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qian, Z., Qiao, C. F., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Rashid, K. H., Ravindran, K., Redmer, C. F., Rivett, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Rump, M., Sang, H. S., Sarantsev, A., Schelhaas, Y., Schnier, C., Schoenning, K., Scodeggio, M., Shan, D. C., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, M., Shen, C. P., Shen, H. F., Shen, P. X., Shen, X. Y., Shi, H. C., Shi, R. S., Shi, X., Shi, X. D, Song, J. J., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Su, K. X., Su, P. P., Sui, F. F., Sun, G. X., Sun, H. K., Sun, J. F., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, X, Sun, Y. J., Sun, Y. K., Sun, Y. Z., Sun, Z. T., Tan, Y. H., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y. T., Uman, I., Wang, B., Wang, C. W., Wang, D. Y., Wang, H. J., Wang, H. P., Wang, K., Wang, L. L., Wang, M., Wang, M. Z., Wang, Meng, Wang, W., Wang, W. H., Wang, W. P., Wang, X., Wang, X. F., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. Q., Wang, Y. Y., Wang, Z., Wang, Z. Y., Wang, Ziyi, Wang, Zongyuan, Wei, D. H., Weidner, F., Wen, S. P., White, D. J., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, Z., Xia, L., Xiao, H., Xiao, S. Y., Xiao, Z. J., Xie, X. H., Xie, Y. G., Xie, Y. H., Xing, T. Y., Xu, G. F., Xu, Q. J., Xu, W., Xu, X. P., Xu, Y. C., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, Xu, Yang, H. J., Yang, H. X., Yang, L., Yang, S. L., Yang, Y. X., Yang, Yifan, Yang, Zhi, Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yuan, C. Z., Yuan, L., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, X. Zeng, Zeng, Y., Zhang, A. Q., Zhang, B. X., Zhang, Guangyi, Zhang, H., Zhang, H. H., Zhang, H. Y., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, S., Zhang, S. F., Zhang, Shulei, Zhang, X. D., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Yan, Zhang, Yao, Zhang, Z. H., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, Q., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, Y., Zheng, Y. H., Zhong, B., Zhong, C., Zhou, L. P., Zhou, Q., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, L., Zhu, S. H., Zhu, T. J., Zhu, W. J., Zhu, X. Y., Zhu, Y. C., Zhu, Z. A., Zou, B. S., and Zou, J. H.
- Subjects
High Energy Physics - Experiment - Abstract
A search for the hadronic decays of the $h_{c}$ meson to the final states $p\bar{p}\pi^{+}\pi^{-}\pi^{0}$, $p\bar{p}\eta$, and $p\bar{p}\pi^0$ via the process $\psi(3686) \to \pi^{0}{h_c}$ is performed using $(4.48\pm0.03)\times10^{8}$ $\psi(3686)$ events collected with the BESIII detector. The decay channel $h_{c}\to p\bar{p}\eta$ is observed for the first time with a significance greater than $5\sigma$ and a branching fraction of $\left( {6.41 \pm 1.74 \pm 0.53 \pm 1.00} \right) \times {10^{ -4}}$, where the uncertainties are statistical, systematic, and that from the branching fraction of $\psi(3686)\to\pi^{0}h_{c}$. Strong evidence for the decay ${h_c} \to p\bar{p}{\pi^+}{\pi^-}{\pi^0}$ is found with a significance of $4.9\sigma$ and a branching fraction of $\left( {3.84 \pm 0.83 \pm0.69} \pm 0.58 \right) \times {10^{ - 3}}$. The significances include systematic uncertainties. No clear signal of the decay $h_c\to p\bar{p}\pi^{0}$ is found, and an upper limit of $6.59\times 10^{-4}$ on its branching fraction is set at the 90% confidence level.
- Published
- 2022
30. Successful early unmanipulated haploidentical transplantation with reduced-intensity conditioning for primary graft failure after cord blood transplantation in hematologic malignancy patients
- Author
-
Tang, B L, Zhu, X Y, Zheng, C C, Liu, H L, Geng, L Q, Wang, X B, Ding, K Y, Yao, W, Tong, J, Song, K D, Zhang, L, Qiang, P, and Sun, Z M
- Published
- 2015
- Full Text
- View/download PDF
31. Observing the Multiexciton State in Singlet Fission and Ensuing Ultrafast Multielectron Transfer
- Author
-
Chan, Wai-Lun, Ligges, Manuel, Jailaubekov, Askat, Kaake, Loren, Miaja-Avila, Luis, and Zhu, X.-Y.
- Published
- 2011
- Full Text
- View/download PDF
32. Artificial atoms on semiconductor surfaces
- Author
-
Tisdale, W. A. and Zhu, X.-Y.
- Published
- 2011
33. Spin order and fluctuations in the EuAl$_4$ and EuGa$_4$ topological antiferromagnets: A $\mu$SR study
- Author
-
Zhu, X. Y., Zhang, H., Gawryluk, D. J., Zhen, Z. X., Yu, B. C., Ju, S. L., Xie, W., Jiang, D. M., Cheng, W. J., Xu, Y., Shi, M., Pomjakushina, E., Zhan, Q. F., Shiroka, T., and Shang, T.
- Subjects
Condensed Matter - Strongly Correlated Electrons ,Condensed Matter - Materials Science ,Condensed Matter - Superconductivity - Abstract
We report on systematic muon-spin rotation and relaxation ($\mu$SR) studies of the magnetic properties of EuAl$_4$ and EuGa$_4$ single crystals at a microscopic level. Transverse-field $\mu$SR measurements, spanning a wide temperature range (from 1.5 to 50 K), show clear bulk AFM transitions, with an almost 100% magnetic volume fraction in both cases. Zero-field $\mu$SR measurements, covering both the AFM and the paramagnetic (PM) states, reveal internal magnetic fields $B_\mathrm{int}(0) = 0.33$ T and 0.89 T in EuAl$_4$ and EuGa$_4$, respectively. The transverse muon-spin relaxation rate $\lambda_\mathrm{T}$, a measure of the internal field distribution at the muon-stopping site, shows a contrasting behavior. In EuGa$_4$, it decreases with lowering the temperature, reaching its minimum at zero temperature, $\lambda_\mathrm{T}(0) = 0.71$ $\mu$s$^{-1}$. In EuAl$_4$, it increases significantly below $T_\mathrm{N}$, to reach 58 $\mu$s$^{-1}$ at 1.5 K, most likely reflecting the complex magnetic structure and the competing interactions in the AFM state of EuAl$_4$. In both compounds, the temperature-dependent longitudinal muon-spin relaxation $\lambda_\mathrm{L}(T)$, an indication of the rate of spin fluctuations, diverges near the onset of AFM order, followed by a significant drop at $T < T_\mathrm{N}$. In the AFM state, spin fluctuations are much stronger in EuAl$_4$ than in EuGa$_4$, while being comparable in the PM state. The evidence of robust spin fluctuations against the external magnetic fields provided by $\mu$SR may offer new insights into the origin of the topological Hall effect and the possible magnetic skyrmions in the EuAl$_4$ and EuGa$_4$ compounds., Comment: 10 pages, 7 figures, accepted by Phys. Rev. B
- Published
- 2022
34. Amplitude analysis and branching fraction measurement of $ {D}_s^{+} → K^−K^+π^+π^+π^−$
- Author
-
Ablikim, M., Achasov, M. N., Adlarson, P., Ahmed, S., Albrecht, M., Aliberti, R., Amoroso, A., An, M. R., An, Q., Bai, X. H., Bai, Y., Bakina, O., Baldini Ferroli, R., Balossino, I., Ban, Y., Begzsuren, K., Berger, N., Bertani, M., Bettoni, D., Bianchi, F., Bloms, J., Bortone, A., Boyko, I., Briere, R. A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Chelkov, G., Chen, D. Y., Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, X. R., Chen, Y. B., Chen, Z. J, Cheng, W. S., Cibinetto, G., Cossio, F., Cui, X. F., Dai, H. L., Dai, X. C., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, Y., Dong, C., Dong, J., Dong, L. Y., Dong, M. Y., Dong, X., Du, S. X., Fan, Y. L., Fang, J., Fang, S. S., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Feng, J. H., Fritsch, M., Fu, C. D., Gao, Y., Gao, Y. G., Garzia, I., Ge, P. T., Geng, C., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Greco, M., Gu, L. M., Gu, M. H., Gu, S., Gu, Y. T., Guan, C. Y, Guo, A. Q., Guo, L. B., Guo, R. P., Guo, Y. P., Guskov, A., Han, T. T., Han, W. Y., Hao, X. Q., Harris, F. A., He, K. L., Heinsius, F. H., Heinz, C. H., Held, T., Heng, Y. K., Herold, C., Himmelreich, M., Holtmann, T., Hou, G. Y., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Z., Hussain, T., Hüsken, N., Ikegami Andersson, W., Imoehl, W., Irshad, M., Jaeger, S., Janchiv, S., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Ji, Y. Y., Jiang, H. B., Jiang, X. S., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Jing, M. Q., Johansson, T., Kalantar-Nayestanaki, N., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Keshk, I. K., Khoukaz, A., Kiese, P., Kiuchi, R., Kliemt, R., Koch, L., Kolcu, O. B., Kopf, B., Kuemmel, M., Kuessner, M., Kupsc, A., Kurth, M. G., Kühn, W., Lane, J. J., Lange, J. S., Larin, P., Lavania, A., Lavezzi, L., Lei, Z. H., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, J. L., Li, J. Q., Li, J. S., Li, Ke, Li, L. K., Li, Lei, Li, P. R., Li, S. Y., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Xiaoyu, Li, Z. Y., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Lin, C. X., Liu, B. J., Liu, C. X., Liu, D., Liu, F. H., Liu, Fang, Liu, Feng, Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. L., Liu, J. Y., Liu, K., Liu, K. Y., Liu, L., Liu, M. H., Liu, P. L., Liu, Q., Liu, S. B., Liu, Shuai, Liu, T., Liu, W. M., Liu, X., Liu, Y., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. D., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Luo, C. L., Luo, M. X., Luo, P. W., Luo, T., Luo, X. L., Lyu, X. R., Ma, F. C., Ma, H. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. X., Ma, X. Y., Maas, F. E., Maggiora, M., Maldaner, S., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Min, T. J., Mitchell, R. E., Mo, X. H., Mo, Y. J., Muchnoi, N. Yu, Muramatsu, H., Nakhoul, S., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pelizaeus, M., Peng, H. P., Peters, K., Pettersson, J., Ping, J. L., Ping, R. G., Poling, R., Prasad, V., Qi, H., Qi, H. R., Qi, K. H., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qian, Z., Qiao, C. F., Qin, L. Q., Qin, X. P., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Rashid, K. H., Ravindran, K., Redmer, C. F., Rivetti, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Rump, M., Sang, H. S., Sarantsev, A., Schelhaas, Y., Schnier, C., Schoenning, K., Scodeggio, M., Shan, D. C., Shan, W., Shan, X. Y., Shangguan, J. F., Shao, M., Shen, C. P., Shen, H. F., Shen, P. X., Shen, X. Y., Shi, H. C., Shi, R. S., Shi, X., Shi, X. D, Song, J. J., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Su, K. X., Su, P. P., Sui, F. F., Sun, G. X., Sun, H. K., Sun, J. F., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, X., Sun, Y. J., Sun, Y. K., Sun, Y. Z., Sun, Z. T., Tan, Y. H., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Teng, J. X., Thoren, V., Tian, W. H., Tian, Y. T., Uman, I., Wang, B., Wang, C. W., Wang, D. Y., Wang, H. J., Wang, H. P., Wang, K., Wang, L. L., Wang, M., Wang, M. Z., Wang, Meng, Wang, W., Wang, W. H., Wang, W. P., Wang, X., Wang, X. F., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. Q., Wang, Y. Y., Wang, Z., Wang, Z. Y., Wang, Ziyi, Wang, Zongyuan, Wei, D. H., Weidner, F., Wen, S. P., White, D. J., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, Z., Xia, L., Xiao, H., Xiao, S. Y., Xiao, Z. J., Xie, X. H., Xie, Y. G., Xie, Y. H., Xing, T. Y., Xu, G. F., Xu, Q. J., Xu, W., Xu, X. P., Xu, Y. C., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, Xu, Yang, H. J., Yang, H. X., Yang, L., Yang, S. L., Yang, Y. X., Yang, Yifan, Yang, Zhi, Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yuan, C. Z., Yuan, L., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, X., Zeng, Y., Zhang, A. Q., Zhang, B. X., Zhang, Guangyi, Zhang, H., Zhang, H. H., Zhang, H. Y., Zhang, J. J., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, L. M., Zhang, L. Q., Zhang, Lei, Zhang, S., Zhang, S. F., Zhang, Shulei, Zhang, X. D., Zhang, X. Y., Zhang, Y., Zhang, Y. T., Zhang, Y. H., Zhang, Yan, Zhang, Yao, Zhang, Z. H., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, Q., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, Y., Zheng, Y. H., Zhong, B., Zhong, C., Zhou, L. P., Zhou, Q., Zhou, X., Zhou, X. K., Zhou, X. R., Zhou, X. Y., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, S. H., Zhu, T. J., Zhu, W. J., Zhu, X. Y., Zhu, Y. C., Zhu, Z. A., Zou, B. S., and Zou, J. H.
- Subjects
ddc:530 - Abstract
Journal of high energy physics 2022(7), 51 (2022). doi:10.1007/JHEP07(2022)051, Published by SISSA, [Trieste]
- Published
- 2022
35. Hot-Electron Transfer from Semiconductor Nanocrystals
- Author
-
Tisdale, William A., Williams, Kenrick J., Timp, Brooke A., Norris, David J., Aydil, Eray S., and Zhu, X.-Y.
- Published
- 2010
- Full Text
- View/download PDF
36. Clinical study of transarterial chemoembolization combined with 3-dimensional conformal radiotherapy for hepatocellular carcinoma
- Author
-
Xu, L.-T., Zhou, Z.-H., Lin, J.-H., Chen, Z., Wang, K., Wang, P., Zhu, X.-Y., Shen, Y.-H., Meng, Z.-Q., and Liu, L.-M.
- Published
- 2011
- Full Text
- View/download PDF
37. Similar survival, but better quality of life after myeloablative transplantation using unrelated cord blood vs matched sibling donors in adults with hematologic malignancies
- Author
-
Liu, H-l, Sun, Z-m, Geng, L-q, Wang, X-b, Ding, K-y, Tong, J, Tang, B-l, Zhou, C-y, Yao, W, Zheng, C-c, Song, K-d, Zhu, X-y, Wei, W, and Wang, Y
- Published
- 2014
- Full Text
- View/download PDF
38. Electronic energy alignment at the PbSe quantum dots/ZnO(101̅0) interface
- Author
-
Timp, Brooke A. and Zhu, X.-Y.
- Published
- 2010
- Full Text
- View/download PDF
39. Exciton dynamics at interfaces of organic semiconductors
- Author
-
Muntwiler, Matthias, Yang, Qingxin, and Zhu, X.-Y.
- Published
- 2009
- Full Text
- View/download PDF
40. Amplitude analysis and branching-fraction measurement of \boldmath $D_{s}^{+} \to K^0_{S}\pi^{+}\pi^{0}$
- Author
-
BESIII Collaboration, Ablikim, M., Achasov, M. N., Adlarson, P., Ahmed, S., Albrecht, M., Amoroso, A., An, Q., Bai, X. H., Bai, Y., Bakina, O., Ferroli, R. Baldini, Balossino, I., Ban, Y., Begzsuren, K., Bennett, J. V., Berger, N., Bertani, M., Bettoni, D., Bianchi, F., Biernat, J, Bloms, J., Bortone, A., Boyko, I., Briere, R. A., Cai, H., Cai, X., Calcaterra, A., Cao, G. F., Cao, N., Cetin, S. A., Chang, J. F., Chang, W. L., Chelkov, G., Chen, D. Y., Chen, G., Chen, H. S., Chen, M. L., Chen, S. J., Chen, X. R., Chen, Y. B., Cheng, W. S., Cibinetto, G., Cossio, F., Cui, X. F., Dai, H. L., Dai, J. P., Dai, X. C., Dbeyssi, A., de Boer, R. E., Dedovich, D., Deng, Z. Y., Denig, A., Denysenko, I., Destefanis, M., De Mori, F., Ding, Y., Dong, C., Dong, J., Dong, L. Y., Dong, M. Y., Du, S. X., Fang, J., Fang, S. S., Fang, Y., Farinelli, R., Fava, L., Feldbauer, F., Felici, G., Feng, C. Q., Fritsch, M., Fu, C. D., Fu, Y., Gao, X. L., Gao, Y., Gao, Y. G., Garzia, I., Gersabeck, E. M., Gilman, A., Goetzen, K., Gong, L., Gong, W. X., Gradl, W., Greco, M., Gu, L. M., Gu, M. H., Gu, S., Gu, Y. T., Guan, C. Y, Guo, A. Q., Guo, L. B., Guo, R. P., Guo, Y. P., Guskov, A., Han, S., Han, T. T., Han, T. Z., Hao, X. Q., Harris, F. A., He, K. L., Heinsius, F. H., Held, T., Heng, Y. K., Himmelreich, M., Holtmann, T., Hou, Y. R., Hou, Z. L., Hu, H. M., Hu, J. F., Hu, T., Hu, Y., Huang, G. S., Huang, L. Q., Huang, X. T., Huang, Y. P., Huang, Z., Hussain, T., Hüsken, N., Andersson, W. Ikegami, Imoehl, W., Irshad, M., Jaeger, S., Janchiv, S., Ji, Q., Ji, Q. P., Ji, X. B., Ji, X. L., Jiang, H. B., Jiang, X. S., Jiao, J. B., Jiao, Z., Jin, S., Jin, Y., Johansson, T., Kalantar-Nayestanaki, N., Kang, X. S., Kappert, R., Kavatsyuk, M., Ke, B. C., Keshk, I. K., Khoukaz, A., Kiese, P., Kiuchi, R., Kliemt, R., Koch, L., Kolcu, O. B., Kopf, B., Kuemmel, M., Kuessner, M., Kupsc, A., Kurth, M. G., Kühn, W., Lane, J. J., Lange, J. S., Larin, P., Lavania, A., Lavezzi, L., Leithoff, H., Lellmann, M., Lenz, T., Li, C., Li, C. H., Li, Cheng, Li, D. M., Li, F., Li, G., Li, H., Li, H. B., Li, H. J., Li, J. L., Li, J. Q., Li, Ke, Li, L. K., Li, Lei, Li, P. L., Li, P. R., Li, S. Y., Li, W. D., Li, W. G., Li, X. H., Li, X. L., Li, Z. Y., Liang, H., Liang, Y. F., Liang, Y. T., Liao, G. R., Liao, L. Z., Libby, J., Lin, C. X., Liu, B., Liu, B. J., Liu, C. X., Liu, D., Liu, D. Y., Liu, F. H., Liu, Fang, Liu, Feng, Liu, H. B., Liu, H. M., Liu, Huanhuan, Liu, Huihui, Liu, J. B., Liu, J. Y., Liu, K., Liu, K. Y., Liu, Ke, Liu, L., Liu, Q., Liu, S. B., Liu, Shuai, Liu, T., Liu, X., Liu, Y. B., Liu, Z. A., Liu, Z. Q., Long, Y. F., Lou, X. C., Lu, F. X., Lu, H. J., Lu, J. D., Lu, J. G., Lu, X. L., Lu, Y., Lu, Y. P., Luo, C. L., Luo, M. X., Luo, P. W., Luo, T., Luo, X. L., Lusso, S., Lyu, X. R., Ma, F. C., Ma, H. L., Ma, L. L., Ma, M. M., Ma, Q. M., Ma, R. Q., Ma, R. T., Ma, X. N., Ma, X. X., Ma, X. Y., Ma, Y. M., Maas, F. E., Maggiora, M., Maldaner, S., Malde, S., Malik, Q. A., Mangoni, A., Mao, Y. J., Mao, Z. P., Marcello, S., Meng, Z. X., Messchendorp, J. G., Mezzadri, G., Min, T. J., Mitchell, R. E., Mo, X. H., Mo, Y. J., Muchnoi, N. Yu., Muramatsu, H., Nakhoul, S., Nefedov, Y., Nerling, F., Nikolaev, I. B., Ning, Z., Nisar, S., Olsen, S. L., Ouyang, Q., Pacetti, S., Pan, X., Pan, Y., Pathak, A., Patteri, P., Pelizaeus, M., Peng, H. P., Peters, K., Pettersson, J., Ping, J. L., Ping, R. G., Pitka, A., Poling, R., Prasad, V., Qi, H., Qi, H. R., Qi, M., Qi, T. Y., Qian, S., Qian, W. B., Qian, Z., Qiao, C. F., Qin, L. Q., Qin, X. S., Qin, Z. H., Qiu, J. F., Qu, S. Q., Rashid, K. H., Ravindran, K., Redmer, C. F., Rivetti, A., Rodin, V., Rolo, M., Rong, G., Rosner, Ch., Rump, M., Sarantsev, A., Schelhaas, Y., Schnier, C., Schoenning, K., Shan, D. C., Shan, W., Shan, X. Y., Shao, M., Shen, C. P., Shen, P. X., Shen, X. Y., Shi, H. C., Shi, R. S., Shi, X., Shi, X. D, Song, J. J., Song, Q. Q., Song, W. M., Song, Y. X., Sosio, S., Spataro, S., Sui, F. F., Sun, G. X., Sun, J. F., Sun, L., Sun, S. S., Sun, T., Sun, W. Y., Sun, Y. J., Sun, Y. K., Sun, Y. Z., Sun, Z. T., Tan, Y. H., Tan, Y. X., Tang, C. J., Tang, G. Y., Tang, J., Thoren, V., Uman, I., Wang, B., Wang, B. L., Wang, C. W., Wang, D. Y., Wang, H. P., Wang, K., Wang, L. L., Wang, M., Wang, M. Z., Wang, Meng, Wang, W. H., Wang, W. P., Wang, X., Wang, X. F., Wang, X. L., Wang, Y., Wang, Y. D., Wang, Y. F., Wang, Y. Q., Wang, Z., Wang, Z. Y., Wang, Ziyi, Wang, Zongyuan, Weber, T., Wei, D. H., Weidenkaff, P., Weidner, F., Wen, S. P., White, D. J., Wiedner, U., Wilkinson, G., Wolke, M., Wollenberg, L., Wu, J. F., Wu, L. H., Wu, L. J., Wu, X., Wu, Z., Xia, L., Xiao, H., Xiao, S. Y., Xiao, Y. J., Xiao, Z. J., Xie, X. H., Xie, Y. G., Xie, Y. H., Xing, T. Y., Xiong, X. A., Xu, G. F., Xu, J. J., Xu, Q. J., Xu, W., Xu, X. P., Xu, Y. C., Yan, F., Yan, L., Yan, W. B., Yan, W. C., Yan, Xu, Yang, H. J., Yang, H. X., Yang, L., Yang, R. X., Yang, S. L., Yang, Y. H., Yang, Y. X., Yang, Yifan, Yang, Zhi, Ye, M., Ye, M. H., Yin, J. H., You, Z. Y., Yu, B. X., Yu, C. X., Yu, G., Yu, J. S., Yu, T., Yuan, C. Z., Yuan, W., Yuan, X. Q., Yuan, Y., Yuan, Z. Y., Yue, C. X., Zafar, A. A., Zeng, Y., Zhang, B. X., Zhang, Guangyi, Zhang, H. H., Zhang, H. Y., Zhang, J. L., Zhang, J. Q., Zhang, J. W., Zhang, J. Y., Zhang, J. Z., Zhang, Jianyu, Zhang, Jiawei, Zhang, Lei, Zhang, S., Zhang, S. F., Zhang, T. J., Zhang, X. Y., Zhang, Y., Zhang, Y. H., Zhang, Y. T., Zhang, Yan, Zhang, Yao, Zhang, Yi, Zhang, Z. H., Zhang, Z. Y., Zhao, G., Zhao, J., Zhao, J. Y., Zhao, J. Z., Zhao, Lei, Zhao, Ling, Zhao, M. G., Zhao, Q., Zhao, S. J., Zhao, Y. B., Zhao, Y. X., Zhao, Z. G., Zhemchugov, A., Zheng, B., Zheng, J. P., Zheng, Y., Zheng, Y. H., Zhong, B., Zhong, C., Zhou, L. P., Zhou, Q., Zhou, X., Zhou, X. K., Zhou, X. R., Zhu, A. N., Zhu, J., Zhu, K., Zhu, K. J., Zhu, S. H., Zhu, W. J., Zhu, X. Y., Zhu, Y. C., Zhu, Z. A., Zou, B. S., and Zou, J. H.
- Subjects
High Energy Physics - Experiment - Abstract
Utilizing a data set corresponding to an integrated luminosity of 6.32~$\rm fb^{-1}$, recorded by the BESIII detector at center-of-mass energies between 4.178 and 4.226~GeV, we perform an amplitude analysis of the decay $D_{s}^{+} \to K_{S}^{0}\pi^{+}\pi^{0}$ and determine the relative fractions and phase differences of different intermediate processes, which include $K_{S}^{0}\rho(770)^{+}$, $K_{S}^{0}\rho(1450)^{+}$, $K^{*}(892)^{0}\pi^{+}$, $K^{*}(892)^{+}\pi^{0}$, and $K^{*}(1410)^{0}\pi^{+}$. Using a double-tag technique, and making an efficiency correction that relies on our knowledge of the phase-space distribution of the decays coming from the amplitude analysis, the absolute branching fraction is measured to be $\mathcal{B}(D_{s}^{+} \to K_{S}^{0}\pi^{+}\pi^{0})=(5.43\pm0.30_{\text{stat}}\pm 0.15_{\text{syst}})\times 10^{-3}$.
- Published
- 2021
41. Characteristics of vertical drop jump to screen the anterior cruciate ligament injury.
- Author
-
MA, B., ZHANG, T.-T., JIA, Y.-D., WANG, H., ZHU, X.-Y., ZHANG, W.-J., LI, X.-M., LIU, H.-B., and XIE, D.
- Abstract
OBJECTIVE: To clarify the characteristics of vertical drop jump (VDJ) for screening athletes at high risk of ACL injury by comparing the kinematic, kinetic and electromyographic variables of different VDJ. SUBJECTS AND METHODS: Thirty male soccer players were recruited to measure parameters of knee kinematics, kinetics, and surface electromyograph during VDJ in four kinds of movements measured (the distance between the take-off feet is 5 cm or 30 cm, and the distance between the landing feet is 5 cm or 30 cm) using the Vicon motion capture system, Kistler3-D dynamometer, and Noraxon surface electromyograph test system. RESULTS: The peak knee abduction moment was significantly greater for landing feet distance of 30 cm compared to landing feet distance of 5 cm, regardless of whether the distance between take-off feet was 5 cm (0.58 vs. 0.44) or 30 cm (0.61 vs. 0.40); regardless of whether the distance between landing feet was 5 cm (22.78 vs. 20.45) or 30 cm (24.32 vs. 21.87), the peak vertical Ground Reaction Force was significantly increased for the take-off feet distance was 5 cm compared to take-off feet of 30 cm. CONCLUSIONS: In the test of VDJ, athletes will adopt different landing strategies for different movement instructions, and the VDJ with the distance of 5 cm between the take-off feet and the distance of 30 cm between the landing feet may be the better maneuver to screen for risk of ACL injury. [ABSTRACT FROM AUTHOR]
- Published
- 2022
42. Mechanical Properties of the Epoxy Resin Composites Modified by Nanofiller under Different Aging Conditions.
- Author
-
Lu, S. J., Yang, T., Xiao, X., Zhu, X. Y., Wang, J., Zang, P. Y., and Liu, J. A.
- Subjects
EPOXY resins ,THERMAL shock ,THERMOCYCLING ,THERMAL expansion - Abstract
The effects of aging conditions on the mechanical properties of epoxy resin (EP) with halloysite nanotube (HNT) were studied. The aging conditions include soaking in water at various temperatures, soaking in acid solution, soaking in alkali solution, thermal shock cycling (TSC), and soaking coupled with subsequent thermal shock cycling (i.e., composite aging conditions). Under aging conditions, the EP is degraded, plasticized, and swelled, resulting in different degrees of cracks and pores in EP. The tensile and bending properties of EP and HNT/EP nanocomposites decreased after aging, indicating that the durability of the EP decreased under aging conditions. The addition of HNT could improve the immersion aging resistance and delay the immersion aging behavior of EP. Under TSC conditions, the reduction in mechanical properties of HNT/EP nanocomposites with HNT is slightly more than that of the neat EP due to different thermal expansion coefficients between HNT and EP. The fracture morphology and chemical change were studied to reveal the aging degradation mechanisms in the presence of HNT addition. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
43. CONTROL OF WELDING RESIDUAL STRESS AND DEFORMATION FOR THE ROD SUPPORT OF A CRANE.
- Author
-
Zhou, Q. H., Zhu, X. Y., Sun, J. M., and Li, J.
- Subjects
- *
STRAINS & stresses (Mechanics) , *WELDING , *CRANES (Machinery) - Abstract
The counter jib and rod support are the main stress-bearing parts of crane due to large load. But the long weld seams of their joints produce great residual stress and deformation affecting the welding strength. In order to reduce the residual stress and the deformation simultaneously, an optimal welding procedure was proposed considering the effective length of welding seam. Firstly, a theoretic model of welding seam was built as T-joint of Q355 steel. The accuracy of model was verified by the welding experiments. By numerical simulation, the appropriate welding process parameters were obtained. Four welding procedures were designed to investigate the influence of the welding sequence. Results show that the welding sequence has a great influence on residual stress and deformation of the long welding seam. The welding quality can be improved by segmented welding and simultaneous welding. The optimized welding procedure of long welding seam can reduce the residual stress by 8.04 % and the maximum deformation by 74.1 % considering welding sequence. Therefore, it is recommended in the actual welding process of crane. (Received in April 2022, accepted in June 2022. This paper was with the authors 3 weeks for 1 revision.) [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
44. ULF Modulations on Plasma Environment and Coherent Waves of Mercury's Magnetosphere: MESSENGER's Observation.
- Author
-
Zhao, J.‐T., Zong, Q.‐G., Yue, C., Zhou, X.‐Z., Liu, Z.‐Y., Sun, W.‐J., Slavin, J. A., Raines, J. M., and Zhu, X.‐Y.
- Subjects
MAGNETOSPHERE ,MERCURY ,LONGITUDINAL waves ,SPACE environment ,OCEAN wave power ,SCATTERING (Physics) - Abstract
Ultra low frequency (ULF) waves are fundamental waves that can energize, transport, and scatter charged particles in planetary magnetospheres. With the measurements from MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER), we investigate the proton flux fluctuations and coherent waves associated with a series of ULF waves on the flanks of Mercury's magnetosphere. The ULF waves are mainly compressional with a frequency of ∼15 mHz and significantly modulate the intensity of proton flux. The coherent waves accompanied by the ULF waves correspond to a higher frequency (∼1 Hz). The wave power and compressibility of the coherent waves vary quasi‐periodically with the ∼15 mHz ULF waves. We conclude that the compressional ULF waves modulate the coherent waves with higher frequency. This modulation might result from the associated periodic proton flux changes and helps us understand the nature of the ∼1 Hz waves better. Plain Language Summary: This study presents MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) observations of wave‐particle interactions on the flank of Mercury's magnetosphere. Clear one‐to‐one modulation of proton flux by ∼15 mHz compressional waves is shown in these two cases. Proton gyro‐frequency (∼1 Hz) waves are observed during the same interval. Their amplitudes and compressibilities are periodic with a frequency of ∼15 mHz, coinciding with the frequency of the compressional waves. This coincidence indicates that the ∼1 Hz waves are possibly affected by the ∼15 mHz waves. The above observational facts demonstrate that ULF waves can modify the plasma environment and further affect the kinetic scale dynamics in the magnetosphere of Mercury. Its importance is further validated by our statistical result, which shows that wave‐particle and wave‐wave modulation are not rare events. Key Points: ∼15 mHz magnetic field pulsations were detected and found to be capable of driving proton flux fluctuations in Mercury's magnetosphereThe associated ∼1 Hz magnetic waves have ∼15 mHz variations in power and compressibility, indicating modulation by the ∼15 mHz wavesThe influence on ∼1 Hz waves is possibly attained by plasma flux changes, helping us better interpret its wave mode and character [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
45. Comparison of ESWAN, SWI-SPGR, and 2D T2*-Weighted GRE Sequence for Depicting Cerebral Microbleeds
- Author
-
Guo, L. F., Wang, G., Zhu, X. Y., Liu, C., and Cui, L.
- Published
- 2013
- Full Text
- View/download PDF
46. Leaf anatomy and C4 photosynthetic enzymes in three reed ecotypes
- Author
-
Zhu, X. -Y., Xia, W. -X., and Chen, L. -J.
- Published
- 2012
- Full Text
- View/download PDF
47. Microtubule organization during successive microsporogenesis in Allium cepa and simultaneous cytokinesis in Nicotiana tabacum
- Author
-
Zhang, Y. N., Wei, D. M., Song, Y. Y., Chen, L., Zhu, X. Y., and Tian, H. Q.
- Published
- 2011
- Full Text
- View/download PDF
48. Polaron and ion diffusion in a poly(3-hexylthiophene) thin-film transistor gated with polymer electrolyte dielectric
- Author
-
Mills, T., Kaake, L. G., and Zhu, X.-Y.
- Published
- 2009
- Full Text
- View/download PDF
49. Friction, Wear, and Aging of an Alkoxy-monolayer Boundary Lubricant on Silicon
- Author
-
Goertz, M. P., Zhu, X.-Y., and Houston, J. E.
- Published
- 2008
- Full Text
- View/download PDF
50. Clinical effect of cement-enhanced APFN in the treatment of elderly osteoporotic intertrochanteric fractures.
- Author
-
NI, X.-H., ZHU, X.-Y., ZHANG, Z.-Y., ZHANG, L., REN, L.-B., WU, J.-S., WANG, L.-J., ZHAO, Q.-M., and ZHANG, F.
- Abstract
OBJECTIVE: To explore the clinical effect of bone cement-enhanced Asian proximal femoral anti-rotation intramedullary nail (APFN) internal fixation in the treatment of elderly osteoporotic intertrochanteric fractures of the femur and provide it as a more robust treatment to elderly patients with osteoporotic intertrochanteric femoral fractures. PATIENTS AND METHODS: Between January 2017 and January 2019, 42 patients with osteoporotic intertrochanteric fractures in our hospital were selected. All patients were randomly divided into the proximal femoral anti-rotation intramedullary nail (PFNA) group and APFN group. The PFNA group received conventional PFNA internal fixation, and the APFN group received bone cement-enhanced APFN internal fixation. The operation time, intraoperative blood loss, average fracture healing time, weight bearing time, and hip function recovery of the two groups of patients were evaluated. RESULTS: All patients were followed up. There was no significant difference in intraoperative blood loss between the two groups. Compared with the PFNA group, the weight-bearing time and hospital stay of the APFN group were significantly shorter. According to the Harris score of hip joint function, the excellent and good rate of the APFN group was better than that of the PFNA group. CONCLUSIONS: Compared with conventional PFNA internal fixation, cement-enhanced APFN internal fixation has the advantage of early functional reconstruction in the treatment of osteoporotic femoral intertrochanteric fractures. It can significantly shorten the time required for patients to get out of bed and bear weight. It is an effective method for the treatment of osteoporotic femoral intertrochanteric fracture. [ABSTRACT FROM AUTHOR]
- Published
- 2022
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.