1. YTHDF2 upregulation and subcellular localization dictate CD8 T cell polyfunctionality in anti-tumor immunity
- Author
-
Haiyan Zhang, Xiaojing Luo, Wei Yang, Zhiying Wu, Zhicong Zhao, Xin Pei, Xue Zhang, Chonghao Chen, Josh Haipeng Lei, Qingxia Shi, Qi Zhao, Yanxing Chen, Wenwei Wu, Zhaolei Zeng, Huai-Qiang Ju, Miaozhen Qiu, Jun Liu, Bin Shen, Minshan Chen, Jianjun Chen, Chu-Xia Deng, Rui-Hua Xu, and Jiajie Hou
- Subjects
Science - Abstract
Abstract RNA methylation is an important regulatory process to determine immune cell function but how it affects the anti-tumor activity of CD8 T cells is not fully understood. Here we show that the N 6-methyladenosine (m6A) RNA reader YTHDF2 is highly expressed in early effector or effector-like CD8 T cells. We find that YTHDF2 facilitates nascent RNA synthesis, and m6A recognition is fundamental for this distinctively nuclear function of the protein, which also reinforces its autoregulation at the RNA level. Loss of YTHDF2 in T cells exacerbates tumor progression and confers unresponsiveness to PD-1 blockade in mice and in humans. In addition to initiating RNA decay that is necessary for mitochondrial fitness, YTHDF2 orchestrates chromatin changes that promote T cell polyfunctionality. YTHDF2 interacts with IKZF1/3, which is important for sustained transcription of their target genes. Accordingly, immunotherapy-induced efficacy could be largely restored in YTHDF2-deficient T cells through combinational use of IKZF1/3 inhibitor lenalidomide in a mouse model. Thus, YTHDF2 coordinates epi-transcriptional and transcriptional networks to potentiate T cell immunity, which could inform therapeutic intervention.
- Published
- 2024
- Full Text
- View/download PDF