1. Why is Mechanical Fatigue Different from Toughness in Elastomers? The Role of Damage by Polymer Chain Scission
- Author
-
Matteo Ciccotti, Gabriel E. Sanoja, C. Joshua Yeh, Costantino Creton, Jean Comtet, Xavier Morelle, Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), and Institut National des Sciences Appliquées (INSA)
- Subjects
chemistry.chemical_classification ,Toughness ,Multidisciplinary ,Materials Science ,SciAdv r-articles ,Fracture mechanics ,02 engineering and technology ,Polymer ,Strain hardening exponent ,010402 general chemistry ,021001 nanoscience & nanotechnology ,Elastomer ,01 natural sciences ,0104 chemical sciences ,Fracture toughness ,Applied Sciences and Engineering ,chemistry ,Fracture (geology) ,[CHIM]Chemical Sciences ,Physical and Materials Sciences ,Composite material ,Elasticity (economics) ,0210 nano-technology ,Research Article - Abstract
Description, Tough elastomers that resist fracture at high loads are not optimum for sustaining many cycles at low loads., Although elastomers often experience 10 to 100 million cycles before failure, there is now a limited understanding of their resistance to fatigue crack propagation. We tagged soft and tough double-network elastomers with mechanofluorescent probes and quantified damage by sacrificial bond scission after crack propagation under cyclic and monotonic loading. Damage along fracture surfaces and its spatial localization depend on the elastomer design, as well as on the applied load (i.e., cyclic or monotonic). The key result is that reversible elasticity and strain hardening at low and intermediate strains dictates fatigue resistance, whereas energy dissipation at high strains controls toughness. This information serves to engineer fatigue-resistant elastomers, understand fracture mechanisms, and reduce the environmental footprint of the polymer industry.
- Published
- 2021