505 results on '"Wiens, R"'
Search Results
2. Radiation-induced alteration of apatite on the surface of Mars: first in situ observations with SuperCam Raman onboard Perseverance
- Author
-
Clavé, E., Beyssac, O., Bernard, S., Royer, C., Lopez-Reyes, G., Schröder, S., Rammelkamp, K., Forni, O., Fau, A., Cousin, A., Manrique, J. A., Ollila, A., Madariaga, J. M., Aramendia, J., Sharma, S. K., Fornaro, T., Maurice, S., and Wiens, R. C.
- Published
- 2024
- Full Text
- View/download PDF
3. In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., and Williford, K.
- Published
- 2022
- Full Text
- View/download PDF
4. The sound of a Martian dust devil
- Author
-
Murdoch, N., Stott, A. E., Gillier, M., Hueso, R., Lemmon, M., Martinez, G., Apéstigue, V., Toledo, D., Lorenz, R. D., Chide, B., Munguira, A., Sánchez-Lavega, A., Vicente-Retortillo, A., Newman, C. E., Maurice, S., de la Torre Juárez, M., Bertrand, T., Banfield, D., Navarro, S., Marin, M., Torres, J., Gomez-Elvira, J., Jacob, X., Cadu, A., Sournac, A., Rodriguez-Manfredi, J. A., Wiens, R. C., and Mimoun, D.
- Published
- 2022
- Full Text
- View/download PDF
5. Identifying Shocked Feldspar on Mars Using Perseverance Spectroscopic Instruments: Implications for Geochronology Studies on Returned Samples
- Author
-
Shkolyar, S., Jaret, S. J., Cohen, B. A., Johnson, J. R., Beyssac, O., Madariaga, J. M., Wiens, R. C., Ollila, A., Holm-Alwmark, S., and Liu, Y.
- Published
- 2022
- Full Text
- View/download PDF
6. Probable Concretions Observed in the Shenandoah Formation of Jezero Crater, Mars and Comparison With Terrestrial Analogs.
- Author
-
Kalucha, H., Broz, A., Randazzo, N., Aramendia, J., Madariaga, J. M., Garczynski, B., Lanza, N., Mandon, L., Fouchet, T., Catling, D. C., Fairén, A. G., Kivrak, L., Gasda, P. J., Núñez, J. I., Cloutis, E., Hand, K. P., Rice, J. W., Fischer, W. W., Maurice, S., and Wiens, R. C.
- Subjects
MARTIAN craters ,BEDROCK ,MICROBIAL metabolism ,CLAY minerals ,CALCIUM salts - Abstract
The Mars 2020 Perseverance Rover imaged diagenetic textural features in four separate sedimentary units in its exploration of the 25‐m‐thick Shenandoah formation at Jezero Crater, Mars, that we interpreted as probable concretions. These concretions were most abundant in the Hogwallow Flats member of the Shenandoah formation and were restricted to the light‐toned, platy, sulfur‐cemented bedrock at outcrop surfaces, whereas the finely laminated, darker toned, mottled and deformed strata lack concretions. The concretions also had a wide range of morphologies including concentric, oblate, urn, and spheroidal shaped forms that were not clustered, and ranged in size from ∼1 to 16 mm with a median of 2.65 mm. The elemental composition of the concretions compared to the bedrock had greater abundance of magnesium and calcium salts, silicates, and possibly hematite. We compared these Jezero Crater concretions to the geochemistry of concretions from previously published studies and from two new terrestrial analog sites (Gallup Formation, New Mexico and Torrey Pines, California). In addition, we measured organic carbon content of three terrestrial sedimentary analogs of increasing age that contain concretions (Torrey Pines (Pleistocene), Gallup Formation (∼89 Ma), and Moodies Group (∼3.2 Ga)). All measured concretions contained significant concentrations of organic carbon with the maximum organic carbon content (∼2 wt. % Total organic carbon) found in the Moodies Group concretions. Organic carbon abundances in terrestrial concretions was controlled more by the formation mechanism and relative timing of concretion development rather than deposit age. These findings suggested that concretions at Jezero Crater reflect local sites of enhanced biosignature preservation potential. Plain Language Summary: The Perseverance Rover discovered concretions in its exploration of the rock packages at Jezero Crater, Mars and one of the sample return cores was collected from concretion‐rich bedrock. Concretions are resistant cement in the rock that are found in many shapes (usually spherical or oblate) and range from millimeter to meter size scales on Earth; they can be formed through inorganic water‐rock reactions or facilitated by microbial metabolisms. We documented the abundance, size, composition, and shape of the concretions to understand how these features were formed. We found that the concretions are mixtures of salts, clay minerals, and iron oxides. We compared these results to terrestrial concretions with similar mineral compositions and measured the organic carbon in four terrestrial analogs. Comparisons with terrestrial concretions in this study and the literature suggested that the concretion composition in Jezero Crater could have high organic preservation potential. Thus, the concretions in Jezero Crater may retain organic carbon and other biosignatures and might therefore be considered as high priority samples of astrobiological interest out of the current sample suite for return to Earth. Key Points: Jezero Crater concretions are variably enriched in Si, Ca, and Mg salts, and Fe oxidesTerrestrial concretions of similar mineralogy analyzed in this study contain significant organic carbon phasesBased on terrestrial analogs, Jezero Crater concretions may represent sites of enhanced biosignature preservation potential [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
7. Variable Iron Mineralogy and Redox Conditions Recorded in Ancient Rocks Measured by In Situ Visible/Near‐Infrared Spectroscopy at Jezero Crater, Mars.
- Author
-
Mandon, L., Ehlmann, B. L., Wiens, R. C., Garczynski, B. J., Horgan, B. H. N., Fouchet, T., Loche, M., Dehouck, E., Gasda, P., Johnson, J. R., Broz, A., Núñez, J. I., Rice, M. S., Vaughan, A., Royer, C., Gómez, F., Annex, A. M., Beyssac, O., Forni, O., and Brown, A.
- Subjects
HEMATITE ,SEDIMENTARY rocks ,SEDIMENTATION & deposition ,REFLECTANCE measurement ,IGNEOUS rocks - Abstract
Using relative reflectance measurements from the Mastcam‐Z and SuperCam instruments on the Mars 2020 Perseverance rover, we assess the variability of Fe mineralogy in Noachian/Hesperian‐aged rocks at Jezero crater. The results reveal diverse Fe3+ and Fe2+ minerals. The igneous crater floor, where small amounts of Fe3+‐phyllosilicates and poorly crystalline Fe3+‐oxyhydroxides have been reported, is spectrally similar to most oxidized basalts observed at Gusev crater. At the base of the western Jezero sedimentary fan, new spectral type points to an Fe‐bearing mineral assemblage likely dominated by Fe2+. By contrast, most strata exposed at the fan front show signatures of Fe3+‐oxides (mostly fine‐grained crystalline hematite), Fe3+‐sulfates (potentially copiapites), strong signatures of hydration, and among the strongest signatures of red hematite observed in situ, consistent with materials having experienced vigorous water‐rock interactions and/or higher degrees of diagenesis under oxidizing conditions. The fan top strata show hydration but little to no signs of Fe oxidation likely implying that some periods of fan construction occurred either during a reduced atmosphere era or during short‐lived aqueous activity of liquid water in contact with an oxidized atmosphere. We also report the discovery of alternating cm‐scale bands of red and gray layers correlated with hydration and oxide variability, which has not yet been observed elsewhere on Mars. This could result from syn‐depositional fluid chemistry variations, possibly as seasonal processes, or diagenetic overprint of oxidized fluids percolating through strata having variable permeability. Plain Language Summary: The oxidation states of the atmosphere and waters (whether rich or poor in oxidants such as oxygen) of Mars and their evolution are poorly constrained but can be recorded in the iron (Fe) mineralogy of rocks. Using data from the Perseverance rover, we analyzed the Fe mineralogy of ∼4–3 Ga old rocks from an ancient lake at Jezero crater. Oxidized Fe is found in igneous rocks and lowermost portions of sedimentary rocks, carried by clays and poorly crystalline oxides in the former and by sulfates and crystalline oxides in the latter, pointing to past action of oxidizing fluids, affecting more intensely the sedimentary rocks. Fe shows poor to no signs of oxidation in the uppermost strata, which might be evidence for a reducing atmosphere during sediment deposition or that the aqueous environment was too cold or too short‐lived to oxidize minerals. We also report Fe mineralogy variability at the cm‐scale in alternating colored layers, which has not been observed previously on Mars and could possibly mean that seasonal processes are recorded at Jezero crater. Key Points: In situ reflectance data measured with Mars 2020 show variable Fe mineralogy in sedimentary rocks at Jezero craterStrata exposed at the fan front experienced stronger oxidative water‐rock interactions compared to the upper fan and igneous crater floorWe identify cm‐scale color banding correlated with Fe‐oxide variability that likely indicates time variation in redox [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
8. Author Correction: In situ recording of Mars soundscape
- Author
-
Maurice, S., Chide, B., Murdoch, N., Lorenz, R. D., Mimoun, D., Wiens, R. C., Stott, A., Jacob, X., Bertrand, T., Montmessin, F., Lanza, N. L., Alvarez-Llamas, C., Angel, S. M., Aung, M., Balaram, J., Beyssac, O., Cousin, A., Delory, G., Forni, O., Fouchet, T., Gasnault, O., Grip, H., Hecht, M., Hoffman, J., Laserna, J., Lasue, J., Maki, J., McClean, J., Meslin, P.-Y., Le Mouélic, S., Munguira, A., Newman, C. E., Rodríguez Manfredi, J. A., Moros, J., Ollila, A., Pilleri, P., Schröder, S., de la Torre Juárez, M., Tzanetos, T., Stack, K. M., Farley, K., and Williford, K.
- Published
- 2022
- Full Text
- View/download PDF
9. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description
- Author
-
Maurice, S., Wiens, R. C., Bernardi, P., Caïs, P., Robinson, S., Nelson, T., Gasnault, O., Reess, J.-M., Deleuze, M., Rull, F., Manrique, J.-A., Abbaki, S., Anderson, R. B., André, Y., Angel, S. M., Arana, G., Battault, T., Beck, P., Benzerara, K., Bernard, S., Berthias, J.-P., Beyssac, O., Bonafous, M., Bousquet, B., Boutillier, M., Cadu, A., Castro, K., Chapron, F., Chide, B., Clark, K., Clavé, E., Clegg, S., Cloutis, E., Collin, C., Cordoba, E. C., Cousin, A., Dameury, J.-C., D’Anna, W., Daydou, Y., Debus, A., Deflores, L., Dehouck, E., Delapp, D., De Los Santos, G., Donny, C., Doressoundiram, A., Dromart, G., Dubois, B., Dufour, A., Dupieux, M., Egan, M., Ervin, J., Fabre, C., Fau, A., Fischer, W., Forni, O., Fouchet, T., Frydenvang, J., Gauffre, S., Gauthier, M., Gharakanian, V., Gilard, O., Gontijo, I., Gonzalez, R., Granena, D., Grotzinger, J., Hassen-Khodja, R., Heim, M., Hello, Y., Hervet, G., Humeau, O., Jacob, X., Jacquinod, S., Johnson, J. R., Kouach, D., Lacombe, G., Lanza, N., Lapauw, L., Laserna, J., Lasue, J., Le Deit, L., Le Mouélic, S., Le Comte, E., Lee, Q.-M., Legett, IV, C., Leveille, R., Lewin, E., Leyrat, C., Lopez-Reyes, G., Lorenz, R., Lucero, B., Madariaga, J. M., Madsen, S., Madsen, M., Mangold, N., Manni, F., Mariscal, J.-F., Martinez-Frias, J., Mathieu, K., Mathon, R., McCabe, K. P., McConnochie, T., McLennan, S. M., Mekki, J., Melikechi, N., Meslin, P.-Y., Micheau, Y., Michel, Y., Michel, J. M., Mimoun, D., Misra, A., Montagnac, G., Montaron, C., Montmessin, F., Moros, J., Mousset, V., Morizet, Y., Murdoch, N., Newell, R. T., Newsom, H., Nguyen Tuong, N., Ollila, A. M., Orttner, G., Oudda, L., Pares, L., Parisot, J., Parot, Y., Pérez, R., Pheav, D., Picot, L., Pilleri, P., Pilorget, C., Pinet, P., Pont, G., Poulet, F., Quantin-Nataf, C., Quertier, B., Rambaud, D., Rapin, W., Romano, P., Roucayrol, L., Royer, C., Ruellan, M., Sandoval, B. F., Sautter, V., Schoppers, M. J., Schröder, S., Seran, H.-C., Sharma, S. K., Sobron, P., Sodki, M., Sournac, A., Sridhar, V., Standarovsky, D., Storms, S., Striebig, N., Tatat, M., Toplis, M., Torre-Fdez, I., Toulemont, N., Velasco, C., Veneranda, M., Venhaus, D., Virmontois, C., Viso, M., Willis, P., and Wong, K. W.
- Published
- 2021
- Full Text
- View/download PDF
10. An interval of high salinity in ancient Gale crater lake on Mars
- Author
-
Rapin, W., Ehlmann, B. L., Dromart, G., Schieber, J., Thomas, N. H., Fischer, W. W., Fox, V. K., Stein, N. T., Nachon, M., Clark, B. C., Kah, L. C., Thompson, L., Meyer, H. A., Gabriel, T. S. J., Hardgrove, C., Mangold, N., Rivera-Hernandez, F., Wiens, R. C., and Vasavada, A. R.
- Published
- 2019
- Full Text
- View/download PDF
11. Redox stratification of an ancient lake in Gale crater, Mars
- Author
-
Hurowitz, J. A., Grotzinger, J. P., Fischer, W. W., McLennan, S. M., Milliken, R. E., Stein, N., Vasavada, A. R., Blake, D. F., Dehouck, E., Eigenbrode, J. L., Fairén, A. G., Frydenvang, J., Gellert, R., Grant, J. A., Gupta, S., Herkenhoff, K. E., Ming, D. W., Rampe, E. B., Schmidt, M. E., Siebach, K. L., Stack-Morgan, K., Sumner, D. Y., and Wiens, R. C.
- Published
- 2017
12. SuperCam Calibration Targets: Design and Development
- Author
-
Manrique, J. A., Lopez-Reyes, G., Cousin, A., Rull, F., Maurice, S., Wiens, R. C., Madsen, M. B., Madariaga, J. M., Gasnault, O., Aramendia, J., Arana, G., Beck, P., Bernard, S., Bernardi, P., Bernt, M. H., Berrocal, A., Beyssac, O., Caïs, P., Castro, C., Castro, K., Clegg, S. M., Cloutis, E., Dromart, G., Drouet, C., Dubois, B., Escribano, D., Fabre, C., Fernandez, A., Forni, O., Garcia-Baonza, V., Gontijo, I., Johnson, J., Laserna, J., Lasue, J., Madsen, S., Mateo-Marti, E., Medina, J., Meslin, P.-Y., Montagnac, G., Moral, A., Moros, J., Ollila, A. M., Ortega, C., Prieto-Ballesteros, O., Reess, J. M., Robinson, S., Rodriguez, J., Saiz, J., Sanz-Arranz, J. A., Sard, I., Sautter, V., Sobron, P., Toplis, M., and Veneranda, M.
- Published
- 2020
- Full Text
- View/download PDF
13. Sub‐Diurnal Methane Variations on Mars Driven by Barometric Pumping and Planetary Boundary Layer Evolution.
- Author
-
Ortiz, J. P., Rajaram, H., Stauffer, P. H., Lewis, K. W., Wiens, R. C., and Harp, D. R.
- Subjects
ATMOSPHERIC methane ,ATMOSPHERIC boundary layer ,MARTIAN atmosphere ,MARTIAN surface ,MARS rovers ,GALE Crater (Mars) ,ACOUSTIC emission - Abstract
In recent years, the Tunable Laser Spectrometer within the Sample Analysis at Mars (TLS‐SAM) instrument on board the Mars Science Laboratory (MSL) Curiosity rover has detected methane variations in the atmosphere at Gale crater. Methane concentrations appear to fluctuate seasonally as well as sub‐diurnally, which is difficult to reconcile with an as‐yet‐unknown transport mechanism delivering the gas from underground to the atmosphere. To potentially explain the fluctuations, we consider barometrically induced transport of methane from an underground source to the surface, modulated by temperature‐dependent adsorption. The subsurface fractured‐rock seepage model is coupled to a simplified 1‐D atmospheric mixing model to provide insights on the pattern of atmospheric methane concentrations in response to transient surface methane emissions, as well as to predict sub‐diurnal variation in methane abundance for the northern summer period, which is a candidate time frame for a MSL Curiosity sampling campaign. Our analysis suggests that there is a lower limit to the subsurface fracture density that can produce the observed methane patterns, below which the atmospheric methane variations would be out of phase with the observations. The best‐performing model scenarios indicate a significant, short‐lived methane pulse just prior to sunrise, the detection of which by TLS‐SAM would be a potential indicator of the contribution of barometric pumping to Mars' atmospheric methane variations. Plain Language Summary: One of the outstanding goals of current Mars missions is to detect and understand biosignatures (signs of ancient or present life, if they exist) such as methane. Methane has been detected multiple times in Mars' atmosphere close to the planet's surface by the Mars Science Laboratory (MSL) Curiosity rover, and its abundance appears to fluctuate seasonally and on a daily time scale. With the source of methane on Mars most likely located underground, it is difficult to reconcile these atmospheric variations with an as‐yet‐unknown transport mechanism delivering the gas to the atmosphere. In this manuscript, we simulate methane transport to the atmosphere from underground fractured rock driven by atmospheric pressure fluctuations. We also model adsorption of methane molecules onto the surface of pores in the rock, which is a temperature‐dependent process that may contribute to the apparent seasonality of methane abundance. We simulated methane emitted from the subsurface mixing into a simulated atmospheric column, which provides insight into the sub‐diurnal methane concentrations in the atmosphere. Our simulations predict short‐lived methane pulses prior to sunrise for Mars' upcoming northern summer period, which is a candidate time frame for MSL Curiosity's next sampling campaign. Key Points: Barometrically driven atmospheric methane abundance timing controlled by fracture topology and atmospheric dynamicsThere is a lower limit to fracture density (0.01%) that can produce observed methane patternsA late morning or early evening Tunable Laser Spectrometer within the Sample Analysis at Mars sample could constrain diurnal methane pattern and transport processes [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
14. Characterisation of Float Rocks at Ireson Hill, Gale Crater
- Author
-
Bowden, D. L, Bridges, J. C, Schwenzer, S. P, Wiens, R. C, Gasnault, O, Thompson, L, Gasda, P, and Bedford, C
- Subjects
Space Sciences (General) - Abstract
Float rocks discovered by surface missions on Mars have given unique insights into the sedimentary, diagenetic and igneous processes that have operated throughout the planet’s history. In addition, Gale sedimentary rocks, both float and in situ, record a combination of source compositions and diagenetic overprints. We examine a group of float rocks that were identified by the Mars Science Laboratory mission’s Curiosity rover at the Ireson Hill site, circa. sol 1600 using ChemCam LIBS, APXS and images from the MastCam, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro-Imager (RMI) cameras. Geochemical data provided by the APXS and ChemCam instruments allow us to compare the compositions of these rocks to known rock types from Gale crater, as well as elsewhere on Mars. Ireson Hill is a 15 m long butte in the Murray formation with a dark cap-ping unit with chemical and stratigraphic consistency with the Stimson formation. A total of 6 float rocks have been studied on the butte.
- Published
- 2020
15. The Role of Diagenesis at Vera Rubin Ridge in Gale Crater, Mars, and the Chemostratigraphy of the Murray Formation as Observed by the Chemcam Instrument
- Author
-
Frydenvang, J, Mangold, N, Wiens, R. C, Fraeman, A. A, Edgar, L. A, Fedo, C, L’Haridon, J, Bedford, C. C, Gupta, S, Grotzinger, J. P, Bridges, J. C, Clark, B. C, Rampe, E. B, Gasnault, O, Maurice, S, Gasda, P. J, Lanza, N. L, Olilla, A. M, Meslin, P.-Y, Payr, V, Calef, F, Salvatore, M, House, C. H, and Gabriel, T. S. J
- Subjects
Space Sciences (General) - Abstract
The Mars Science Laboratory (MSL) Curiosity rover explored Vera Rubin ridge (VRR) in Gale crater, Mars, for almost 500 sols (Mars days) between arriving at the ridge on sol 1809 of the mission in September 2017 and leaving it on sol 2302 upon entering the Glen Torridon area south of the ridge. VRR is a topographic ridge on the central mound, Aeolis Mons (Mt. Sharp), in Gale crater that displays a strong hematite spectral signature from orbit. In-situ observations on the ridge led to the recognition that the ridge-forming rocks belong to the Murray formation, the lowermost exposed stratigraphic unit of the Mt. Sharp group, that was first encountered at the Pahrump Hills location. Including VRR rocks, the Murray formation, interpreted to be primarily deposited in an ancient lacustrine environment in Gale crater, is more than 300 m thick. VRR itself is composed of two stratigraphic members within the Murray formation, the Pettegrove Point member overlain by the Jura member. The Pettegrove Point member overlies the Blunts Point member of the Murray formation. Areas of gray coloration are observed in the Jura member predominantly, but also in the Pettegrove Point member. Generally, gray areas are found in local topographic depressions, but contacts between red and gray rocks crosscut stratigraphy. Additionally, cm-scale dark concretions with very high iron-content are commonly observed in gray rocks, typically surrounded by a lighttoned zone that is conversely depleted in iron. A key goal for the VRR campaign was to characterize geochemical variations in the ridge-forming rocks to investigate the role of primary and diagenetic controls on the geochemistry and morphology of VRR. Here, we present observations by the ChemCam instrument on VRR and compare these to the full Murray formation chemostratigraphy. This work was recently submitted to a special issue of JGRPlanets that detail the full VRR campaign.
- Published
- 2020
16. First Gale Western Butte Capping-Unit Compositions, and Relationships to Earlier Units Along Curiosity's Traverse
- Author
-
Wiens, R. C, Mangold, N, Forni, O, Anderson, R. B, Gasnault, O, Bryk, A, Dietrich, W. E, Johnson, J. R, Dehouck, E, Deit, L. Le, Frydenvang, J, Bedford, C, and Maurice, S
- Subjects
Space Sciences (General) - Abstract
The Curiosity rover has been traversing through the clay-bearing unit (Glen Torridon; GT), approaching Greenheugh pediment, a large, fan-shaped surface surrounding the mouth of Gediz Vallis on the lower slope of Mt. Sharp. The pediment unconformably overlies the underlying bedrock, and is hence younger than units of the Mt. Sharp group. Orbital imaging of the pediment has shown it to have a slightly lower albedo and higher thermal inertia than neighboring units, to be relatively retentive of craters (e.g., erosion resistant), and to exhibit curved bedforms suggestive of lithified eolian bedforms. No diagnostic spectral signature has been observed from orbit. Recent rover positions allowed remote imaging of the contact between Greenheugh pediment and the eroded Murray formation strata below it, showing that the pediment capping material is cross-bedded and relatively thin (1-3 m), and suggesting that the pediment may have been much larger at one time. As Curiosity approached the edge of the pediment, the team investigated two buttes named Central and Western. The latter butte contains dark capping material that initially looked similar to the pediment cap, but close inspection revealed important physical differences. Here we report on compositions from ChemCam of two float rocks that appear to have rolled down from the capping unit, and on potential relation-ships to other targets along the traverse of the rover.
- Published
- 2020
17. The Stratigraphy of Central and Western Butte and the Greenheugh Pediment Contact
- Author
-
Bryk, A. B, Dietrich, W. E, Fox, V. K, Bennett, K. A, Banham, S. G, Lamb, M. P, Grotzinger, J. P, Vasavada, A. R, Stack, K. M, Arvidson, R, Fedo, C. M, Gupta, S, Wiens, R. C, Williams, R. M. E, Kronyak, R.E, Turner, M. L, Lewis, K. W, Rubin, D. M, Rapin, W. N, Deit, L. Le, Mouélic, S. Le, Edgett, K. S, Fraeman, A. A, Hughes, M. N, Kah, L. C, and Bedford, C. C
- Subjects
Space Sciences (General) - Abstract
The Greenheugh pediment at the base of Aeolis Mons (Mt. Sharp), which may truncate units in the Murray formation and is capped by a thin sandstone unit, appears to represent a major shift in climate history within Gale crater. The pediment appears to be an erosional remnant of potentially a much more extensive feature. Curiosity’s traverse through the southern extent of Glen Torridon (south of Vera Rubin ridge) has brought the rover in contact with several new stratigraphic units that lie beneath the pediment. These strata were visited at two outcrop-forming buttes (Central and Western butte- both remnants of the retreating pediment) south of an orbitally defined boundary marking the transition from the Fractured Clay-bearing Unit (fCU) and the fractured Intermediate Unit (fIU). Here we present preliminary interpretations of the stratigraphy within Central and Western buttes and propose the Western butte cap rocks do not match the pediment capping unit.
- Published
- 2020
18. In Situ Geologic Context Mapping Transect on the Floor of Jezero Crater From Mars 2020 Perseverance Rover Observations.
- Author
-
Crumpler, L. S., Horgan, B. H. N., Simon, J. I., Stack, K. M., Alwmark, S., Dromart, G., Wiens, R. C., Udry, A., Brown, A. J., Russell, P., Amundson, H. E. F., Hamran, S.‐E., Bell, J., Shuster, D., Calef, F. J., Núñez, J., Cohen, B. A., Flannery, D., Herd, C. D. K., and Hand, K. P.
- Subjects
GEOLOGICAL mapping ,GEOLOGICAL maps ,MARTIAN craters ,MARS rovers ,BEDROCK ,IMPACT craters ,LUNAR craters - Abstract
In situ geologic context mapping based on rover and helicopter observations provides documentation of a nearly continuous record of geology and exposed surface structure over a 120 m‐wide corridor along the traverse of the Mars 2020/Perseverance rover. The results record the geologic context of Mars 2020 campaign sites and sample sites, including the local extent of bedrock outcrops, stratigraphy, attitude, and structure from imaging and rover‐based remote sensing, and outcrop lithology based on in situ proximity science. Mapping identifies a sequence of igneous lithologies including (a) early mafic, possibly intrusive, rocks; (b) pervasively fractured and deeply altered massive bedrock of undetermined protolith; (c) buried and exhumed lava flows with pahoehoe and aa textures; (d) several varieties of regolith; and (e) small impact craters. Plain Language Summary: Reconnaissance‐type geologic mapping along the traverse of Perseverance on the Jezero Crater floor is adapted from field geologic methods used on Earth and modified to account for the geometry of rover‐based imaging. The final field geologic map records bedrock and surficial geology, contacts, and structures over a 120‐m wide strip along the traverse. Most of the lithologies are igneous, including possible intrusive mafic rocks, deeply weathered massive rocks of unknown original lithology, and lava flows. Stratigraphy determined from mapping together with the observed inclination of layers identifies either uplift or draping of the section centered in the elevated older terrain. The final map information provides ground‐truth geologic context for the first eight samples collected for return to Earth. Key Points: In situ mapping from the rover observations on Mars uses field geologic mapping methodsDocuments the geologic context of samples and the crater floor traverse of PerseveranceDevelops methods applicable to future robotic and human traverses on planetary surfaces [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
19. ChemCam results from the Shaler outcrop in Gale crater, Mars
- Author
-
Anderson, Ryan, Bridges, J.C., Williams, A., Edgar, L., Ollila, A., Williams, J., Nachon, M., Mangold, N., Fisk, M., Schieber, J., Gupta, S., Dromart, G., Wiens, R., Le Mouélic, S., Forni, O., Lanza, N., Mezzacappa, A., Sautter, V., Blaney, D., Clark, B., Clegg, S., Gasnault, O., Lasue, J., Léveillé, R., Lewin, E., Lewis, K.W., Maurice, S., Newsom, H., Schwenzer, S.P., and Vaniman, D.
- Published
- 2015
- Full Text
- View/download PDF
20. CHEMCAM SULFUR ABUNDANCES IN THE KNOCKFARRIL HILL MEMBER, GALE CRATER MARS
- Author
-
Hoffman, M. E., Newsom, H. E., Clegg, S. M., Gasda, P. J., Lanza, N., Gasnault, O., Wiens, R. C., Delapp, D. M., Institute of Meteoritics [Albuquerque] (IOM), The University of New Mexico [Albuquerque], Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
21. VARIABILITY IN MT. SHARP GROUP BEDROCK AS SEEN BY CHEMCAM PASSIVE AND ACTIVE
- Author
-
Manelski, H. T., Sheppard, R. Y., Fraeman, A. A., Wiens, R. C., Johnson, J. R., Rampe, E. B., Frydenvang, J., Lanza, N. L., Gasnault, O., Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), Los Alamos National Laboratory (LANL), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
22. IRRADIATION OF ORGANICS ON MARS: EVOLUTION OF THE RAMAN SIGNAL OF THE ERTALYTE TARGET ABOARD PERSEVERANCE
- Author
-
Bernard, S., Beyssac, O., Ollila, A., Lopez-Reyes, G., Manrique, J., Mouélic, S. Le, Beck, P., Forni, O., Pilleri, P., Cousin, A., Gasnault, O., Meslin, P.Y, Travis, G., Clavé, E., Royer, C., Wiens, R., Maurice, S., Team, The Supercam, Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Universidad de Valladolid [Valladolid] (UVa), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), United States Geological Survey (USGS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Lunar and Planetary Institute, Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), and Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
23. The fate of manganese: fractionation of mn and fe during the kinetic alteration process
- Author
-
Loche, M., Fabre, S., Cousin, A., Treiman, A., Lanza, N., Meslin, P-Y., Gasda, P., Das, D., Tutolo, B., Gasnault, O., Maurice, S., Wiens, R., Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Lunar and Planetary Institute [Houston] (LPI), Los Alamos National Laboratory (LANL), University of Calgary, Purdue University [West Lafayette], and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
24. Soil diversity on Mars: comparison between Gale and Jezero craters
- Author
-
Cousin, A., Beyssac, O., Forni, O., Meslin, P.Y, Martin, N., Chide, B., Hausrath, E.M., Sullivan, R., Poulet, F., Dehouck, E., Lasue, J., Schröder, S., Gasnault, O., Pilleri, P., Wiens, R., Team, The Supercam Science, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Purdue University [West Lafayette], University of Nevada [Las Vegas] (WGU Nevada), Cornell University [New York], Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
25. CHEMCAM: ZAPPING MARS FOR 10 YEARS (AND MORE)
- Author
-
Gasnault, Olivier, Lanza, N., Wiens, R., Maurice, S., Mangold, N., Johnson, J., Dehouck, E., Beck, P., Cousin, A., Pinet, P., Bridges, J., Dromart, G., Mcconnochie, T., Mouélic, S. Le, Team, The Chemcam, Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), University of Leicester, Space Science Institute [Boulder] (SSI), and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
26. Acoustics of martian geological material from the shock waves of the laser-induced sparks of supercam
- Author
-
Alvarez, C., Laserna, J., Moros, J., Purohit, P., Angel, S. M., Bernardi, P., Beyssac, O., Bousquet, B., Cadu, A., Chide, B., Clavé, E., Dauson, E., Forni, O., Fouchet, T., Gasnault, O., Jacob, Xavier, Lacombe, G., Lanza, N.L., Larmat, C., Lasue, J., Lorenz, R.D., Meslin, P.-Y., Mimoun, D., Montmessin, Franck, Murdoch, N., Ollila, A. M., Pilleri, P., Reyes-Newell, A. L., Schröder, S., Stott, A., Cate, J. Ten, Vogt, D., Clegg, S., Cousin, A., Maurice, S., Wiens, R. C., Universidad de Málaga [Málaga] = University of Málaga [Málaga], University of South Carolina [Columbia], Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Institut Supérieur de l'Aéronautique et de l'Espace (ISAE-SUPAERO), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Pôle Planétologie du LESIA, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université de Toulouse (UT), Institut de mécanique des fluides de Toulouse (IMFT), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), DLR Institute of Optical Sensor Systems, Deutsches Zentrum für Luft- und Raumfahrt [Berlin] (DLR), Purdue University [West Lafayette], and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
27. Analysis of co-located supercam and sherloc observations on abrasion patches in Jezero crater
- Author
-
Connell, S. A., Wiens, R. C., Cardarelli, E. L., Deen, R., Mandon, L., Sharma, S., Beyssac, O., Clavé, E., Siljeström, S., Czaja, A.I., Pilleri, P., Gasnault, O., Lopez-Reyes, G., Johnson, J.R., Bhartia, R., Maurice, S., Teams, Supercam And Sherloc, Purdue University [West Lafayette], California Institute of Technology (CALTECH), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université de Bordeaux (UB), University of Cincinnati (UC), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Universidad de Valladolid [Valladolid] (UVa), Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Photon Systems Inc., and Lunar and Planetary Institute
- Subjects
[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience
- Published
- 2023
28. Reflectance of Jezero crater floor: 2. Mineralogical interpretation
- Author
-
Mandon, Lucia, Quantin-Nataf, Cathy, Royer, Clément, Beck, Pierre, Fouchet, Thierry, Johnson, Jeffrey, Dehouck, Erwin, Le Mouélic, S., Poulet, François, Montmessin, Franck, Pilorget, Cédric, Gasnault, O., FORNI, Olivier, Mayhew, L., Beyssac, O., Bertrand, T., Clavé, E., Pinet, P., Brown, A., Legett, C., Tarnas, J., Cloutis, E., Poggiali, G., Fornaro, T., Maurice, Sylvestre, Wiens, R., Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire de Géologie de Lyon - Terre, Planètes, Environnement (LGL-TPE), École normale supérieure de Lyon (ENS de Lyon)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut national des sciences de l'Univers (INSU - CNRS)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Institut de Planétologie et d'Astrophysique de Grenoble (IPAG), Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ), Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France, Johns Hopkins University Applied Physics Laboratory [Laurel, MD] (APL), Laboratoire de Planétologie et Géosciences [UMR_C 6112] (LPG), Université d'Angers (UA)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Nantes université - UFR des Sciences et des Techniques (Nantes univ - UFR ST), Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ)-Nantes Université - pôle Sciences et technologie, Nantes Université (Nantes Univ)-Nantes Université (Nantes Univ), Institut d'astrophysique spatiale (IAS), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Centre National d’Études Spatiales [Paris] (CNES), PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Department of Geological Sciences [Boulder], University of Colorado [Boulder], Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Centre d'Etudes Lasers Intenses et Applications (CELIA), Université de Bordeaux (UB)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Plancius Research LLC, Los Alamos National Laboratory (LANL), Jet Propulsion Laboratory (JPL), NASA-California Institute of Technology (CALTECH), University of Winnipeg, INAF - Osservatorio Astrofisico di Arcetri (OAA), and Istituto Nazionale di Astrofisica (INAF)
- Subjects
Geophysics ,Space and Planetary Science ,Geochemistry and Petrology ,[SDU]Sciences of the Universe [physics] ,Earth and Planetary Sciences (miscellaneous) - Abstract
International audience; The Perseverance rover landed in the ancient lakebed of Jezero crater, Mars on February 2021. Here we assess the mineralogy of the rocks, regolith, and dust measured during the first year of the mission on the crater floor, using the visible and near-infrared spectrometer of SuperCam onboard the Perseverance rover. Most of the minerals detected from orbit are present in the bedrock, with olivine-bearing rocks at the bottom of the stratigraphy and high-Ca pyroxene-bearing rocks at the top. This is distinct from the overall low-Ca pyroxene-bearing composition of the watershed of Jezero, and points towards an igneous origin. Alteration mineral phases were detected in most of the rocks analyzed in low proportions, suggesting that aqueous alteration of the crater floor has been spatially widespread, but limited in intensity and/or time. The diverse aqueous mineralogy suggests that the aqueous alteration history of the crater floor consists of at least two stages, to form phyllosilicates and oxyhydroxides, and later sulfates. We interpret their formation in a lake or under deeper serpentinization conditions, and in an evaporative environment, respectively. Spectral similarities of dust with some rock coatings suggest widespread past processes of dust induration under liquid water activity late in the history of Jezero. Analysis of the regolith revealed some local inputs from the surrounding rocks. Relevant to the Mars Sample Return mission, the spectral features exhibited by the rocks sampled on the crater floor are representative of the diversity of spectra measured on the geological units investigated by the rover.
- Published
- 2023
- Full Text
- View/download PDF
29. SHERLOC investigation for Mars 2020
- Author
-
Beegle, L. W, Bhartia, R, DeFlores, L, Abbey, W, Asher, S, Burton, A, Carrier, B, Conrad, P, Clegg, S, Edgett, K.S, Ehlmann, B, Fries, M, Hug, W, Kah, L, Nealson, K, Nelson, Tony, Minitti, M, Popp, J, Langenhorst, F, Orphan, V, Ravine, M.A, Reid, R, Sobron, P, Steele, A, Tarcea, N, Wanger, G, Wiens, R, Williford, K, and Yingst, R. A
- Published
- 2019
30. SHERLOC investigation for Mars 2020
- Author
-
Yingst, R. A, Williford, K, Wiens, R, Wanger, G, Tarcea, N, Steele, A, Sobron, P, Reid, R, Ravine, M.A, Orphan, V, Langenhorst, F, Popp, J, Minitti, M, Nelson, Tony, Nealson, K, Kah, L, Hug, W, Fries, M, Ehlmann, B, Edgett, K.S, Clegg, S, Conrad, P, Carrier, B, Burton, A, Asher, S, Abbey, W, DeFlores, L, Bhartia, R, and Beegle, L. W
- Abstract
UNKNOWN
- Published
- 2019
31. Using Chemcam Derived Geochemistry to Identify the Paleonet Sediment Transport Direction and Source Region Characteristics of the Stimson Formation in Gale Crater, Mars
- Author
-
Bedford, C. C, Schwenzer, S. P, Bridges, J. C, Banham, S, Wiens, R. C, Frydenvang, J, Gasnault, O, Rampe, E. B, and Gasda, P. J
- Subjects
Space Sciences (General) - Abstract
The NASA Curiosity rover has encountered both ancient and modern dune deposits within Gale crater. The modern dunes are actively migrating across the surface within the Bagnold Dune field of which Curiosity conducted analysis campaigns at two different localities. Variations in mafic-felsic mineral abundances between these two sites have been related to the aeolian mineral sorting regime for basaltic environments identified on the Earth which become preferentially enriched in olivine relative to plagioclase feldspar with increasing distance from the source. This aeolian mineral sorting regime for basaltic minerals has also been inferred for Mars from orbital data. The aim of this study is to investigate whether this aeolian mafic-felsic mineral sorting trend has left a geochemical signature in the ancient dune deposits preserved within the Stimson formation. The Stimson formation unconformably overlies the Murray formation and consists of thickly laminated, cross-bedded sandstone. Stimson outcrops have a variable thickness up to 5 meters covering a total area of 17 square kilometers. A dry, aeolian origin was determined for this sandstone due to the high sphericity and roundness of the grains, uniform bimodal grain size distribution (250-710 microns), and 1-meter-thick cross-beds. Identifying the geochemical signature of mineral sorting can provide insights about the paleo-net sediment transport direction of the dunes and prevailing wind direction at the time of deposition.
- Published
- 2019
32. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars
- Author
-
Grotzinger, J. P., Gupta, S., Malin, M. C., Rubin, D. M., Schieber, J., Siebach, K., Sumner, D. Y., Stack, K. M., Vasavada, A. R., Arvidson, R. E., Calef, F., Edgar, L., Fischer, W. F., Grant, J. A., Griffes, J., Kah, L. C., Lamb, M. P., Lewis, K. W., Mangold, N., Minitti, M. E., Palucis, M., Rice, M., Williams, R. M. E., Yingst, R. A., Blake, D., Blaney, D., Conrad, P., Crisp, J., Dietrich, W. E., Dromart, G., Edgett, K. S., Ewing, R. C., Gellert, R., Hurowitz, J. A., Kocurek, G., Mahaffy, P., McBride, M. J., McLennan, S. M., Mischna, M., Ming, D., Milliken, R., Newsom, H., Oehler, D., Parker, T. J., Vaniman, D., Wiens, R. C., and Wilson, S. A.
- Published
- 2015
33. Elemental Geochemistry of Sedimentary Rocks at Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, McLennan, S. M., Anderson, R. B., Bell, J. F., Bridges, J. C., Calef, F., Campbell, J. L., Clark, B. C., Clegg, S., Conrad, P., Cousin, A., Des Marais, D. J., Dromart, G., Dyar, M. D., Edgar, L. A., Ehlmann, B. L., Fabre, C., Forni, O., Gasnault, O., Gellert, R., Gordon, S., Grant, J. A., Grotzinger, J. P., Gupta, S., Herkenhoff, K. E., Hurowitz, J. A., King, P. L., Le Mouélic, S., Leshin, L. A., Léveillé, R., Lewis, K. W., Mangold, N., Maurice, S., Ming, D. W., Morris, R. V., Nachon, M., Newsom, H. E., Ollila, A. M., Perrett, G. M., Rice, M. S., Schmidt, M. E., Schwenzer, S. P., Stack, K., Stolper, E. M., Sumner, D. Y., Treiman, A. H., VanBommel, S., Vaniman, D. T., Vasavada, A., Wiens, R. C., and Yingst, R. A.
- Published
- 2014
34. A Habitable Fluvio-Lacustrine Environment at Yellowknife Bay, Gale Crater, Mars
- Author
-
MSL Science Team, Grotzinger, J. P., Sumner, D. Y., Kah, L. C., Stack, K., Gupta, S., Edgar, L., Rubin, D., Lewis, K., Schieber, J., Mangold, N., Milliken, R., Conrad, P. G., DesMarais, D., Farmer, J., Siebach, K., Calef, F., Hurowitz, J., McLennan, S. M., Ming, D., Vaniman, D., Crisp, J., Vasavada, A., Edgett, K. S., Malin, M., Blake, D., Gellert, R., Mahaffy, P., Wiens, R. C., Maurice, S., Grant, J. A., Wilson, S., Anderson, R. C., Beegle, L., Arvidson, R., Hallet, B., Sletten, R. S., Rice, M., Bell, J., Griffes, J., Ehlmann, B., Anderson, R. B., Bristow, T. F., Dietrich, W. E., Dromart, G., Eigenbrode, J., Fraeman, A., Hardgrove, C., Herkenhoff, K., Jandura, L., Kocurek, G., Lee, S., Leshin, L. A., Leveille, R., Limonadi, D., Maki, J., McCloskey, S., Meyer, M., Minitti, M., Newsom, H., Oehler, D., Okon, A., Palucis, M., Parker, T., Rowland, S., Schmidt, M., Squyres, S., Steele, A., Stolper, E., Summons, R., Treiman, A., Williams, R., and Yingst, A.
- Published
- 2014
35. A Mars 2020 Perseverance SuperCam Perspective on the Igneous Nature of the Máaz Formation at Jezero Crater and Link With Séítah, Mars.
- Author
-
Udry, A., Ostwald, A., Sautter, V., Cousin, A., Beyssac, O., Forni, O., Dromart, G., Benzerara, K., Nachon, M., Horgan, B., Mandon, L., Clavé, E., Dehouck, E., Gibbons, E., Alwmark, S., Ravanis, E., Wiens, R. C., Legett, C., Anderson, R., and Pilleri, P.
- Subjects
MARTIAN craters ,MARTIAN meteorites ,MARS (Planet) ,LAVA flows ,VOLCANIC ash, tuff, etc. ,METEORITES - Abstract
The Máaz formation consists of the first lithologies in Jezero crater analyzed by the Mars 2020 Perseverance rover. This formation, investigated from Sols (Martian days) 1 to 201 and from Sols 343 to 382, overlies the Séítah formation (previously described as an olivine‐rich cumulate) and was initially suggested to represent an igneous crater floor unit based on orbital analyses. Using SuperCam data, we conducted a detailed textural, chemical, and mineralogical analyses of the Máaz formation and the Content member of the Séítah formation. We conclude that the Máaz formation and the Content member are igneous and consist of different lava flows and/or possibly pyroclastic flows with complex textures, including vesicular and non‐vesicular rocks with different grain sizes. The Máaz formation rocks exhibit some of the lowest Mg# (=molar 100 × MgO/MgO + FeO) of all Martian igneous rocks analyzed so far (including meteorites and surface rocks) and show similar basaltic to basaltic‐andesitic compositions. Their mineralogy is dominated by Fe‐rich augite to possibly ferrosilite and plagioclase, and minor phases such as Fe‐Ti oxides and Si‐rich phases. They show a broad diversity of both compositions and textures when compared to Martian meteorites and other surface rocks. The different Máaz and Content lava or pyroclastic flows all originate from the same parental magma and/or the same magmatic system, but are not petrogenetically linked to the Séítah formation. The study of returned Máaz samples in Earth‐based laboratories will help constrain the formation of these rocks, calibrate Martian crater counting, and overall, improve our understanding of magmatism on Mars. Plain Language Summary: The Mars 2020 Perseverance rover landed on Mars in the Jezero crater on 18 February 2021. The main goals of this mission are to constrain the geology of the Jezero crater and its delta, to search for biosignatures (evidence of ancient life), to sample rocks to return to Earth, and to prepare for human exploration. Here we study the rock formation observed at the landing site, named the Máaz formation. We conclude that this rock formation is igneous (=formed from cooling and crystallization of lava or magma) consisting of iron‐rich basaltic lava flows, formed through effusive (i.e., outpouring of lava without explosions) volcanism. When compared to other Martian magmatic rocks, these rocks show a large variety of textures (shape and size of minerals) and compositions, making them different from the Martian magmatic rocks studied so far. The various lava flows of the Máaz rocks are likely all related, but not related to the underlying Séítah rock formation. Perseverance has collected core samples from the Máaz and Séítah rocks that could be among the Martian rocks to be returned to Earth in the 2030s. Their study in Earth‐based laboratories will allow us to better understand the evolution of Martian magmatism. Key Points: The Máaz formation in Jezero crater consists of basaltic to basaltic‐andesite lava flows likely originating from the same parental magmaThe Máaz formation shows various igneous textures and has a different magmatic history than the other known Martian igneous rocksThe study of samples from the Máaz formation on Earth will help constrain the Martian cratering chronology and Martian igneous evolution [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
36. Developing Tailored Data Combination Strategies to Optimize the SuperCam Classification of Carbonate Phases on Mars.
- Author
-
Veneranda, M., Manrique, J. A., Lopez‐Reyes, G., Julve‐Gonzalez, S., Rull, F., Alvarez Llamas, C., Delgado Pérez, T., Gibbons, E., Clavé, E., Cloutis, E., Huidobro, J., Castro, K., Madariaga, J. M., Randazzo, N., Brown, A., Willis, P., Maurice, S., and Wiens, R. C.
- Subjects
LASER-induced breakdown spectroscopy ,CARBONATE minerals ,FISHER discriminant analysis ,MARS (Planet) ,PRINCIPAL components analysis ,DISCRIMINANT analysis ,GEOLOGICAL modeling ,NAIVE Bayes classification - Abstract
The SuperCam instrument onboard the Mars 2020 Perseverance rover investigates Martian geological targets by a combination of multiple spectroscopic techniques. As Raman, Visible‐Infrared Spectroscopy, and Laser‐Induced Breakdown Spectroscopy (LIBS) spectra deliver complementary information about the interrogated sample, the multivariate analysis of combined spectroscopic data sets is here proposed as a tool to optimize the SuperCam capability to discriminate mineral phases on Mars. For this purpose, the laboratory study of carbonate phases within the Ca‐Mg‐Fe ternary system were selected as representative case of study. After the characterization of model samples, the discrimination capability of mono analytical Raman, VISIR, and LIBS data sets was evaluated by applying a chemometric approach based on the combination of principal component analysis (for sample clustering) and Linear Discriminant Analysis (for mineral classification). Afterward, the low‐level combination (LL) of Raman, VISIR, and LIBS data was achieved by concatenating their spectra into a single data matrix. The mineral classification achieved by LL data sets outperformed the mono analytical ones, thus proving the complementarity between molecular and elemental spectroscopic techniques. Mineral classification was further improved by using a mid‐level data combination strategy. After evaluating benefits and limitations afforded by the proposed combination strategies, future developments are finally outlined. As such, the final objective of this research line is to develop a classification model based on data combination to optimize the capability of SuperCam in discriminating relevant minerals on Mars, this being a key requirement for the selection of the optimal targets to be cached for the future Mars Sample Return Mission. Plain Language Summary: The SuperCam instrument onboard the Perseverance rover is capable of analyzing Martian rocks and soils by a combination of Laser‐Induced Breakdown Spectroscopy (LIBS), Raman and Visible‐Infrared Spectroscopy (VISIR). Learning from terrestrial applications, the complementary information provided by the three spectroscopic techniques can be correlated to obtain a more accurate interpretation of the analyzed target. This approach could be particularly useful to discriminate carbonates, which are interesting minerals where to look for traces of past life. Having this in mind, several carbonate samples have been analyzed with laboratory Raman, LIBS, and VISIR instrument. After evaluating the advantages and limitations of each technique, their data were merged by using low‐level and mid‐level strategies that were successfully used previous works. This work proved that, when spectra are combined, the discrimination of carbonate phases is more accurate than when each technique is interpreted separately. This suggests the scientific results obtained by SuperCam on Mars could benefit from the development of tailored classification models based on data combination. Key Points: Data combination of Raman, Visible‐Infrared Spectroscopy, and Laser‐Induced Breakdown Spectroscopy spectra collected by SuperCam is proposedLow‐ and mid‐level data combination strategies based on principal component analysis (discrimination) + PC‐Linear Discriminant Analysis (classification are evaluated and compared)The low‐level combination method outperformed the mono analytical discrimination. The mid‐level one further improved the results [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
37. Geochemical Endmembers Preserved in Gale Crater: A Tale of Two Mudstones and Their Compositional Differences According to Chemcam
- Author
-
Bedford, C. C, Schwenzer, S. P, Bridges, J. C, Wiens, R. C, Rampe, E. B, Frydenvang, J, and Gasda, P. J
- Subjects
Geophysics - Abstract
Gale crater contains two fine-grained mudstone sedimentary units: The Sheepbed mudstone member, and the Murray formation mud-stones. These mudstones formed as part of an ancient fluviolacustrine system. The NASA Curiosity rover has analysed these mudstone units using the Chemistry and Camera (ChemCam), Alpha Particle X-ray Spectrometer (APXS) and Chemistry and Mineralogy (CheMin) onboard instrument suites. Subsequent mineralogical analyses have uncovered a wide geochemical and mineralogical diversity across and within these two mudstone formations. This study aims to determine the principal cause (alteration or source region) of this geochemical variation through a statistical analysis of the ChemCam dataset up to sol 1482, including the lower to middle Murray formation.
- Published
- 2018
38. Constraints on the Mode and Extent of Sedimentary Rock Alteration in Hyper-Arid and Hypo-Thermal Environments
- Author
-
Salvatore, M, Truitt, K, Roszell, K, Lanza, N, Rampe, E, Mangold, N, Dehouck, E, Wiens, R, and Clegg, S
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Geologic evidence suggests that the surface of Mars has been dominated by cold, dry, and relatively stable environmental conditions over the past ~3.5 Ga. These conditions differ from those pre-sumed to be present prior to ~3.5 Ga, when observa-tions indicate that the martian surface was at least in-termittently able to support the prolonged flow of liq-uid water. Despite the more than 75% of martian his-tory dominated by cold, dry, and stable conditions, few investigations have studied weathering and alteration processes that may influence the martian surface dur-ing this time. Please see attachment.
- Published
- 2018
39. Curiosity's Investigation at Vera Rubin Ridge
- Author
-
Fraeman, A. A, Edgar, L. A, Grotzinger, J. P, Vasavada, A. R, Johnson, J. R, Wellington, D. F, Fox, V. K, Sun, V. Z, Hardgrove, C. J, Horgan, B. N, House, C. H, Johnson, S. S, Stack Morgan, K. M, Rampe, E. B, Thompson, L. M, Wiens, R. C, and Williams, A. J
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The Curiosity rover is exploring Vera Rubin Ridge (VRR), a ~6.5 km long and ~200 m wide topographic feature trending northeast-southwest across Aeolis Mons (informally known as Mt. Sharp) (Fig 1). In orbital data, VRR is distinct from the underlying Murray formation due to its relative erosional resistance and greater exposure of bedrock. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) orbital data show a hematite spectral signature over much of the ridge (Fig. 2). On the ground, Curiosity also observed hematite associated with the sedimentary rocks of the underlying Murray formation, although these detections are difficult to see with CRISM due to mixing with sand and dust.
- Published
- 2018
40. Constraining Solar System Bombardment Using In Situ Radiometric Dating
- Author
-
Cohen, Barbara A, Petro, N. E, Lawrence, S.J, Clegg, S.J, Denevi, B.W, Dyar, M. E, Elardo, S. M, Grinspoon, D. H, Hiesinger, H, Jolliff, B. L, Liu, Y, McCanta, M. C, Moriarty, D. P, Norman, M. D, Runyon, K. D, Schwenzer, S. P, van der Bogert, C. H, and Wiens, R. C
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The leading, but contentious, model for lunar impact history includes a pronounced increase in impact events at around 3.9 Ga. This late heavy bombardment would have scarred Mars and the terrestrial planets, influenced the course of biologic evolution on the early Earth, and rearranged the very architecture of our Solar System. But what if it's not true? In the last decade, new observations and sample analyses have reinterpreted basin ages and "pulled the pin" on the cataclysm - we may only have the age of one large basin (Imbrium). The Curie mission would constrain the onset of the cataclysm by determining the age of a major pre-Imbrium lunar basin (Nectaris or Crisium), characterize new lunar lithologies far from the Apollo and Luna landing sites, including the basalts in the basin-filling maria and olivine-rich lithologies in the basin margins, and provide a unique vantage point to assess volatiles in the lunar regolith from dawn to dusk.
- Published
- 2018
41. ChemCam Investigation of the Last Four MSL Drill Sites in the Murray Formation, Gale Crater, Mars
- Author
-
Jackson, R. S, Wiens, R. C, Beegle, L. W, Rampe, E. B, Johnson, J. R, Forni, O, and Newsom, H. E
- Subjects
General - Abstract
This study utilizes ChemCam data for outcrop surfaces, drill hole walls, tailings, and dump piles in the Middle Murray Formation to investigate chemical variations with depth in the drill holes and pos-sible effects of the drilling and sample processing. This work is a continuation of similar work on drill sites at Yellowknife Bay [1], the Pahrump Hills [2], and the Stimson Formation [3].
- Published
- 2018
42. A comparison of the igneous máaz formation at jezero crater with martian meteorites
- Author
-
Udry, A., Ostwald, A., Sautter, V., Cousin, A., Wiens, R. C., Forni, O., Benzerara, K., Beyssac, O., Nachon, M., Dromart, G., Quantin, C., Mandon, L., Clavé, E., Pinet, P., Ollila, A., Bosak, T., Mangold, N., Dehouck, E., Johnson, J., Schmidt, M., Horgan, B., Gabriel, T., Mclennan, S., Maurice, S., Simon, J.I., Herd, C. D. K., M.Madiaraga, J., Brown, A, Connell, S., Flannery, D., Tosca, N., Cohen, B., Liu, Y., Mccubbin, F. M., Cloutis, E., Fouchet, T., Royer, C., Alwmark, S., Sharma, S., Anderson, R., Pilleri, P, University of Nevada [Las Vegas] (WGU Nevada), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Institut de minéralogie, de physique des matériaux et de cosmochimie (IMPMC), Muséum national d'Histoire naturelle (MNHN)-Institut de recherche pour le développement [IRD] : UR206-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Texas A&M University System, École normale supérieure de Lyon (ENS de Lyon), Massachusetts Institute of Technology (MIT), Johns Hopkins University (JHU), Brock University [Canada], Purdue University [West Lafayette], United States Geological Survey (USGS), Stony Brook University [SUNY] (SBU), State University of New York (SUNY), Astromaterials Research and Exploration Science (ARES), NASA Johnson Space Center (JSC), NASA-NASA, University of Alberta, University of the Basque Country/Euskal Herriko Unibertsitatea (UPV/EHU), NASA, University of Winnipeg, Queensland University of Technology [Brisbane] (QUT), University of Cambridge [UK] (CAM), California Institute of Technology (CALTECH), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), University of Copenhagen = Københavns Universitet (UCPH), Hawaii Institute of Geophysics and Planetology (HIGP), and University of Hawai‘i [Mānoa] (UHM)
- Subjects
jezero crater ,[SDU.STU.PL]Sciences of the Universe [physics]/Earth Sciences/Planetology ,[SDU]Sciences of the Universe [physics] ,rover ,mars mineralogy ,[SDU.STU]Sciences of the Universe [physics]/Earth Sciences ,supercam ,meteorites - Abstract
International audience
- Published
- 2022
43. Gravitational Enrichment of $^{84}$Kr/$^{36}$Ar Ratios in Polar Ice Caps: A Measure of Firn Thickness and Accumulation Temperature
- Author
-
Craig, H. and Wiens, R. C.
- Published
- 1996
44. The Petrochemistry of Jake_M: A Martian Mugearite
- Author
-
Stolper, E. M., Baker, M. B., Newcombe, M. E., Schmidt, M. E., Treiman, A. H., Cousin, A., Dyar, M. D., Fisk, M. R., Gellert, R., King, P. L., Leshin, L., Maurice, S., McLennan, S. M., Minitti, M. E., Perrett, G., Rowland, S., Sautter, V., and Wiens, R. C.
- Published
- 2013
- Full Text
- View/download PDF
45. Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars
- Author
-
Meslin, P.-Y., Gasnault, O., Forni, O., Schröder, S., Cousin, A., Berger, G., Clegg, S. M., Lasue, J., Maurice, S., Sautter, V., Le Mouélic, S., Wiens, R. C., Fabre, C., Goetz, W., Bish, D., Mangold, N., Ehlmann, B., Lanza, N., Harri, A.-M., Anderson, R., Rampe, E., McConnochie, T. H., Pinet, P., Blaney, D., Léveillé, R., Archer, D., Barraclough, B., Bender, S., Blake, D., Blank, J. G., Bridges, N., Clark, B. C., DeFlores, L., Delapp, D., Dromart, G., Dyar, M. D., Fisk, M., Gondet, B., Grotzinger, J., Herkenhoff, K., Johnson, J., Lacour, J.-L., Langevin, Y., Leshin, L., Lewin, E., Madsen, M. B., Melikechi, N., Mezzacappa, A., Mischna, M. A., Moores, J. E., Newsom, H., Ollila, A., Perez, R., Renno, N., Sirven, J.-B., Tokar, R., de la Torre, M., d'Uston, L., Vaniman, D., and Yingst, A.
- Published
- 2013
- Full Text
- View/download PDF
46. Martian Fluvial Conglomerates at Gale Crater
- Author
-
Williams, R. M. E., Grotzinger, J. P., Dietrich, W. E., Gupta, S., Sumner, D. Y., Wiens, R. C., Mangold, N., Malin, M. C., Edgett, K. S., Maurice, S., Forni, O., Gasnault, O., Ollila, A., Newsom, H. E., Dromart, G., Palucis, M. C., Yingst, R. A., Anderson, R. B., Herkenhoff, K. E., Le Mouélic, S., Goetz, W., Madsen, M. B., Koefoed, A., Jensen, J. K., Bridges, J. C., Schwenzer, S. P., Lewis, K. W., Stack, K. M., Rubin, D., Kah, L. C., Bell, J. F., Farmer, J. D., Sullivan, R., Van Beek, T., Blaney, D. L., Pariser, O., and Deen, R. G.
- Published
- 2013
- Full Text
- View/download PDF
47. First Results from Atmospheric Observations of CO2, H2O, and CO from SuperCam on Mars2020-Pereverance Rover
- Author
-
Montmessin, Franck, Mcconnochie, T., Fouchet, T., Royer, C., Knutsen, Elise Wright, Bertrand, T., Forni, O., Pilleri, P., Gasnault, O., Lacombe, Gaetan, Lasue, J., Legett, C., Lemmon, M. T., Newell, T., Venhaus, D. M., Maurice, S., Wiens, R. C., PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Space Science Institute [Boulder] (SSI), Pôle Planétologie du LESIA, Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), University of Maryland [College Park], and University of Maryland System
- Subjects
[SDU.ASTR.EP]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Earth and Planetary Astrophysics [astro-ph.EP] - Abstract
International audience; Not Available
- Published
- 2022
48. Unexplained Oxygen Variability: New Results on Molecular Oxygen in the Lower Martian Atmosphere from Chemcam and Supercam Passive Sky Observations
- Author
-
Mcconnochie, T., Trainer, Melissa G., Smith, M., Guzewich, S., Franz, H. B., Newman, C., Lo, D., Atreya, S., Moores, J., Sapers, H., Lemmon, Mark, Wolff, Michael, Montmessin, Franck, Knutsen, Elise Wright, Fouchet, Thierry, Bertrand, Tanguy, Gasnault, Olivier, Lasue, Jérémie, Forni, O., Pilleri, Paolo, Maurice, Sylvestre, Legett, Carey, Newell, Raymond, Venhaus, Dawn, Lanza, Nina, Wiens, R., Hecht, M., Zorzano, M.-P., Khayat, A., Lefèvre, Franck, Daerden, Frank, Fedorova, Anna, Trokhimovskiy, Alexander, Space Science Institute [Boulder] (SSI), NASA Goddard Space Flight Center (GSFC), Aeolis Research, University of Michigan [Ann Arbor], University of Michigan System, Centre for Research in Earth and Space Science [Toronto] (CRESS), York University [Toronto], PLANETO - LATMOS, Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'études spatiales et d'instrumentation en astrophysique = Laboratory of Space Studies and Instrumentation in Astrophysics (LESIA), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Institut de recherche en astrophysique et planétologie (IRAP), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Los Alamos National Laboratory (LANL), Purdue University [West Lafayette], MIT Haystack Observatory, Massachusetts Institute of Technology (MIT), Centro de Astrobiologia [Madrid] (CAB), Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC), Center for Research and Exploration in Space Science and Technology [GSFC] (CRESST), Belgian Institute for Space Aeronomy / Institut d'Aéronomie Spatiale de Belgique (BIRA-IASB), Space Research Institute of the Russian Academy of Sciences (IKI), and Russian Academy of Sciences [Moscow] (RAS)
- Subjects
[SDU]Sciences of the Universe [physics] - Abstract
International audience
- Published
- 2022
49. Carbonate Detection With SuperCam in Igneous Rocks on the Floor of Jezero Crater, Mars.
- Author
-
Clavé, E., Benzerara, K., Meslin, P.‐Y., Forni, O., Royer, C., Mandon, L., Beck, P., Quantin‐Nataf, C., Beyssac, O., Cousin, A., Bousquet, B., Wiens, R. C., Maurice, S., Dehouck, E., Schröder, S., Gasnault, O., Mangold, N., Dromart, G., Bosak, T., and Bernard, S.
- Subjects
IGNEOUS rocks ,MARTIAN atmosphere ,CARBONATE minerals ,MARTIAN meteorites ,NEAR infrared reflectance spectroscopy ,LASER-induced breakdown spectroscopy ,CARBONATES ,MARS (Planet) ,CRATER lakes - Abstract
Perseverance explored two geological units on the floor of Jezero Crater over the first 420 Martian days of the Mars2020 mission. These units, the Máaz and Séítah formations, are interpreted to be igneous in origin, with traces of alteration. We report the detection of carbonate phases along the rover traverse based on laser‐induced breakdown spectroscopy (LIBS), infrared reflectance spectroscopy (IRS), and time‐resolved Raman (TRR) spectroscopy by the SuperCam instrument. Carbonates are identified through direct detection of vibrational modes of CO3 functional groups (IRS and TRR), major oxides content, and ratios of C and O signal intensities (LIBS). In Séítah, the carbonates are consistent with magnesite‐siderite solid solutions (Mg# of 0.42–0.70) with low calcium contents (<5 wt.% CaO). They are detected together with olivine in IRS and TRR spectra. LIBS and IRS also indicate a spatial association of the carbonates with clays. Carbonates in Máaz are detected in fewer points, as: (a) siderite (Mg# as low as 0.03); (b) carbonate‐containing coatings, enriched in Mg (Mg# ∼0.82) and spatially associated with different salts. Overall, using conservative criteria, carbonate detections are rare in LIBS (∼30/2,000 points), IRS (∼15/2,000 points), and TRR (1/150 points) data. This is best explained by (a) a low carbonate content overall, (b) small carbonate grains mixed with other phases, (c) intrinsic complexity of in situ measurements. This is consistent with orbital observations of Jezero crater, and similar to compositions of carbonates previously reported in Martian meteorites. This suggests a limited carbonation of Jezero rocks by locally equilibrated fluids. Plain Language Summary: Carbonates are mineral phases that generally form by alteration of primary, magmatic minerals. This alteration process may occur under a variety of environmental conditions, which affect the resulting carbonate phase: its abundance, composition, spatial distribution and the mineral phases it is associated with. Consequently, carbonates keep track of the environmental conditions under which they formed, and in particular, the amount of CO2 and liquid water involved in their formation. Understanding the history of both water and CO2 on Mars is critical to better understand the evolution of the red planet and its atmosphere, but also the origin of the water on Earth, and possibly the origin of life. Since the beginning of the Mars2020 mission in Jezero Crater, the SuperCam instrument has analyzed more than 200 rocks of the crater floor, and detected carbonates along Perseverance's traverse. Carbonates are found in low amounts, and are therefore complex to identify; we use SuperCam's combination of investigation techniques and a specifically developed methodology to strengthen the identification of carbonate phases and their characterization. Even though Jezero crater hosted a lake billions of years ago, the detected carbonates appear to have formed in smaller amounts of water, after the lake had disappeared. Key Points: Carbonates are detected along Perseverance's traverse in Jezero Crater with SuperCam using laser‐induced breakdown spectroscopy, IR and Raman spectroscopyCarbonate abundance is low overall, consistent with the weak carbonate signatures observed from orbit in the explored unitsThe detected carbonates have variable compositions within the magnesite‐siderite series, and likely reflect multiple alteration episodes [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
50. A 15 N-Poor Isotopic Composition for the Solar System As Shown by Genesis Solar Wind Samples
- Author
-
Marty, B., Chaussidon, M., Wiens, R. C., Jurewicz, A. J. G., and Burnett, D. S.
- Published
- 2011
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.