4 results on '"Whisson, K."'
Search Results
2. Changing water use and adaptive strategies along rainfall gradients in Mediterranean lupins.
- Author
-
Berger, J. D., Ludwig, C., Whisson, K., and Pfautsch, S.
- Subjects
WATER use ,RAINFALL ,PLANT phenology ,BIOMASS production ,WATER supply ,WATER efficiency ,THROUGHFALL ,PLANT biomass - Abstract
There is growing interest in harnessing the genetic and adaptive diversity of crop wild relatives to improve drought resilience of elite cultivars. Rainfall gradients exert strong selection pressure on both natural and agricultural ecosystems. Understanding plant responses to these facilitates crop improvement.Wild and domesticated narrow‐leafed lupin (NLL) collected along Mediterranean terminal drought stress gradients was evaluated under contrasting reproductive phase water supply in controlled field, glasshouse and cabinet studies. Plant phenology, growth and productivity, water use and stress responses were measured over time.There is an integrated suite of adaptive changes along rainfall gradients in NLL. Low rainfall ecotypes flower earlier, accumulate lower seed numbers, biomass and leaf area, and have larger root:shoot ratios than high rainfall ecotypes. Water‐use is lower and stress onset slower in low compared to high rainfall ecotypes. Water‐use rates and ecotypic differences in stress response (Ψleaf decline, leaf loss) are lower in NLL than yellow lupin (YL). To mitigate the effects of profligate water use, high rainfall YL ecotypes maintain higher leaf water content over declining leaf water potential than low rainfall ecotypes. There is no evidence for such specific adaptation in NLL.The data suggests that appropriate phenology is the key adaptive trait to rainfall gradients in NLL because of the flow‐on effects on biomass production, fitness, transpiration and stress onset, and the lack of physiological adaptations as in YL. Accordingly, it is essential to match phenology with target environment in order to minimize risk and maximize yield potential. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
3. Wild and Domestic Differences in Plant Development and Responses to Water Deficit in Cicer .
- Author
-
Berger J, Pushpavalli R, Ludwig C, Parsons S, Basdemir F, and Whisson K
- Abstract
There is growing interest in widening the genetic diversity of domestic crops using wild relatives to break linkage drag and/or introduce new adaptive traits, particularly in narrow crops such as chickpea. To this end, it is important to understand wild and domestic adaptive differences to develop greater insight into how wild traits can be exploited for crop improvement. Here, we study wild and domestic Cicer development and water-use over the lifecycle, measuring responses to reproductive water deficit, a key Mediterranean selection pressure, using mini-lysimeters (33 L round pots) in common gardens under contrasting water regimes. Wild and domestic Cicer were consistently separated by later phenology, greater water extraction and lower water use efficiency (WUE) and harvest index in the former, and much greater yield-responsiveness in the latter. Throughout the lifecycle, there was greater vegetative investment in wild, and greater reproductive investment in domestic Cicer , reflected in root and harvest indices, rates of leaf area, and pod growth. Domestic WUE was consistently greater than wild, suggesting differences in water-use regulation and partitioning. Large wild-domestic differences revealed in this study are indicative of evolution under contrasting selection pressures. Cicer domestication has selected for early phenology, greater early vigor, and reproductive efficiency, attributes well-suited to a time-delimited production system, where the crop is protected from grazing, disease, and competition, circumstances that do not pertain in the wild. Wild Cicer attributes are more competitive: higher peak rates of leaf area growth, greater ad libitum water-use, and extraction under terminal drought associated with greater vegetative dry matter allocation, leading to a lower reproductive capacity and efficiency than in domestic chickpea. These traits strengthen competitive capacity throughout the growing season and are likely to facilitate recovery from grazing, two significant selection pressures faced by wild, rather than domesticated Cicer . While increased water extraction may be useful for improving chickpea drought tolerance, this trait must be evaluated independently of the other associated wild traits. To this end, the wild-domestic populations have been developed., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2020 Berger, Pushpavalli, Ludwig, Parsons, Basdemir and Whisson.)
- Published
- 2020
- Full Text
- View/download PDF
4. A composite guanyl thiourea (GTU), dicyandiamide (DCD) inhibitor improves the efficacy of nitrification inhibition in soil.
- Author
-
Duncan EG, O'Sullivan CA, Simonsen AK, Roper MM, Treble K, and Whisson K
- Subjects
- Ammonia analysis, Archaea drug effects, Bacteria drug effects, Bacterial Physiological Phenomena, Drug Combinations, Fertilizers analysis, Oxidation-Reduction, Soil Microbiology, Guanidines pharmacology, Nitrification drug effects, Nitrogen analysis, Soil chemistry, Thiourea pharmacology
- Abstract
This study investigated whether applying dicyandiamide (DCD) and guanyl thiourea (GTU) in conjunction with urea improves the efficacy of nitrification inhibition relative to traditional fertiliser application of urea or urea + DCD. Urea at a rate of 100 mg N kg(-1) soil was applied to soil microcosms (high nutrient tenosol and low nutrient hydrosol) which were treated with either no inhibitor (urea-only); 15 mg DCD kg(-1) soil or 15 mg DCD kg(-1) soil plus 21 mg GTU kg soil(-1). Mineral N (NH4(+) & NO3(-)) concentrations, potential nitrification rates (PNR) and abundances of ammonia oxidising bacteria (AOB) were measured over time. After 100-days incubation, ∼73 mg N kg(-1) soil was found as NH4(+) when urea + DCD + GTU were applied to the tenosol. NH4(+) concentrations were lower (11-32 mg N kg(-1) soil) when urea or urea + DCD were applied. This suggests that the application of GTU in conjunction with DCD elongated the effects of nitrification inhibition. In both soils, PNRs were faster and AOB abundances (gene copies g(-1) soil) were higher when urea was applied without nitrification inhibitors. There were, however, no differences in PNR or AOB abundances in either soil type when 'urea + DCD' or 'urea + DCD + GTU' were applied. The results indicate that the application of GTU with DCD may extend nitrification inhibition in certain soil types. This finding has the potential to improve the efficacy of commercially available and widely used inhibitors such as DCD., (Copyright © 2016. Published by Elsevier Ltd.)
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.