26 results on '"Weldon KC"'
Search Results
2. Multiplatform metabolomic interlaboratory study of a whole human stool candidate reference material from omnivore and vegan donors.
- Author
-
Cruz AK, Alves MA, Andresson T, Bayless AL, Bloodsworth KJ, Bowden JA, Bullock K, Burnet MC, Neto FC, Choy A, Clish CB, Couvillion SP, Cumeras R, Dailey L, Dallmann G, Davis WC, Deik AA, Dickens AM, Djukovic D, Dorrestein PC, Eder JG, Fiehn O, Flores R, Gika H, Hagiwara KA, Pham TH, Harynuk JJ, Aristizabal-Henao JJ, Hoyt DW, Jean-François F, Kråkström M, Kumar A, Kyle JE, Lamichhane S, Li Y, Nam SL, Mandal R, de la Mata AP, Meehan MJ, Meikopoulos T, Metz TO, Mouskeftara T, Munoz N, Gowda GAN, Orešic M, Panitchpakdi M, Pierre-Hugues S, Raftery D, Rushing B, Schock T, Seifried H, Servetas S, Shen T, Sumner S, Carrillo KST, Thibaut D, Trejo JB, Van Meulebroek L, Vanhaecke L, Virgiliou C, Weldon KC, Wishart DS, Zhang L, Zheng J, and Da Silva S
- Subjects
- Humans, Chromatography, Liquid methods, Magnetic Resonance Spectroscopy methods, Gastrointestinal Microbiome, Reference Standards, Metabolome, Reproducibility of Results, Feces chemistry, Metabolomics methods, Gas Chromatography-Mass Spectrometry methods
- Abstract
Introduction: Human metabolomics has made significant strides in understanding metabolic changes and their implications for human health, with promising applications in diagnostics and treatment, particularly regarding the gut microbiome. However, progress is hampered by issues with data comparability and reproducibility across studies, limiting the translation of these discoveries into practical applications., Objectives: This study aims to evaluate the fit-for-purpose of a suite of human stool samples as potential candidate reference materials (RMs) and assess the state of the field regarding harmonizing gut metabolomics measurements., Methods: An interlaboratory study was conducted with 18 participating institutions. The study allowed for the use of preferred analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), gas chromatography-mass spectrometry (GC-MS), and nuclear magnetic resonance (NMR)., Results: Different laboratories used various methods and analytical platforms to identify the metabolites present in human stool RM samples. The study found a 40% to 70% recurrence in the reported top 20 most abundant metabolites across the four materials. In the full annotation list, the percentage of metabolites reported multiple times after nomenclature standardization was 36% (LC-MS), 58% (GC-MS) and 76% (NMR). Out of 9,300 unique metabolites, only 37 were reported across all three measurement techniques., Conclusion: This collaborative exercise emphasized the broad chemical survey possible with multi-technique approaches. Community engagement is essential for the evaluation and characterization of common materials designed to facilitate comparability and ensure data quality underscoring the value of determining current practices, challenges, and progress of a field through interlaboratory studies., (© 2024. This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply.)
- Published
- 2024
- Full Text
- View/download PDF
3. Metabolomic Profiling Reveals Potential of Fatty Acids as Regulators of Stem-like Exhausted CD8 T Cells During Chronic Viral Infection.
- Author
-
Kazane KR, Labarta-Bajo L, Zangwill DR, Liimatta K, Vargas F, Weldon KC, Dorrestein PC, and Zúñiga EI
- Abstract
Chronic infections drive a CD8 T cell program termed T cell exhaustion, characterized by reduced effector functions. While cell-intrinsic mechanisms underlying CD8 T cell exhaustion have been extensively studied, the impact of the metabolic environment in which exhausted CD8 T cells (Tex) operate remains less clear. Using untargeted metabolomics and the murine lymphocytic choriomeningitis virus infection model we investigated systemic metabolite changes early and late following acute versus chronic viral infections. We identified distinct short-term and persistent metabolite shifts, with the most significant differences occurring transiently during the acute phase of the sustained infection. This included nutrient changes that were independent of viral loads and partially associated with CD8 T cell-induced anorexia and lipolysis. One remarkable observation was the elevation of medium- and long-chain fatty acid (FA) and acylcarnitines during the early phase after chronic infection. During this time, virus-specific CD8 T cells from chronically infected mice exhibited increased lipid accumulation and uptake compared to their counterparts from acute infection, particularly stem-like Tex (Tex
STEM ), a subset that generates effector-like TexINT which directly limit viral replication. Notably, only TexSTEM increased oxidative metabolism and ATP production upon FA exposure. Consistently, short-term reintroduction of FA during late chronic infection exclusively improved TexSTEM mitochondrial fitness, percentages and numbers. This treatment, however, also reduced TexINT , resulting in compromised viral control. Our study offers a valuable resource for investigating the role of specific metabolites in regulating immune responses during acute and chronic viral infections and highlights the potential of long-chain FA to influence TexSTEM and viral control during a protracted infection., Significance: This study examines systemic metabolite changes during acute and chronic viral infections. Notably, we identified an early, transient nutrient shift in chronic infection, marked by an increase in medium- and long-chain fatty acid related species. Concomitantly, a virus-specific stem-like T cell population, essential for maintaining other T cells, displayed high lipid avidity and was capable of metabolizing exogenous fatty acids. Administering fatty acids late in chronic infection, when endogenous lipid levels had normalized, expanded this stem-like T cell population and enhanced their mitochondrial fitness. These findings highlight the potential role of fatty acids in regulating stem-like T cells in chronic settings and offer a valuable resource for studying other metabolic signatures in both acute and persistent infections.- Published
- 2024
- Full Text
- View/download PDF
4. Peripheral neuronal activation shapes the microbiome and alters gut physiology.
- Author
-
Griffiths JA, Yoo BB, Thuy-Boun P, Cantu VJ, Weldon KC, Challis C, Sweredoski MJ, Chan KY, Thron TM, Sharon G, Moradian A, Humphrey G, Zhu Q, Shaffer JP, Wolan DW, Dorrestein PC, Knight R, Gradinaru V, and Mazmanian SK
- Subjects
- Animals, Mice, Choline O-Acetyltransferase metabolism, Enteric Nervous System physiology, Mice, Inbred C57BL, Tyrosine 3-Monooxygenase metabolism, Male, Gastrointestinal Tract microbiology, Gastrointestinal Microbiome physiology, Neurons metabolism
- Abstract
The gastrointestinal (GI) tract is innervated by intrinsic neurons of the enteric nervous system (ENS) and extrinsic neurons of the central nervous system and peripheral ganglia. The GI tract also harbors a diverse microbiome, but interactions between the ENS and the microbiome remain poorly understood. Here, we activate choline acetyltransferase (ChAT)-expressing or tyrosine hydroxylase (TH)-expressing gut-associated neurons in mice to determine effects on intestinal microbial communities and their metabolites as well as on host physiology. The resulting multi-omics datasets support broad roles for discrete peripheral neuronal subtypes in shaping microbiome structure, including modulating bile acid profiles and fungal colonization. Physiologically, activation of either ChAT
+ or TH+ neurons increases fecal output, while only ChAT+ activation results in increased colonic contractility and diarrhea-like fluid secretion. These findings suggest that specific subsets of peripherally activated neurons differentially regulate the gut microbiome and GI physiology in mice without involvement of signals from the brain., Competing Interests: Declaration of interests B.B.Y. declares financial interests in Nuanced Health, which is not related to the present study. S.K.M. declares financial interests in Axial Therapeutics and Nuanced Health, which is not related to the present study. P.C.D. is an advisor and holds equity in Cybele and Sirenas and is a scientific co-founder and advisor and holds equity to Ometa, Enveda, and Arome with prior approval by University of California, San Diego. He also consulted for DSM animal health in 2023. R.K. is a scientific advisory board member and consultant for BiomeSense, Inc.; has equity, and receives income. He is a scientific advisory board member of and has equity in GenCirq. He is a consultant and scientific advisory board member for DayTwo and receives income. He has equity in and acts as a consultant for Cybele. He is a co-founder of Biota, Inc. and has equity. He is a cofounder of Micronoma, has equity, and is a scientific advisory board member. The terms of these arrangements have been reviewed and approved by the University of California, San Diego in accordance with its conflict of interest policies., (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF
5. A conserved interdomain microbial network underpins cadaver decomposition despite environmental variables.
- Author
-
Burcham ZM, Belk AD, McGivern BB, Bouslimani A, Ghadermazi P, Martino C, Shenhav L, Zhang AR, Shi P, Emmons A, Deel HL, Xu ZZ, Nieciecki V, Zhu Q, Shaffer M, Panitchpakdi M, Weldon KC, Cantrell K, Ben-Hur A, Reed SC, Humphry GC, Ackermann G, McDonald D, Chan SHJ, Connor M, Boyd D, Smith J, Watson JMS, Vidoli G, Steadman D, Lynne AM, Bucheli S, Dorrestein PC, Wrighton KC, Carter DO, Knight R, and Metcalf JL
- Subjects
- Mice, Humans, Animals, Swine, Cattle, Cadaver, Metagenome, Bacteria, Microbial Consortia, Soil Microbiology
- Abstract
Microbial breakdown of organic matter is one of the most important processes on Earth, yet the controls of decomposition are poorly understood. Here we track 36 terrestrial human cadavers in three locations and show that a phylogenetically distinct, interdomain microbial network assembles during decomposition despite selection effects of location, climate and season. We generated a metagenome-assembled genome library from cadaver-associated soils and integrated it with metabolomics data to identify links between taxonomy and function. This universal network of microbial decomposers is characterized by cross-feeding to metabolize labile decomposition products. The key bacterial and fungal decomposers are rare across non-decomposition environments and appear unique to the breakdown of terrestrial decaying flesh, including humans, swine, mice and cattle, with insects as likely important vectors for dispersal. The observed lockstep of microbial interactions further underlies a robust microbial forensic tool with the potential to aid predictions of the time since death., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. Open access repository-scale propagated nearest neighbor suspect spectral library for untargeted metabolomics.
- Author
-
Bittremieux W, Avalon NE, Thomas SP, Kakhkhorov SA, Aksenov AA, Gomes PWP, Aceves CM, Caraballo-Rodríguez AM, Gauglitz JM, Gerwick WH, Huan T, Jarmusch AK, Kaddurah-Daouk RF, Kang KB, Kim HW, Kondić T, Mannochio-Russo H, Meehan MJ, Melnik AV, Nothias LF, O'Donovan C, Panitchpakdi M, Petras D, Schmid R, Schymanski EL, van der Hooft JJJ, Weldon KC, Yang H, Xing S, Zemlin J, Wang M, and Dorrestein PC
- Subjects
- Metabolomics methods, Gene Library, Cluster Analysis, Tandem Mass Spectrometry methods, Access to Information
- Abstract
Despite the increasing availability of tandem mass spectrometry (MS/MS) community spectral libraries for untargeted metabolomics over the past decade, the majority of acquired MS/MS spectra remain uninterpreted. To further aid in interpreting unannotated spectra, we created a nearest neighbor suspect spectral library, consisting of 87,916 annotated MS/MS spectra derived from hundreds of millions of MS/MS spectra originating from published untargeted metabolomics experiments. Entries in this library, or "suspects," were derived from unannotated spectra that could be linked in a molecular network to an annotated spectrum. Annotations were propagated to unknowns based on structural relationships to reference molecules using MS/MS-based spectrum alignment. We demonstrate the broad relevance of the nearest neighbor suspect spectral library through representative examples of propagation-based annotation of acylcarnitines, bacterial and plant natural products, and drug metabolism. Our results also highlight how the library can help to better understand an Alzheimer's brain phenotype. The nearest neighbor suspect spectral library is openly available for download or for data analysis through the GNPS platform to help investigators hypothesize candidate structures for unknown MS/MS spectra in untargeted metabolomics data., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
7. Effects of a ketogenic and low-fat diet on the human metabolome, microbiome, and foodome in adults at risk for Alzheimer's disease.
- Author
-
Dilmore AH, Martino C, Neth BJ, West KA, Zemlin J, Rahman G, Panitchpakdi M, Meehan MJ, Weldon KC, Blach C, Schimmel L, Kaddurah-Daouk R, Dorrestein PC, Knight R, and Craft S
- Subjects
- United States, Humans, Adult, Diet, Fat-Restricted, Metabolome physiology, Seizures, Ketone Bodies, gamma-Aminobutyric Acid metabolism, Alzheimer Disease metabolism, Microbiota
- Abstract
Introduction: The ketogenic diet (KD) is an intriguing therapeutic candidate for Alzheimer's disease (AD) given its protective effects against metabolic dysregulation and seizures. Gut microbiota are essential for KD-mediated neuroprotection against seizures as well as modulation of bile acids, which play a major role in cholesterol metabolism. These relationships motivated our analysis of gut microbiota and metabolites related to cognitive status following a controlled KD intervention compared with a low-fat-diet intervention., Methods: Prediabetic adults, either with mild cognitive impairment (MCI) or cognitively normal (CN), were placed on either a low-fat American Heart Association diet or high-fat modified Mediterranean KD (MMKD) for 6 weeks; then, after a 6-week washout period, they crossed over to the alternate diet. We collected stool samples for shotgun metagenomics and untargeted metabolomics at five time points to investigate individuals' microbiome and metabolome throughout the dietary interventions., Results: Participants with MCI on the MMKD had lower levels of GABA-producing microbes Alistipes sp. CAG:514 and GABA, and higher levels of GABA-regulating microbes Akkermansia muciniphila. MCI individuals with curcumin in their diet had lower levels of bile salt hydrolase-containing microbes and an altered bile acid pool, suggesting reduced gut motility., Discussion: Our results suggest that the MMKD may benefit adults with MCI through modulation of GABA levels and gut-transit time., (© 2023 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association.)
- Published
- 2023
- Full Text
- View/download PDF
8. Author Correction: Enhancing untargeted metabolomics using metadata-based source annotation.
- Author
-
Gauglitz JM, West KA, Bittremieux W, Williams CL, Weldon KC, Panitchpakdi M, Di Ottavio F, Aceves CM, Brown E, Sikora NC, Jarmusch AK, Martino C, Tripathi A, Meehan MJ, Dorrestein K, Shaffer JP, Coras R, Vargas F, Goldasich LD, Schwartz T, Bryant M, Humphrey G, Johnson AJ, Spengler K, Belda-Ferre P, Diaz E, McDonald D, Zhu Q, Elijah EO, Wang M, Marotz C, Sprecher KE, Vargas-Robles D, Withrow D, Ackermann G, Herrera L, Bradford BJ, Marques LMM, Amaral JG, Silva RM, Veras FP, Cunha TM, Oliveira RDR, Louzada-Junior P, Mills RH, Piotrowski PK, Servetas SL, Da Silva SM, Jones CM, Lin NJ, Lippa KA, Jackson SA, Daouk RK, Galasko D, Dulai PS, Kalashnikova TI, Wittenberg C, Terkeltaub R, Doty MM, Kim JH, Rhee KE, Beauchamp-Walters J, Wright KP Jr, Dominguez-Bello MG, Manary M, Oliveira MF, Boland BS, Lopes NP, Guma M, Swafford AD, Dutton RJ, Knight R, and Dorrestein PC
- Published
- 2023
- Full Text
- View/download PDF
9. Signatures of HIV and Major Depressive Disorder in the Plasma Microbiome.
- Author
-
Taylor BC, Sheikh Andalibi M, Wandro S, Weldon KC, Sepich-Poore GD, Carpenter CS, Fraraccio S, Franklin D, Iudicello JE, Letendre S, Gianella S, Grant I, Ellis RJ, Heaton RK, Knight R, and Swafford AD
- Abstract
Inter-individual differences in the gut microbiome are linked to alterations in inflammation and blood-brain barrier permeability, which may increase the risk of depression in people with HIV (PWH). The microbiome profile of blood, which is considered by many to be typically sterile, remains largely unexplored. We aimed to characterize the blood plasma microbiome composition and assess its association with major depressive disorder (MDD) in PWH and people without HIV (PWoH). In this cross-sectional, observational cohort, we used shallow-shotgun metagenomic sequencing to characterize the plasma microbiome of 151 participants (84 PWH and 67 PWoH), all of whom underwent a comprehensive neuropsychiatric assessment. The microbial composition did not differ between PWH and PWoH or between participants with MDD and those without it. Using the songbird model, we computed the log ratio of the highest and lowest 30% of the ranked classes associated with HIV and MDD. We found that HIV infection and lifetime MDD were enriched in a set of differentially abundant inflammatory classes, such as Flavobacteria and Nitrospira. Our results suggest that the circulating plasma microbiome may increase the risk of MDD related to dysbiosis-induced inflammation in PWH. If confirmed, these findings may indicate new biological mechanisms that could be targeted to improve treatment of MDD in PWH.
- Published
- 2023
- Full Text
- View/download PDF
10. Plasma metabolites with mechanistic and clinical links to the neurovascular disease cavernous angioma.
- Author
-
Srinath A, Xie B, Li Y, Sone JY, Romanos S, Chen C, Sharma A, Polster S, Dorrestein PC, Weldon KC, DeBiasse D, Moore T, Lightle R, Koskimäki J, Zhang D, Stadnik A, Piedad K, Hagan M, Shkoukani A, Carrión-Penagos J, Bi D, Shen L, Shenkar R, Ji Y, Sidebottom A, Pamer E, Gilbert JA, Kahn ML, D'Souza M, Sulakhe D, Awad IA, and Girard R
- Abstract
Background: Cavernous angiomas (CAs) affect 0.5% of the population, predisposing to serious neurologic sequelae from brain bleeding. A leaky gut epithelium associated with a permissive gut microbiome, was identified in patients who develop CAs, favoring lipid polysaccharide producing bacterial species. Micro-ribonucleic acids along with plasma levels of proteins reflecting angiogenesis and inflammation were also previously correlated with CA and CA with symptomatic hemorrhage., Methods: The plasma metabolome of CA patients and CA patients with symptomatic hemorrhage was assessed using liquid-chromatography mass spectrometry. Differential metabolites were identified using partial least squares-discriminant analysis (p < 0.05, FDR corrected). Interactions between these metabolites and the previously established CA transcriptome, microbiome, and differential proteins were queried for mechanistic relevance. Differential metabolites in CA patients with symptomatic hemorrhage were then validated in an independent, propensity matched cohort. A machine learning-implemented, Bayesian approach was used to integrate proteins, micro-RNAs and metabolites to develop a diagnostic model for CA patients with symptomatic hemorrhage., Results: Here we identify plasma metabolites, including cholic acid and hypoxanthine distinguishing CA patients, while arachidonic and linoleic acids distinguish those with symptomatic hemorrhage. Plasma metabolites are linked to the permissive microbiome genes, and to previously implicated disease mechanisms. The metabolites distinguishing CA with symptomatic hemorrhage are validated in an independent propensity-matched cohort, and their integration, along with levels of circulating miRNAs, enhance the performance of plasma protein biomarkers (up to 85% sensitivity and 80% specificity)., Conclusions: Plasma metabolites reflect CAs and their hemorrhagic activity. A model of their multiomic integration is applicable to other pathologies., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
11. Enhancing untargeted metabolomics using metadata-based source annotation.
- Author
-
Gauglitz JM, West KA, Bittremieux W, Williams CL, Weldon KC, Panitchpakdi M, Di Ottavio F, Aceves CM, Brown E, Sikora NC, Jarmusch AK, Martino C, Tripathi A, Meehan MJ, Dorrestein K, Shaffer JP, Coras R, Vargas F, Goldasich LD, Schwartz T, Bryant M, Humphrey G, Johnson AJ, Spengler K, Belda-Ferre P, Diaz E, McDonald D, Zhu Q, Elijah EO, Wang M, Marotz C, Sprecher KE, Vargas-Robles D, Withrow D, Ackermann G, Herrera L, Bradford BJ, Marques LMM, Amaral JG, Silva RM, Veras FP, Cunha TM, Oliveira RDR, Louzada-Junior P, Mills RH, Piotrowski PK, Servetas SL, Da Silva SM, Jones CM, Lin NJ, Lippa KA, Jackson SA, Daouk RK, Galasko D, Dulai PS, Kalashnikova TI, Wittenberg C, Terkeltaub R, Doty MM, Kim JH, Rhee KE, Beauchamp-Walters J, Wright KP Jr, Dominguez-Bello MG, Manary M, Oliveira MF, Boland BS, Lopes NP, Guma M, Swafford AD, Dutton RJ, Knight R, and Dorrestein PC
- Subjects
- Humans, Metabolomics methods, Tandem Mass Spectrometry, Metadata
- Abstract
Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data., (© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2022
- Full Text
- View/download PDF
12. Multiomic Analyses of Nascent Preterm Infant Microbiomes Differentiation Suggest Opportunities for Targeted Intervention.
- Author
-
Orchanian SB, Gauglitz JM, Wandro S, Weldon KC, Doty M, Stillwell K, Hansen S, Jiang L, Vargas F, Rhee KE, Lumeng JC, Dorrestein PC, Knight R, Kim JH, Song SJ, and Swafford AD
- Subjects
- Cesarean Section, Female, Humans, Infant, Infant, Newborn, Infant, Premature, Metabolome, Pregnancy, Gastrointestinal Microbiome genetics, Infant, Newborn, Diseases, Microbiota genetics
- Abstract
The first week after birth is a critical time for the establishment of microbial communities for infants. Preterm infants face unique environmental impacts on their newly acquired microbiomes, including increased incidence of cesarean section delivery and exposure to antibiotics as well as delayed enteral feeding and reduced human interaction during their intensive care unit stay. Using contextualized paired metabolomics and 16S sequencing data, the development of the gut, skin, and oral microbiomes of infants is profiled daily for the first week after birth, and it is found that the skin microbiome appears robust to early life perturbation, while direct exposure of infants to antibiotics, rather than presumed maternal transmission, delays microbiome development and prevents the early differentiation based on body site regardless of delivery mode. Metabolomic analyses identify the development of all gut metabolomes of preterm infants toward full-term infant profiles, but a significant increase of primary bile acid metabolism only in the non-antibiotic treated vaginally birthed late preterm infants. This study provides a framework for future multi-omic, multibody site analyses on these high-risk preterm infant populations and suggests opportunities for monitoring and intervention, with infant antibiotic exposure as the primary driver of delays in microbiome development., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
13. Non-invasive skin sampling detects systemically administered drugs in humans.
- Author
-
Panitchpakdi M, Weldon KC, Jarmusch AK, Gentry EC, Choi A, Sepulveda Y, Aguirre S, Sun K, Momper JD, Dorrestein PC, and Tsunoda SM
- Subjects
- Humans, Mass Spectrometry, Metabolomics, Diphenhydramine, Skin metabolism
- Abstract
Clinical testing typically relies on invasive blood draws and biopsies. Alternative methods of sample collection are continually being developed to improve patient experience; swabbing the skin is one of the least invasive sampling methods possible. To show that skin swabs in combination with untargeted mass spectrometry (metabolomics) can be used for non-invasive monitoring of an oral drug, we report the kinetics and metabolism of diphenhydramine in healthy volunteers (n = 10) over the course of 24 hours in blood and three regions of the skin. Diphenhydramine and its metabolites were observed on the skin after peak plasma levels, varying by compound and skin location, and is an illustrative example of how systemically administered molecules can be detected on the skin surface. The observation of diphenhydramine directly from the skin supports the hypothesis that both parent drug and metabolites can be qualitatively measured from a simple non-invasive swab of the skin surface. The mechanism of the drug and metabolites pathway to the skin's surface remains unknown., Competing Interests: P.C.D is a scientific advisor to Sirenas, Galileo and Cybele and co-founder and scientific advisor to Ometa Labs and Enveda with approval by the University of California San Diego. M.P. is a research consultant to Ometa Labs.
- Published
- 2022
- Full Text
- View/download PDF
14. The impact of maternal asthma on the preterm infants' gut metabolome and microbiome (MAP study).
- Author
-
Bai-Tong SS, Thoemmes MS, Weldon KC, Motazavi D, Kitsen J, Hansen S, Furst A, Geng B, Song SJ, Gilbert JA, Bode L, Dorrestein PC, Knight R, Leibel SA, and Leibel SL
- Subjects
- Humans, Infant, Infant, Newborn, Infant, Premature, Metabolome, Pilot Projects, Prospective Studies, Asthma, Microbiota
- Abstract
Preterm infants are at a greater risk for the development of asthma and atopic disease, which can lead to lifelong negative health consequences. This may be due, in part, to alterations that occur in the gut microbiome and metabolome during their stay in the Neonatal Intensive Care Unit (NICU). To explore the differential roles of family history (i.e., predisposition due to maternal asthma diagnosis) and hospital-related environmental and clinical factors that alter microbial exposures early in life, we considered a unique cohort of preterm infants born ≤ 34 weeks gestational age from two local level III NICUs, as part of the MAP (Microbiome, Atopic disease, and Prematurity) Study. From MAP participants, we chose a sub-cohort of infants whose mothers had a history of asthma and matched gestational age and sex to infants of mothers without a history of asthma diagnosis (control). We performed a prospective, paired metagenomic and metabolomic analysis of stool and milk feed samples collected at birth, 2 weeks, and 6 weeks postnatal age. Although there were clinical factors associated with shifts in the diversity and composition of stool-associated bacterial communities, maternal asthma diagnosis did not play an observable role in shaping the infant gut microbiome during the study period. There were significant differences, however, in the metabolite profile between the maternal asthma and control groups at 6 weeks postnatal age. The most notable changes occurred in the linoleic acid spectral network, which plays a role in inflammatory and immune pathways, suggesting early metabolomic changes in the gut of preterm infants born to mothers with a history of asthma. Our pilot study suggests that a history of maternal asthma alters a preterm infants' metabolomic pathways in the gut, as early as the first 6 weeks of life., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
15. Ion identity molecular networking for mass spectrometry-based metabolomics in the GNPS environment.
- Author
-
Schmid R, Petras D, Nothias LF, Wang M, Aron AT, Jagels A, Tsugawa H, Rainer J, Garcia-Aloy M, Dührkop K, Korf A, Pluskal T, Kameník Z, Jarmusch AK, Caraballo-Rodríguez AM, Weldon KC, Nothias-Esposito M, Aksenov AA, Bauermeister A, Albarracin Orio A, Grundmann CO, Vargas F, Koester I, Gauglitz JM, Gentry EC, Hövelmann Y, Kalinina SA, Pendergraft MA, Panitchpakdi M, Tehan R, Le Gouellec A, Aleti G, Mannochio Russo H, Arndt B, Hübner F, Hayen H, Zhi H, Raffatellu M, Prather KA, Aluwihare LI, Böcker S, McPhail KL, Humpf HU, Karst U, and Dorrestein PC
- Subjects
- Animals, Internet, Ions chemistry, Molecular Structure, Reproducibility of Results, Software, Computational Biology methods, Ions metabolism, Mass Spectrometry methods, Metabolic Networks and Pathways, Metabolomics methods
- Abstract
Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.
- Published
- 2021
- Full Text
- View/download PDF
16. Gastrointestinal Surgery for Inflammatory Bowel Disease Persistently Lowers Microbiome and Metabolome Diversity.
- Author
-
Fang X, Vázquez-Baeza Y, Elijah E, Vargas F, Ackermann G, Humphrey G, Lau R, Weldon KC, Sanders JG, Panitchpakdi M, Carpenter C, Jarmusch AK, Neill J, Miralles A, Dulai P, Singh S, Tsai M, Swafford AD, Smarr L, Boyle DL, Palsson BO, Chang JT, Dorrestein PC, Sandborn WJ, Knight R, and Boland BS
- Subjects
- Feces, Humans, Metabolome, Prospective Studies, Crohn Disease surgery, Digestive System Surgical Procedures, Gastrointestinal Microbiome
- Abstract
Background: Many studies have investigated the role of the microbiome in inflammatory bowel disease (IBD), but few have focused on surgery specifically or its consequences on the metabolome that may differ by surgery type and require longitudinal sampling. Our objective was to characterize and contrast microbiome and metabolome changes after different surgeries for IBD, including ileocolonic resection and colectomy., Methods: The UC San Diego IBD Biobank was used to prospectively collect 332 stool samples from 129 subjects (50 ulcerative colitis; 79 Crohn's disease). Of these, 21 with Crohn's disease had ileocolonic resections, and 17 had colectomies. We used shotgun metagenomics and untargeted liquid chromatography followed by tandem mass spectrometry metabolomics to characterize the microbiomes and metabolomes of these patients up to 24 months after the initial sampling., Results: The species diversity and metabolite diversity both differed significantly among groups (species diversity: Mann-Whitney U test P value = 7.8e-17; metabolomics, P-value = 0.0043). Escherichia coli in particular expanded dramatically in relative abundance in subjects undergoing surgery. The species profile was better able to classify subjects according to surgery status than the metabolite profile (average precision 0.80 vs 0.68)., Conclusions: Intestinal surgeries seem to reduce the diversity of the gut microbiome and metabolome in IBD patients, and these changes may persist. Surgery also further destabilizes the microbiome (but not the metabolome) over time, even relative to the previously established instability in the microbiome of IBD patients. These long-term effects and their consequences for health outcomes need to be studied in prospective longitudinal trials linked to microbiome-involved phenotypes., (© 2020 Crohn’s & Colitis Foundation. Published by Oxford University Press on behalf of Crohn’s & Colitis Foundation.)
- Published
- 2021
- Full Text
- View/download PDF
17. A community resource for paired genomic and metabolomic data mining.
- Author
-
Schorn MA, Verhoeven S, Ridder L, Huber F, Acharya DD, Aksenov AA, Aleti G, Moghaddam JA, Aron AT, Aziz S, Bauermeister A, Bauman KD, Baunach M, Beemelmanns C, Beman JM, Berlanga-Clavero MV, Blacutt AA, Bode HB, Boullie A, Brejnrod A, Bugni TS, Calteau A, Cao L, Carrión VJ, Castelo-Branco R, Chanana S, Chase AB, Chevrette MG, Costa-Lotufo LV, Crawford JM, Currie CR, Cuypers B, Dang T, de Rond T, Demko AM, Dittmann E, Du C, Drozd C, Dujardin JC, Dutton RJ, Edlund A, Fewer DP, Garg N, Gauglitz JM, Gentry EC, Gerwick L, Glukhov E, Gross H, Gugger M, Guillén Matus DG, Helfrich EJN, Hempel BF, Hur JS, Iorio M, Jensen PR, Kang KB, Kaysser L, Kelleher NL, Kim CS, Kim KH, Koester I, König GM, Leao T, Lee SR, Lee YY, Li X, Little JC, Maloney KN, Männle D, Martin H C, McAvoy AC, Metcalf WW, Mohimani H, Molina-Santiago C, Moore BS, Mullowney MW, Muskat M, Nothias LF, O'Neill EC, Parkinson EI, Petras D, Piel J, Pierce EC, Pires K, Reher R, Romero D, Roper MC, Rust M, Saad H, Saenz C, Sanchez LM, Sørensen SJ, Sosio M, Süssmuth RD, Sweeney D, Tahlan K, Thomson RJ, Tobias NJ, Trindade-Silva AE, van Wezel GP, Wang M, Weldon KC, Zhang F, Ziemert N, Duncan KR, Crüsemann M, Rogers S, Dorrestein PC, Medema MH, and van der Hooft JJJ
- Subjects
- Databases, Factual, Data Mining methods, Genomics methods, Metabolomics methods
- Published
- 2021
- Full Text
- View/download PDF
18. Effects of Immunization With the Soil-Derived Bacterium Mycobacterium vaccae on Stress Coping Behaviors and Cognitive Performance in a "Two Hit" Stressor Model.
- Author
-
Foxx CL, Heinze JD, González A, Vargas F, Baratta MV, Elsayed AI, Stewart JR, Loupy KM, Arnold MR, Flux MC, Sago SA, Siebler PH, Milton LN, Lieb MW, Hassell JE, Smith DG, Lee KAK, Appiah SA, Schaefer EJ, Panitchpakdi M, Sikora NC, Weldon KC, Stamper CE, Schmidt D, Duggan DA, Mengesha YM, Ogbaselassie M, Nguyen KT, Gates CA, Schnabel K, Tran L, Jones JD, Vitaterna MH, Turek FW, Fleshner M, Dorrestein PC, Knight R, Wright KP, and Lowry CA
- Abstract
Previous studies demonstrate that Mycobacterium vaccae NCTC 11659 ( M. vaccae ), a soil-derived bacterium with anti-inflammatory and immunoregulatory properties, is a potentially useful countermeasure against negative outcomes to stressors. Here we used male C57BL/6NCrl mice to determine if repeated immunization with M. vaccae is an effective countermeasure in a "two hit" stress exposure model of chronic disruption of rhythms (CDR) followed by acute social defeat (SD). On day -28, mice received implants of biotelemetric recording devices to monitor 24-h rhythms of locomotor activity. Mice were subsequently treated with a heat-killed preparation of M. vaccae (0.1 mg, administered subcutaneously on days -21, -14, -7, and 27) or borate-buffered saline vehicle. Mice were then exposed to 8 consecutive weeks of either stable normal 12:12 h light:dark (LD) conditions or CDR, consisting of 12-h reversals of the LD cycle every 7 days (days 0-56). Finally, mice were exposed to either a 10-min SD or a home cage control condition on day 54. All mice were exposed to object location memory testing 24 h following SD. The gut microbiome and metabolome were assessed in fecal samples collected on days -1, 48, and 62 using 16S rRNA gene sequence and LC-MS/MS spectral data, respectively; the plasma metabolome was additionally measured on day 64. Among mice exposed to normal LD conditions, immunization with M. vaccae induced a shift toward a more proactive behavioral coping response to SD as measured by increases in scouting and avoiding an approaching male CD-1 aggressor, and decreases in submissive upright defensive postures. In the object location memory test, exposure to SD increased cognitive function in CDR mice previously immunized with M. vaccae . Immunization with M. vaccae stabilized the gut microbiome, attenuating CDR-induced reductions in alpha diversity and decreasing within-group measures of beta diversity. Immunization with M. vaccae also increased the relative abundance of 1-heptadecanoyl-sn-glycero-3-phosphocholine, a lysophospholipid, in plasma. Together, these data support the hypothesis that immunization with M. vaccae stabilizes the gut microbiome, induces a shift toward a more proactive response to stress exposure, and promotes stress resilience., Competing Interests: CL serves on the Scientific Advisory Board of Immodulon Therapeutics, Ltd., is cofounder and Chief Scientific Officer of Mycobacteria Therapeutics Corporation, serves as an unpaid scientific consultant with Aurum Switzerland AG and serves at a member of the faculty of the Integrative Psychiatry Institute, Boulder, Colorado, United States. KPW has received research support from the National Institutes of Health, the Pac-12 Conference, and SomaLogic, Inc. outside of this work; consulting fees from or served as a paid member of scientific advisory boards for the Sleep Disorders Research Advisory Board – National Heart, Lung and Blood Institute and CurAegis Technologies, Circadian Therapeutics, Ltd.; and has received speaker/educational/travel consultant honorarium fees from the American Academy of Sleep Medicine, American College of Chest Physicians, American College of Sports Medicine, American Diabetes Association, Associated Professional Sleep Societies, Kellogg Company, and The European Association for the Study of Obesity. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2021 Foxx, Heinze, González, Vargas, Baratta, Elsayed, Stewart, Loupy, Arnold, Flux, Sago, Siebler, Milton, Lieb, Hassell, Smith, Lee, Appiah, Schaefer, Panitchpakdi, Sikora, Weldon, Stamper, Schmidt, Duggan, Mengesha, Ogbaselassie, Nguyen, Gates, Schnabel, Tran, Jones, Vitaterna, Turek, Fleshner, Dorrestein, Knight, Wright and Lowry.)
- Published
- 2021
- Full Text
- View/download PDF
19. Reduced Independence in Daily Living Is Associated with the Gut Microbiome in People with HIV and HCV.
- Author
-
Taylor BC, Weldon KC, Ellis RJ, Franklin D, McDonald D, Humphrey G, Bryant M, Toronczak J, Schwartz T, Iudicello J, Heaton R, Grant I, Gianella S, Letendre S, Swafford A, Dorrestein PC, and Knight R
- Abstract
Alterations in the gut microbiome are associated with neurocognition and related disorders, including in the context of human immunodeficiency virus (HIV) and hepatitis C virus (HCV) infection. However, the connection between the gut microbiome and cognitive decline, gauged by increased dependence in instrumental activities of daily living (IADL), remains largely unexplored in the context of these diseases. Here we characterized the gut microbiome using 16S rRNA amplicon sequencing and untargeted metabolomics with liquid chromatography-mass spectrometry from 347 people with HIV, HIV and HCV, or neither, all of whom underwent a comprehensive neuropsychiatric assessment. We observed that IADL-dependent and -independent HIV-monoinfected (HIV-positive [HIV+]/HCV-negative [HCV-]) and coinfected (HIV+/HCV+) individuals have distinct gut microbiomes. Moreover, we found that dependent individuals with HIV or HIV and HCV were enriched in Bacteroides These results may have implications for the characterization of cognitive decline, as well as the development of potential prevention and treatment strategies for individuals infected with HIV and/or HCV. Of particular interest is the possibility that dietary interventions that are known to modify the microbiome could be used to shift the microbiome toward more favorable states for preserving independence. IMPORTANCE The microbes in the gut and the chemicals they produce by metabolism have been linked to brain function. In earlier work, we showed that infection with two viruses, HIV and HCV, changed the gut microbes and metabolism in ways that were associated with a lifetime history of major depressive disorder. Here, we extend this analysis looking at a measurement of independence in daily living. We find that in individuals with HIV, whether or not they also have HCV, those who reported reduced independence were enriched in a genus of bacteria called Bacteroides This result is interesting because Bacteroides is strongly associated with diets low in carbohydrates and high in animal protein, suggesting that diet changes may help preserve independent living in people living long-term with HIV (although clinical intervention trials would be needed in order to confirm this)., (Copyright © 2020 Taylor et al.)
- Published
- 2020
- Full Text
- View/download PDF
20. Depression in Individuals Coinfected with HIV and HCV Is Associated with Systematic Differences in the Gut Microbiome and Metabolome.
- Author
-
Taylor BC, Weldon KC, Ellis RJ, Franklin D, Groth T, Gentry EC, Tripathi A, McDonald D, Humphrey G, Bryant M, Toronczak J, Schwartz T, Oliveira MF, Heaton R, Grant I, Gianella S, Letendre S, Swafford A, Dorrestein PC, and Knight R
- Abstract
Depression is influenced by the structure, diversity, and composition of the gut microbiome. Although depression has been described previously in human immunodeficiency virus (HIV) and hepatitis C virus (HCV) monoinfections, and to a lesser extent in HIV-HCV coinfection, research on the interplay between depression and the gut microbiome in these disease states is limited. Here, we characterized the gut microbiome using 16S rRNA amplicon sequencing of fecal samples from 373 participants who underwent a comprehensive neuropsychiatric assessment and the gut metabolome on a subset of these participants using untargeted metabolomics with liquid chromatography-mass spectrometry. We observed that the gut microbiome and metabolome were distinct between HIV-positive and -negative individuals. HCV infection had a large association with the microbiome that was not confounded by drug use. Therefore, we classified the participants by HIV and HCV infection status (HIV-monoinfected, HIV-HCV coinfected, or uninfected). The three groups significantly differed in their gut microbiome (unweighted UniFrac distances) and metabolome (Bray-Curtis distances). Coinfected individuals also had lower alpha diversity. Within each of the three groups, we evaluated lifetime major depressive disorder (MDD) and current Beck Depression Inventory-II. We found that the gut microbiome differed between depression states only in coinfected individuals. Coinfected individuals with a lifetime history of MDD were enriched in primary and secondary bile acids, as well as taxa previously identified in people with MDD. Collectively, we observe persistent signatures associated with depression only in coinfected individuals, suggesting that HCV itself, or interactions between HCV and HIV, may drive HIV-related neuropsychiatric differences. IMPORTANCE The human gut microbiome influences depression. Differences between the microbiomes of HIV-infected and uninfected individuals have been described, but it is not known whether these are due to HIV itself, or to common HIV comorbidities such as HCV coinfection. Limited research has explored the influence of the microbiome on depression within these groups. Here, we characterized the microbial community and metabolome in the stools from 373 people, noting the presence of current or lifetime depression as well as their HIV and HCV infection status. Our findings provide additional evidence that individuals with HIV have different microbiomes which are further altered by HCV coinfection. In individuals coinfected with both HIV and HCV, we identified microbes and molecules that were associated with depression. These results suggest that the interplay of HIV and HCV and the gut microbiome may contribute to the HIV-associated neuropsychiatric problems., (Copyright © 2020 Taylor et al.)
- Published
- 2020
- Full Text
- View/download PDF
21. ReDU: a framework to find and reanalyze public mass spectrometry data.
- Author
-
Jarmusch AK, Wang M, Aceves CM, Advani RS, Aguirre S, Aksenov AA, Aleti G, Aron AT, Bauermeister A, Bolleddu S, Bouslimani A, Caraballo Rodriguez AM, Chaar R, Coras R, Elijah EO, Ernst M, Gauglitz JM, Gentry EC, Husband M, Jarmusch SA, Jones KL 2nd, Kamenik Z, Le Gouellec A, Lu A, McCall LI, McPhail KL, Meehan MJ, Melnik AV, Menezes RC, Montoya Giraldo YA, Nguyen NH, Nothias LF, Nothias-Esposito M, Panitchpakdi M, Petras D, Quinn RA, Sikora N, van der Hooft JJJ, Vargas F, Vrbanac A, Weldon KC, Knight R, Bandeira N, and Dorrestein PC
- Subjects
- Metadata, Models, Chemical, Databases, Chemical, Mass Spectrometry, Metabolomics methods, Software
- Abstract
We present ReDU ( https://redu.ucsd.edu/ ), a system for metadata capture of public mass spectrometry-based metabolomics data, with validated controlled vocabularies. Systematic capture of knowledge enables the reanalysis of public data and/or co-analysis of one's own data. ReDU enables multiple types of analyses, including finding chemicals and associated metadata, comparing the shared and different chemicals between groups of samples, and metadata-filtered, repository-scale molecular networking.
- Published
- 2020
- Full Text
- View/download PDF
22. Feature-based molecular networking in the GNPS analysis environment.
- Author
-
Nothias LF, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, Protsyuk I, Ernst M, Tsugawa H, Fleischauer M, Aicheler F, Aksenov AA, Alka O, Allard PM, Barsch A, Cachet X, Caraballo-Rodriguez AM, Da Silva RR, Dang T, Garg N, Gauglitz JM, Gurevich A, Isaac G, Jarmusch AK, Kameník Z, Kang KB, Kessler N, Koester I, Korf A, Le Gouellec A, Ludwig M, Martin H C, McCall LI, McSayles J, Meyer SW, Mohimani H, Morsy M, Moyne O, Neumann S, Neuweger H, Nguyen NH, Nothias-Esposito M, Paolini J, Phelan VV, Pluskal T, Quinn RA, Rogers S, Shrestha B, Tripathi A, van der Hooft JJJ, Vargas F, Weldon KC, Witting M, Yang H, Zhang Z, Zubeil F, Kohlbacher O, Böcker S, Alexandrov T, Bandeira N, Wang M, and Dorrestein PC
- Subjects
- Computational Biology methods, Databases, Factual, Metabolomics methods, Software, Biological Products chemistry, Mass Spectrometry
- Abstract
Molecular networking has become a key method to visualize and annotate the chemical space in non-targeted mass spectrometry data. We present feature-based molecular networking (FBMN) as an analysis method in the Global Natural Products Social Molecular Networking (GNPS) infrastructure that builds on chromatographic feature detection and alignment tools. FBMN enables quantitative analysis and resolution of isomers, including from ion mobility spectrometry.
- Published
- 2020
- Full Text
- View/download PDF
23. Reproducible molecular networking of untargeted mass spectrometry data using GNPS.
- Author
-
Aron AT, Gentry EC, McPhail KL, Nothias LF, Nothias-Esposito M, Bouslimani A, Petras D, Gauglitz JM, Sikora N, Vargas F, van der Hooft JJJ, Ernst M, Kang KB, Aceves CM, Caraballo-Rodríguez AM, Koester I, Weldon KC, Bertrand S, Roullier C, Sun K, Tehan RM, Boya P CA, Christian MH, Gutiérrez M, Ulloa AM, Tejeda Mora JA, Mojica-Flores R, Lakey-Beitia J, Vásquez-Chaves V, Zhang Y, Calderón AI, Tayler N, Keyzers RA, Tugizimana F, Ndlovu N, Aksenov AA, Jarmusch AK, Schmid R, Truman AW, Bandeira N, Wang M, and Dorrestein PC
- Subjects
- Animals, Chromatography, Liquid methods, Humans, Metabolic Networks and Pathways, Mice, Reproducibility of Results, Software, Workflow, Metabolomics methods, Tandem Mass Spectrometry methods
- Abstract
Global Natural Product Social Molecular Networking (GNPS) is an interactive online small molecule-focused tandem mass spectrometry (MS
2 ) data curation and analysis infrastructure. It is intended to provide as much chemical insight as possible into an untargeted MS2 dataset and to connect this chemical insight to the user's underlying biological questions. This can be performed within one liquid chromatography (LC)-MS2 experiment or at the repository scale. GNPS-MassIVE is a public data repository for untargeted MS2 data with sample information (metadata) and annotated MS2 spectra. These publicly accessible data can be annotated and updated with the GNPS infrastructure keeping a continuous record of all changes. This knowledge is disseminated across all public data; it is a living dataset. Molecular networking-one of the main analysis tools used within the GNPS platform-creates a structured data table that reflects the molecular diversity captured in tandem mass spectrometry experiments by computing the relationships of the MS2 spectra as spectral similarity. This protocol provides step-by-step instructions for creating reproducible, high-quality molecular networks. For training purposes, the reader is led through a 90- to 120-min procedure that starts by recalling an example public dataset and its sample information and proceeds to creating and interpreting a molecular network. Each data analysis job can be shared or cloned to disseminate the knowledge gained, thus propagating information that can lead to the discovery of molecules, metabolic pathways, and ecosystem/community interactions.- Published
- 2020
- Full Text
- View/download PDF
24. Protocol for community-created public MS/MS reference spectra within the Global Natural Products Social Molecular Networking infrastructure.
- Author
-
Vargas F, Weldon KC, Sikora N, Wang M, Zhang Z, Gentry EC, Panitchpakdi MW, Caraballo-Rodríguez AM, Dorrestein PC, and Jarmusch AK
- Abstract
Rationale: A major hurdle in identifying chemicals in mass spectrometry experiments is the availability of tandem mass spectrometry (MS/MS) reference spectra in public databases. Currently, scientists purchase databases or use public databases such as Global Natural Products Social Molecular Networking (GNPS). The MSMS-Chooser workflow is an open-source protocol for the creation of MS/MS reference spectra directly in the GNPS infrastructure., Methods: An MSMS-Chooser Sample Template is provided and completed manually. The MSMS-Chooser Submission File and Sequence Table for data acquisition were programmatically generated. Standards from the Mass Spectrometry Metabolite Library (MSMLS) suspended in a methanol-water (1:1) solution were analyzed. Flow injection on an LC/MS/MS system was used to generate negative and positive mode data using data-dependent acquisition. The MS/MS spectra and Submission File were uploaded to MSMS-Chooser workflow in GNPS for automatic selection of MS/MS spectra., Results: Data acquisition and processing required ~2 h and ~2 min, respectively, per 96-well plate using MSMS-Chooser. Analysis of the MSMLS, over 600 small molecules, using MSMS-Chooser added 889 spectra (including multiple adducts) to the public library in GNPS. Manual validation of one plate indicated accurate selection of MS/MS scans (true positive rate of 0.96 and a true negative rate of 0.99). The MSMS-Chooser output includes a table formatted for inclusion in the GNPS library as well as the ability to directly launch searches via MASST., Conclusions: MSMS-Chooser enables rapid data acquisition, data analysis (selection of MS/MS spectra), and a formatted table for inspection and upload to GNPS. Open file-format data (.mzML or.mzXML) from most mass spectrometry platforms containing MS/MS spectra can be processed using MSMS-Chooser. MSMS-Chooser democratizes the creation of MS/MS reference spectra in GNPS which will improve annotation and strengthen the tools which use the annotation information., (© 2020 John Wiley & Sons, Ltd.)
- Published
- 2020
- Full Text
- View/download PDF
25. Metabolome-Informed Microbiome Analysis Refines Metadata Classifications and Reveals Unexpected Medication Transfer in Captive Cheetahs.
- Author
-
Gauglitz JM, Morton JT, Tripathi A, Hansen S, Gaffney M, Carpenter C, Weldon KC, Shah R, Parampil A, Fidgett AL, Swafford AD, Knight R, and Dorrestein PC
- Abstract
Even high-quality collection and reporting of study metadata in microbiome studies can lead to various forms of inadvertently missing or mischaracterized information that can alter the interpretation or outcome of the studies, especially with nonmodel organisms. Metabolomic profiling of fecal microbiome samples can provide empirical insight into unanticipated confounding factors that are not possible to obtain even from detailed care records. We illustrate this point using data from cheetahs from the San Diego Zoo Safari Park. The metabolomic characterization indicated that one cheetah had to be moved from the non-antibiotic-exposed group to the antibiotic-exposed group. The detection of the antibiotic in this second cheetah was likely due to grooming interactions with the cheetah that was administered antibiotics. Similarly, because transit time for stool is variable, fecal samples within the first few days of antibiotic prescription do not all contain detected antibiotics, and the microbiome is not yet affected. These insights significantly altered the way the samples were grouped for analysis (antibiotic versus no antibiotic) and the subsequent understanding of the effect of the antibiotics on the cheetah microbiome. Metabolomics also revealed information about numerous other medications and provided unexpected dietary insights that in turn improved our understanding of the molecular patterns on the impact on the community microbial structure. These results suggest that untargeted metabolomic data provide empirical evidence to correct records and aid in the monitoring of the health of nonmodel organisms in captivity, although we also expect that these methods may be appropriate for other social animals, such as cats. IMPORTANCE Metabolome-informed analyses can enhance omics studies by enabling the correct partitioning of samples by identifying hidden confounders inadvertently misrepresented or omitted from carefully curated metadata. We demonstrate here the utility of metabolomics in a study characterizing the microbiome associated with liver disease in cheetahs. Metabolome-informed reinterpretation of metagenome and metabolome profiles factored in an unexpected transfer of antibiotics, preventing misinterpretation of the data. Our work suggests that untargeted metabolomics can be used to verify, augment, and correct sample metadata to support improved grouping of sample data for microbiome analyses, here for nonmodel organisms in captivity. However, the techniques also suggest a path forward for correcting clinical information in microbiome studies more broadly to enable higher-precision analyses., (Copyright © 2020 Gauglitz et al.)
- Published
- 2020
- Full Text
- View/download PDF
26. Global chemical effects of the microbiome include new bile-acid conjugations.
- Author
-
Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, Bodai Z, Belda-Ferre P, Tripathi A, Chung LK, Downes M, Welch RD, Quinn M, Humphrey G, Panitchpakdi M, Weldon KC, Aksenov A, da Silva R, Avila-Pacheco J, Clish C, Bae S, Mallick H, Franzosa EA, Lloyd-Price J, Bussell R, Thron T, Nelson AT, Wang M, Leszczynski E, Vargas F, Gauglitz JM, Meehan MJ, Gentry E, Arthur TD, Komor AC, Poulsen O, Boland BS, Chang JT, Sandborn WJ, Lim M, Garg N, Lumeng JC, Xavier RJ, Kazmierczak BI, Jain R, Egan M, Rhee KE, Ferguson D, Raffatellu M, Vlamakis H, Haddad GG, Siegel D, Huttenhower C, Mazmanian SK, Evans RM, Nizet V, Knight R, and Dorrestein PC
- Subjects
- Animals, Bile Acids and Salts metabolism, Cholic Acid biosynthesis, Cholic Acid chemistry, Cholic Acid metabolism, Cystic Fibrosis genetics, Cystic Fibrosis metabolism, Cystic Fibrosis microbiology, Germ-Free Life, Humans, Inflammatory Bowel Diseases genetics, Inflammatory Bowel Diseases metabolism, Inflammatory Bowel Diseases microbiology, Mice, Receptors, Cytoplasmic and Nuclear genetics, Receptors, Cytoplasmic and Nuclear metabolism, Bile Acids and Salts biosynthesis, Bile Acids and Salts chemistry, Metabolomics, Microbiota physiology
- Abstract
A mosaic of cross-phylum chemical interactions occurs between all metazoans and their microbiomes. A number of molecular families that are known to be produced by the microbiome have a marked effect on the balance between health and disease
1-9 . Considering the diversity of the human microbiome (which numbers over 40,000 operational taxonomic units10 ), the effect of the microbiome on the chemistry of an entire animal remains underexplored. Here we use mass spectrometry informatics and data visualization approaches11-13 to provide an assessment of the effects of the microbiome on the chemistry of an entire mammal by comparing metabolomics data from germ-free and specific-pathogen-free mice. We found that the microbiota affects the chemistry of all organs. This included the amino acid conjugations of host bile acids that were used to produce phenylalanocholic acid, tyrosocholic acid and leucocholic acid, which have not previously been characterized despite extensive research on bile-acid chemistry14 . These bile-acid conjugates were also found in humans, and were enriched in patients with inflammatory bowel disease or cystic fibrosis. These compounds agonized the farnesoid X receptor in vitro, and mice gavaged with the compounds showed reduced expression of bile-acid synthesis genes in vivo. Further studies are required to confirm whether these compounds have a physiological role in the host, and whether they contribute to gut diseases that are associated with microbiome dysbiosis.- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.