100 results on '"Vissers LELM"'
Search Results
2. Comprehensive reanalysis for CNVs in ES data from unsolved rare disease cases results in new diagnoses.
- Author
-
Demidov G, Yaldiz B, Garcia-Pelaez J, de Boer E, Schuermans N, Van de Vondel L, Paramonov I, Johansson LF, Musacchia F, Benetti E, Bullich G, Sablauskas K, Beltran S, Gilissen C, Hoischen A, Ossowski S, de Voer R, Lohmann K, Oliveira C, Topf A, Vissers LELM, and Laurie S
- Abstract
We report the results of a comprehensive copy number variant (CNV) reanalysis of 9171 exome sequencing datasets from 5757 families affected by a rare disease (RD). The data reanalysed was extremely heterogeneous, having been generated using 28 different enrichment kits by 42 different research groups across Europe partnering in the Solve-RD project. Each research group had previously undertaken their own analysis of the data but failed to identify disease-causing variants. We applied three CNV calling algorithms to maximise sensitivity, and rare CNVs overlapping genes of interest, provided by four partner European Reference Networks, were taken forward for interpretation by clinical experts. This reanalysis has resulted in a molecular diagnosis being provided to 51 families in this sample, with ClinCNV performing the best of the three algorithms. We also identified partially explanatory pathogenic CNVs in a further 34 individuals. This work illustrates the value of reanalysing ES cold cases for CNVs., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Uncovering recessive alleles in rare Mendelian disorders by genome sequencing of 174 individuals with monoallelic pathogenic variants.
- Author
-
Schobers G, Pennings M, de Vries J, Kwint M, van Reeuwijk J, Corominas Galbany J, van Beek R, Kamping E, Timmermans R, Kamsteeg EJ, Haer-Wigman L, Cremers FPM, Roosing S, Gilissen C, Kremer H, Brunner HG, Yntema HG, and Vissers LELM
- Abstract
Clinical exome sequencing (ES) has facilitated genetic diagnosis in individuals with a rare genetic disorder by analysis of all protein-coding sequences in a single experiment. However, in 40-60% of patients, a conclusive diagnosis remains elusive. In 2-5% of these individuals, ES does identify a disease-associated monoallelic variant in a recessive disorder. We hypothesized that short-read genome sequencing (GS) might uncover a pathogenic variant on the second allele, thereby increasing diagnostic yield. We performed GS for 174 individuals in whom ES identified a monoallelic pathogenic variant in a gene associated with recessive disease related to their phenotype. GS interpretation was limited to the (non-)coding parts of the gene in which this first pathogenic variant was identified, focusing on splice-disrupting variants. Firstly, we uncovered a second pathogenic variant affecting coding sequence in five individuals, including two SNV/indel variants, two copy number variants, and one insertion. Secondly, for 24 individuals, we identified a total of 31 rare non-coding intronic SNV/indel variants, all predicted to disrupt splicing. Using functional follow-up assays, we confirmed an effect on splicing for three of these variants (in ABCA4, POLR3A and COL4A4) in three individuals. In summary, we identified a (likely) pathogenic second variant in 4.6% (8/174), and a possible diagnosis for 12.1% (21/174) of our cohort. Hence, when performing GS as first-tier diagnostic test, including the interpretation of SVs and rare intronic variants in known recessive disease genes, the overall diagnostic yield of rare disease will increase. The added diagnostic value of GS for recessive disease In our cohort of 174 individuals (84 males and 90 females) with a monoallelic pathogenic variant in genes associated with a wide and diverse range of recessive diseases (pie chart), using genome sequencing (GS) and a systematic approach (methods), we identified eight new diagnoses (4.6%). We identified a second likely pathogenic variant in eight individuals (results); In two a second coding variant was found, in three others, a rare non-coding SNV anticipated to disrupt splicing was uncovered, and in three individuals a structural rearrangement was identified (two copy number variants (CNV), and one structural variant (SV))., (© 2024. The Author(s), under exclusive licence to European Society of Human Genetics.)
- Published
- 2024
- Full Text
- View/download PDF
4. Clinical and genetic delineation of autosomal recessive and dominant ACTL6B-related developmental brain disorders.
- Author
-
Cali E, Quirin T, Rocca C, Efthymiou S, Riva A, Marafi D, Zaki MS, Suri M, Dominguez R, Elbendary HM, Alavi S, Abdel-Hamid MS, Morsy H, Mau-Them FT, Nizon M, Tesner P, Ryba L, Zafar F, Rana N, Saadi NW, Firoozfar Z, Gencpinar P, Unay B, Ustun C, Bruel AL, Coubes C, Stefanich J, Sezer O, Agolini E, Novelli A, Vasco G, Lettori D, Milh M, Villard L, Zeidler S, Opperman H, Strehlow V, Issa MY, El Khassab H, Chand P, Ibrahim S, Nejad-Rashidi A, Miryounesi M, Larki P, Morrison J, Cristian I, Thiffault I, Bertsch NL, Noh GJ, Pappas J, Moran E, Marinakis NM, Traeger-Synodinos J, Hosseini S, Abbaszadegan MR, Caumes R, Vissers LELM, Neshatdoust M, Montazer MZ, El Fahime E, Canavati C, Kamal L, Kanaan M, Askander O, Voinova V, Levchenko O, Haider S, Halbach SS, Maia ER, Mansoor S, Vivek J, Tawde S, Santhosh R Challa V, Gowda VK, Srinivasan VM, Victor LA, Pinero-Banos B, Hague J, Ei-Awady HA, Maria de Miranda Henriques-Souza A, Cheema HA, Anjum MN, Idkaidak S, Alqarajeh F, Atawneh O, Mor-Shaked H, Harel T, Zifarelli G, Bauer P, Kok F, Kitajima JP, Monteiro F, Josahkian J, Lesca G, Chatron N, Ville D, Murphy D, Neul JL, Mullegama SV, Begtrup A, Herman I, Mitani T, Posey JE, Tay CG, Javed I, Carr L, Kanani F, Beecroft F, Hane L, Abdelkreem E, Macek M, Bispo L, Elmaksoud MA, Hashemi-Gorji F, Pehlivan D, Amor DJ, Jamra RA, Chung WK, Ghayoor EK, Campeau P, Alkuraya FS, Pagnamenta AT, Gleeson J, Lupski JR, Striano P, Moreno-De-Luca A, Lafontaine DLJ, Houlden H, and Maroofian R
- Abstract
Purpose: This study aims to comprehensively delineate the phenotypic spectrum of ACTL6B-related disorders, previously associated with both autosomal recessive and autosomal dominant neurodevelopmental disorders. Molecularly, the role of the nucleolar protein ACTL6B in contributing to the disease has remained unclear., Methods: We identified 105 affected individuals, including 39 previously reported cases, and systematically analysed detailed clinical and genetic data for all individuals. Additionally, we conducted knockdown experiments in neuronal cells to investigate the role of ACTL6B in ribosome biogenesis., Results: Biallelic variants in ACTL6B are associated with severe-to-profound global developmental delay/intellectual disability (GDD/ID), infantile intractable seizures, absent speech, autistic features, dystonia, and increased lethality. De novo monoallelic variants result in moderate-to-severe GDD/ID, absent speech, and autistic features, while seizures and dystonia were less frequently observed. Dysmorphic facial features and brain abnormalities, including hypoplastic corpus callosum, parenchymal volume loss/atrophy, are common findings in both groups. We reveal that in the nucleolus, ACTL6B plays a crucial role in ribosome biogenesis, in particular in pre-rRNA processing., Conclusion: This study provides a comprehensive characterization of the clinical spectrum of both autosomal recessive and dominant forms of ACTL6B-associated disorders. It offers a comparative analysis of their respective phenotypes provides a plausible molecular explanation and suggests their inclusion within the expanding category of 'ribosomopathies'., (Copyright © 2024. Published by Elsevier Inc.)
- Published
- 2024
- Full Text
- View/download PDF
5. Clinical-grade whole genome sequencing-based haplarithmisis enables all forms of preimplantation genetic testing.
- Author
-
Janssen AEJ, Koeck RM, Essers R, Cao P, van Dijk W, Drüsedau M, Meekels J, Yaldiz B, van de Vorst M, de Koning B, Hellebrekers DMEI, Stevens SJC, Sun SM, Heijligers M, de Munnik SA, van Uum CMJ, Achten J, Hamers L, Naghdi M, Vissers LELM, van Golde RJT, de Wert G, Dreesen JCFM, de Die-Smulders C, Coonen E, Brunner HG, van den Wijngaard A, Paulussen ADC, and Zamani Esteki M
- Subjects
- Humans, Female, Fertilization in Vitro methods, Genetic Testing methods, Aneuploidy, Pregnancy, DNA, Mitochondrial genetics, High-Throughput Nucleotide Sequencing methods, Genome, Human genetics, Preimplantation Diagnosis methods, Whole Genome Sequencing methods
- Abstract
High-throughput sequencing technologies have increasingly led to discovery of disease-causing genetic variants, primarily in postnatal multi-cell DNA samples. However, applying these technologies to preimplantation genetic testing (PGT) in nuclear or mitochondrial DNA from single or few-cells biopsied from in vitro fertilised (IVF) embryos is challenging. PGT aims to select IVF embryos without genetic abnormalities. Although genotyping-by-sequencing (GBS)-based haplotyping methods enabled PGT for monogenic disorders (PGT-M), structural rearrangements (PGT-SR), and aneuploidies (PGT-A), they are labour intensive, only partially cover the genome and are troublesome for difficult loci and consanguineous couples. Here, we devise a simple, scalable and universal whole genome sequencing haplarithmisis-based approach enabling all forms of PGT in a single assay. In a comparison to state-of-the-art GBS-based PGT for nuclear DNA, shallow sequencing-based PGT, and PCR-based PGT for mitochondrial DNA, our approach alleviates technical limitations by decreasing whole genome amplification artifacts by 68.4%, increasing breadth of coverage by at least 4-fold, and reducing wet-lab turn-around-time by ~2.5-fold. Importantly, this method enables trio-based PGT-A for aneuploidy origin, an approach we coin PGT-AO, detects translocation breakpoints, and nuclear and mitochondrial single nucleotide variants and indels in base-resolution., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
6. Comprehensive EHMT1 variants analysis broadens genotype-phenotype associations and molecular mechanisms in Kleefstra syndrome.
- Author
-
Rots D, Bouman A, Yamada A, Levy M, Dingemans AJM, de Vries BBA, Ruiterkamp-Versteeg M, de Leeuw N, Ockeloen CW, Pfundt R, de Boer E, Kummeling J, van Bon B, van Bokhoven H, Kasri NN, Venselaar H, Alders M, Kerkhof J, McConkey H, Kuechler A, Elffers B, van Beeck Calkoen R, Hofman S, Smith A, Valenzuela MI, Srivastava S, Frazier Z, Maystadt I, Piscopo C, Merla G, Balasubramanian M, Santen GWE, Metcalfe K, Park SM, Pasquier L, Banka S, Donnai D, Weisberg D, Strobl-Wildemann G, Wagemans A, Vreeburg M, Baralle D, Foulds N, Scurr I, Brunetti-Pierri N, van Hagen JM, Bijlsma EK, Hakonen AH, Courage C, Genevieve D, Pinson L, Forzano F, Deshpande C, Kluskens ML, Welling L, Plomp AS, Vanhoutte EK, Kalsner L, Hol JA, Putoux A, Lazier J, Vasudevan P, Ames E, O'Shea J, Lederer D, Fleischer J, O'Connor M, Pauly M, Vasileiou G, Reis A, Kiraly-Borri C, Bouman A, Barnett C, Nezarati M, Borch L, Beunders G, Özcan K, Miot S, Volker-Touw CML, van Gassen KLI, Cappuccio G, Janssens K, Mor N, Shomer I, Dominissini D, Tedder ML, Muir AM, Sadikovic B, Brunner HG, Vissers LELM, Shinkai Y, and Kleefstra T
- Subjects
- Humans, Female, Male, Child, Child, Preschool, Histocompatibility Antigens genetics, Adolescent, Heart Defects, Congenital genetics, Haploinsufficiency genetics, Mutation, Histone-Lysine N-Methyltransferase genetics, Chromosome Deletion, Craniofacial Abnormalities genetics, Intellectual Disability genetics, Genetic Association Studies, Chromosomes, Human, Pair 9 genetics, DNA Methylation genetics, Phenotype
- Abstract
The shift to a genotype-first approach in genetic diagnostics has revolutionized our understanding of neurodevelopmental disorders, expanding both their molecular and phenotypic spectra. Kleefstra syndrome (KLEFS1) is caused by EHMT1 haploinsufficiency and exhibits broad clinical manifestations. EHMT1 encodes euchromatic histone methyltransferase-1-a pivotal component of the epigenetic machinery. We have recruited 209 individuals with a rare EHMT1 variant and performed comprehensive molecular in silico and in vitro testing alongside DNA methylation (DNAm) signature analysis for the identified variants. We (re)classified the variants as likely pathogenic/pathogenic (molecularly confirming Kleefstra syndrome) in 191 individuals. We provide an updated and broader clinical and molecular spectrum of Kleefstra syndrome, including individuals with normal intelligence and familial occurrence. Analysis of the EHMT1 variants reveals a broad range of molecular effects and their associated phenotypes, including distinct genotype-phenotype associations. Notably, we showed that disruption of the "reader" function of the ankyrin repeat domain by a protein altering variant (PAV) results in a KLEFS1-specific DNAm signature and milder phenotype, while disruption of only "writer" methyltransferase activity of the SET domain does not result in KLEFS1 DNAm signature or typical KLEFS1 phenotype. Similarly, N-terminal truncating variants result in a mild phenotype without the DNAm signature. We demonstrate how comprehensive variant analysis can provide insights into pathogenesis of the disorder and DNAm signature. In summary, this study presents a comprehensive overview of KLEFS1 and EHMT1, revealing its broader spectrum and deepening our understanding of its molecular mechanisms, thereby informing accurate variant interpretation, counseling, and clinical management., Competing Interests: Declaration of interests A.M.M. is an employee of GeneDx, LLC. B.S. is a shareholder in EpiSign Inc., a biotechnology company involved in commercialization of EpiSign technology., (Copyright © 2024 American Society of Human Genetics. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
7. Pathogenic variants in KMT2C result in a neurodevelopmental disorder distinct from Kleefstra and Kabuki syndromes.
- Author
-
Rots D, Choufani S, Faundes V, Dingemans AJM, Joss S, Foulds N, Jones EA, Stewart S, Vasudevan P, Dabir T, Park SM, Jewell R, Brown N, Pais L, Jacquemont S, Jizi K, Ravenswaaij-Arts CMAV, Kroes HY, Stumpel CTRM, Ockeloen CW, Diets IJ, Nizon M, Vincent M, Cogné B, Besnard T, Kambouris M, Anderson E, Zackai EH, McDougall C, Donoghue S, O'Donnell-Luria A, Valivullah Z, O'Leary M, Srivastava S, Byers H, Leslie N, Mazzola S, Tiller GE, Vera M, Shen JJ, Boles R, Jain V, Brischoux-Boucher E, Kinning E, Simpson BN, Giltay JC, Harris J, Keren B, Guimier A, Marijon P, Vries BBA, Motter CS, Mendelsohn BA, Coffino S, Gerkes EH, Afenjar A, Visconti P, Bacchelli E, Maestrini E, Delahaye-Duriez A, Gooch C, Hendriks Y, Adams H, Thauvin-Robinet C, Josephi-Taylor S, Bertoli M, Parker MJ, Rutten JW, Caluseriu O, Vernon HJ, Kaziyev J, Zhu J, Kremen J, Frazier Z, Osika H, Breault D, Nair S, Lewis SME, Ceroni F, Viggiano M, Posar A, Brittain H, Giovanna T, Giulia G, Quteineh L, Ha-Vinh Leuchter R, Zonneveld-Huijssoon E, Mellado C, Marey I, Coudert A, Aracena Alvarez MI, Kennis MGP, Bouman A, Roifman M, Amorós Rodríguez MI, Ortigoza-Escobar JD, Vernimmen V, Sinnema M, Pfundt R, Brunner HG, Vissers LELM, Kleefstra T, Weksberg R, and Banka S
- Subjects
- Humans, Male, Female, Child, Child, Preschool, Neoplasm Proteins genetics, Adolescent, Hypertrichosis genetics, Mutation, Failure to Thrive genetics, Histone-Lysine N-Methyltransferase genetics, Heart Defects, Congenital, Abnormalities, Multiple genetics, Vestibular Diseases genetics, Intellectual Disability genetics, Face abnormalities, Face pathology, DNA-Binding Proteins genetics, Hematologic Diseases genetics, Neurodevelopmental Disorders genetics, Craniofacial Abnormalities genetics, Chromosome Deletion, Chromosomes, Human, Pair 9 genetics, DNA Methylation genetics
- Abstract
Trithorax-related H3K4 methyltransferases, KMT2C and KMT2D, are critical epigenetic modifiers. Haploinsufficiency of KMT2C was only recently recognized as a cause of neurodevelopmental disorder (NDD), so the clinical and molecular spectrums of the KMT2C-related NDD (now designated as Kleefstra syndrome 2) are largely unknown. We ascertained 98 individuals with rare KMT2C variants, including 75 with protein-truncating variants (PTVs). Notably, ∼15% of KMT2C PTVs were inherited. Although the most highly expressed KMT2C transcript consists of only the last four exons, pathogenic PTVs were found in almost all the exons of this large gene. KMT2C variant interpretation can be challenging due to segmental duplications and clonal hematopoesis-induced artifacts. Using samples from 27 affected individuals, divided into discovery and validation cohorts, we generated a moderate strength disorder-specific KMT2C DNA methylation (DNAm) signature and demonstrate its utility in classifying non-truncating variants. Based on 81 individuals with pathogenic/likely pathogenic variants, we demonstrate that the KMT2C-related NDD is characterized by developmental delay, intellectual disability, behavioral and psychiatric problems, hypotonia, seizures, short stature, and other comorbidities. The facial module of PhenoScore, applied to photographs of 34 affected individuals, reveals that the KMT2C-related facial gestalt is significantly different from the general NDD population. Finally, using PhenoScore and DNAm signatures, we demonstrate that the KMT2C-related NDD is clinically and epigenetically distinct from Kleefstra and Kabuki syndromes. Overall, we define the clinical features, molecular spectrum, and DNAm signature of the KMT2C-related NDD and demonstrate they are distinct from Kleefstra and Kabuki syndromes highlighting the need to rename this condition., Competing Interests: Declaration of interests R.W. is a consultant (equity) for Alamya Health., (Copyright © 2024 American Society of Human Genetics. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
8. Prevalence of comorbidities in individuals with neurodevelopmental disorders from the aggregated phenomics data of 51,227 pediatric individuals.
- Author
-
Dingemans AJM, Jansen S, van Reeuwijk J, de Leeuw N, Pfundt R, Schuurs-Hoeijmakers J, van Bon BW, Marcelis C, Ockeloen CW, Willemsen M, van der Sluijs PJ, Santen GWE, Kooy RF, Vulto-van Silfhout AT, Kleefstra T, Koolen DA, Vissers LELM, and de Vries BBA
- Subjects
- Humans, Prevalence, Child, Male, Female, Adolescent, Child, Preschool, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders epidemiology, Comorbidity, Phenomics, Phenotype
- Abstract
The prevalence of comorbidities in individuals with neurodevelopmental disorders (NDDs) is not well understood, yet these are important for accurate diagnosis and prognosis in routine care and for characterizing the clinical spectrum of NDD syndromes. We thus developed PhenomAD-NDD, an aggregated database containing the comorbid phenotypic data of 51,227 individuals with NDD, all harmonized into Human Phenotype Ontology (HPO), with in total 3,054 unique HPO terms. We demonstrate that almost all congenital anomalies are more prevalent in the NDD population than in the general population, and the NDD baseline prevalence allows for an approximation of the enrichment of symptoms. For example, such analyses of 33 genetic NDDs show that 32% of enriched phenotypes are currently not reported in the clinical synopsis in the Online Mendelian Inheritance in Man (OMIM). PhenomAD-NDD is open to all via a visualization online tool and allows us to determine the enrichment of symptoms in NDD., (© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
9. Refining the 9q34.3 microduplication syndrome reveals mild neurodevelopmental features associated with a distinct global DNA methylation profile.
- Author
-
Rots D, Rooney K, Relator R, Kerkhof J, McConkey H, Pfundt R, Marcelis C, Willemsen MH, van Hagen JM, Zwijnenburg P, Alders M, Õunap K, Reimand T, Fjodorova O, Berland S, Liahjell EB, Bojovic O, Kriek M, Ruivenkamp C, Bonati MT, Brunner HG, Vissers LELM, Sadikovic B, and Kleefstra T
- Subjects
- Humans, Male, Female, Child, Child, Preschool, Developmental Disabilities genetics, Developmental Disabilities pathology, Craniofacial Abnormalities genetics, Craniofacial Abnormalities pathology, Adolescent, Phenotype, DNA Methylation genetics, Chromosomes, Human, Pair 9 genetics, Intellectual Disability genetics, Intellectual Disability pathology, Chromosome Duplication genetics, Chromosome Deletion, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders pathology, Heart Defects, Congenital, Histone-Lysine N-Methyltransferase
- Abstract
Precise regulation of gene expression is important for correct neurodevelopment. 9q34.3 deletions affecting the EHMT1 gene result in a syndromic neurodevelopmental disorder named Kleefstra syndrome. In contrast, duplications of the 9q34.3 locus encompassing EHMT1 have been suggested to cause developmental disorders, but only limited information has been available. We have identified 15 individuals from 10 unrelated families, with 9q34.3 duplications <1.5 Mb in size, encompassing EHMT1 entirely. Clinical features included mild developmental delay, mild intellectual disability or learning problems, autism spectrum disorder, and behavior problems. The individuals did not consistently display dysmorphic features, congenital anomalies, or growth abnormalities. DNA methylation analysis revealed a weak DNAm profile for the cases with 9q34.3 duplication encompassing EHMT1, which could segregate the majority of the affected cases from controls. This study shows that individuals with 9q34.3 duplications including EHMT1 gene present with mild non-syndromic neurodevelopmental disorders and DNA methylation changes different from Kleefstra syndrome., (© 2024 The Authors. Clinical Genetics published by John Wiley & Sons Ltd.)
- Published
- 2024
- Full Text
- View/download PDF
10. The detection of a strong episignature for Chung-Jansen syndrome, partially overlapping with Börjeson-Forssman-Lehmann and White-Kernohan syndromes.
- Author
-
Vos N, Haghshenas S, van der Laan L, Russel PKM, Rooney K, Levy MA, Relator R, Kerkhof J, McConkey H, Maas SM, Vissers LELM, de Vries BBA, Pfundt R, Elting MW, van Hagen JM, Verbeek NE, Jongmans MCJ, Lakeman P, Rumping L, Bosch DGM, Vitobello A, Thauvin-Robinet C, Faivre L, Nambot S, Garde A, Willems M, Genevieve D, Nicolas G, Busa T, Toutain A, Gérard M, Bizaoui V, Isidor B, Merla G, Accadia M, Schwartz CE, Ounap K, Hoffer MJV, Nezarati MM, van den Boogaard MH, Tedder ML, Rogers C, Brusco A, Ferrero GB, Spodenkiewicz M, Sidlow R, Mussa A, Trajkova S, McCann E, Mroczkowski HJ, Jansen S, Donker-Kaat L, Duijkers FAM, Stuurman KE, Mannens MMAM, Alders M, Henneman P, White SM, Sadikovic B, and van Haelst MM
- Subjects
- Humans, Male, Female, Haploinsufficiency genetics, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders diagnosis, Child, DNA Methylation, Intellectual Disability genetics, Intellectual Disability diagnosis
- Abstract
Chung-Jansen syndrome is a neurodevelopmental disorder characterized by intellectual disability, behavioral problems, obesity and dysmorphic features. It is caused by pathogenic variants in the PHIP gene that encodes for the Pleckstrin homology domain-interacting protein, which is part of an epigenetic modifier protein complex. Therefore, we hypothesized that PHIP haploinsufficiency may impact genome-wide DNA methylation (DNAm). We assessed the DNAm profiles of affected individuals with pathogenic and likely pathogenic PHIP variants with Infinium Methylation EPIC arrays and report a specific and sensitive DNAm episignature biomarker for Chung-Jansen syndrome. In addition, we observed similarities between the methylation profile of Chung-Jansen syndrome and that of functionally related and clinically partially overlapping genetic disorders, White-Kernohan syndrome (caused by variants in DDB1 gene) and Börjeson-Forssman-Lehmann syndrome (caused by variants in PHF6 gene). Based on these observations we also proceeded to develop a common episignature biomarker for these disorders. These newly defined episignatures can be used as part of a multiclass episignature classifier for screening of affected individuals with rare disorders and interpretation of genetic variants of unknown clinical significance, and provide further insights into the common molecular pathophysiology of the clinically-related Chung-Jansen, Börjeson-Forssman-Lehmann and White-Kernohan syndromes., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
11. Variant-specific pathophysiological mechanisms of AFF3 differently influence transcriptome profiles.
- Author
-
Bassani S, Chrast J, Ambrosini G, Voisin N, Schütz F, Brusco A, Sirchia F, Turban L, Schubert S, Abou Jamra R, Schlump JU, DeMille D, Bayrak-Toydemir P, Nelson GR, Wong KN, Duncan L, Mosera M, Gilissen C, Vissers LELM, Pfundt R, Kersseboom R, Yttervik H, Hansen GÅM, Smeland MF, Butler KM, Lyons MJ, Carvalho CMB, Zhang C, Lupski JR, Potocki L, Flores-Gallegos L, Morales-Toquero R, Petit F, Yalcin B, Tuttle A, Elloumi HZ, McCormick L, Kukolich M, Klaas O, Horvath J, Scala M, Iacomino M, Operto F, Zara F, Writzl K, Maver A, Haanpää MK, Pohjola P, Arikka H, Kievit AJA, Calandrini C, Iseli C, Guex N, and Reymond A
- Subjects
- Animals, Female, Humans, Male, Loss of Function Mutation, Mutation, Missense, Phenotype, Intellectual Disability genetics, Transcriptome, Zebrafish genetics
- Abstract
Background: We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects., Methods: Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants., Results: We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation., Conclusions: Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
12. Unravelling undiagnosed rare disease cases by HiFi long-read genome sequencing.
- Author
-
Steyaert W, Sagath L, Demidov G, Yépez VA, Esteve-Codina A, Gagneur J, Ellwanger K, Derks R, Weiss M, den Ouden A, van den Heuvel S, Swinkels H, Zomer N, Steehouwer M, O'Gorman L, Astuti G, Neveling K, Schüle R, Xu J, Synofzik M, Beijer D, Hengel H, Schöls L, Claeys KG, Baets J, Van de Vondel L, Ferlini A, Selvatici R, Morsy H, Saeed Abd Elmaksoud M, Straub V, Müller J, Pini V, Perry L, Sarkozy A, Zaharieva I, Muntoni F, Bugiardini E, Polavarapu K, Horvath R, Reid E, Lochmüller H, Spinazzi M, Savarese M, Matalonga L, Laurie S, Brunner HG, Graessner H, Beltran S, Ossowski S, Vissers LELM, Gilissen C, and Hoischen A
- Abstract
Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.
- Published
- 2024
- Full Text
- View/download PDF
13. Reply to: Pitfalls in the genetic testing of the OPN1LW-OPN1MW gene cluster in human subjects.
- Author
-
Haer-Wigman L, den Ouden A, Derks R, van Genderen MM, Lugtenberg D, Verheij J, Vijzelaar R, Yntema HG, Vissers LELM, and Neveling K
- Published
- 2024
- Full Text
- View/download PDF
14. DNA methylation episignature, extension of the clinical features, and comparative epigenomic profiling of Hao-Fountain syndrome caused by variants in USP7.
- Author
-
van der Laan L, Karimi K, Rooney K, Lauffer P, McConkey H, Caro P, Relator R, Levy MA, Bhai P, Mignot C, Keren B, Briuglia S, Sobering AK, Li D, Vissers LELM, Dingemans AJM, Valenzuela I, Verberne EA, Misra-Isrie M, Zwijnenburg PJG, Waisfisz Q, Alders M, Sailer S, Schaaf CP, Mannens MMAM, Sadikovic B, van Haelst MM, and Henneman P
- Subjects
- Humans, DNA Methylation genetics, Ubiquitin-Specific Peptidase 7 genetics, Epigenomics, Phenotype, Biomarkers, Autism Spectrum Disorder genetics, Intellectual Disability genetics, Intellectual Disability diagnosis, Neurodevelopmental Disorders genetics, Abnormalities, Multiple, Bone Diseases, Developmental, Deafness, Craniofacial Abnormalities
- Abstract
Purpose: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS., Methods: We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation., Results: We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders., Conclusion: We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS., Competing Interests: Conflict of Interest Bekim Sadikovic is a shareholder in EpiSign Inc., a biotech firm involved in commercial application of EpiSign technology. All other authors declare no conflicts of interest., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
15. Genome sequencing as a generic diagnostic strategy for rare disease.
- Author
-
Schobers G, Derks R, den Ouden A, Swinkels H, van Reeuwijk J, Bosgoed E, Lugtenberg D, Sun SM, Corominas Galbany J, Weiss M, Blok MJ, Olde Keizer RACM, Hofste T, Hellebrekers D, de Leeuw N, Stegmann A, Kamsteeg EJ, Paulussen ADC, Ligtenberg MJL, Bradley XZ, Peden J, Gutierrez A, Pullen A, Payne T, Gilissen C, van den Wijngaard A, Brunner HG, Nelen M, Yntema HG, and Vissers LELM
- Subjects
- Humans, Whole Genome Sequencing, Base Sequence, Chromosome Mapping, Exome Sequencing, Rare Diseases diagnosis, Rare Diseases genetics, High-Throughput Nucleotide Sequencing
- Abstract
Background: To diagnose the full spectrum of hereditary and congenital diseases, genetic laboratories use many different workflows, ranging from karyotyping to exome sequencing. A single generic high-throughput workflow would greatly increase efficiency. We assessed whether genome sequencing (GS) can replace these existing workflows aimed at germline genetic diagnosis for rare disease., Methods: We performed short-read GS (NovaSeq™6000; 150 bp paired-end reads, 37 × mean coverage) on 1000 cases with 1271 known clinically relevant variants, identified across different workflows, representative of our tertiary diagnostic centers. Variants were categorized into small variants (single nucleotide variants and indels < 50 bp), large variants (copy number variants and short tandem repeats) and other variants (structural variants and aneuploidies). Variant calling format files were queried per variant, from which workflow-specific true positive rates (TPRs) for detection were determined. A TPR of ≥ 98% was considered the threshold for transition to GS. A GS-first scenario was generated for our laboratory, using diagnostic efficacy and predicted false negative as primary outcome measures. As input, we modeled the diagnostic path for all 24,570 individuals referred in 2022, combining the clinical referral, the transition of the underlying workflow(s) to GS, and the variant type(s) to be detected., Results: Overall, 95% (1206/1271) of variants were detected. Detection rates differed per variant category: small variants in 96% (826/860), large variants in 93% (341/366), and other variants in 87% (39/45). TPRs varied between workflows (79-100%), with 7/10 being replaceable by GS. Models for our laboratory indicate that a GS-first strategy would be feasible for 84.9% of clinical referrals (750/883), translating to 71% of all individuals (17,444/24,570) receiving GS as their primary test. An estimated false negative rate of 0.3% could be expected., Conclusions: GS can capture clinically relevant germline variants in a 'GS-first strategy' for the majority of clinical indications in a genetics diagnostic lab., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
16. Correction: Mobile element insertions in rare diseases: a comparative benchmark and reanalysis of 60,000 exome samples.
- Author
-
Wijngaard R, Demidov G, O'Gorman L, Corominas-Galbany J, Yaldiz B, Steyaert W, de Boer E, Vissers LELM, Kamsteeg EJ, Pfundt R, Swinkels H, den Ouden A, Te Paske IBAW, de Voer RM, Faivre L, Denommé-Pichon AS, Duffourd Y, Vitobello A, Chevarin M, Straub V, Töpf A, van der Kooi AJ, Magrinelli F, Rocca C, Hanna MG, Vandrovcova J, Ossowski S, Laurie S, and Gilissen C
- Published
- 2024
- Full Text
- View/download PDF
17. Mobile element insertions in rare diseases: a comparative benchmark and reanalysis of 60,000 exome samples.
- Author
-
Wijngaard R, Demidov G, O'Gorman L, Corominas-Galbany J, Yaldiz B, Steyaert W, de Boer E, Vissers LELM, Kamsteeg EJ, Pfundt R, Swinkels H, den Ouden A, Te Paske IBAW, de Voer RM, Faivre L, Denommé-Pichon AS, Duffourd Y, Vitobello A, Chevarin M, Straub V, Töpf A, van der Kooi AJ, Magrinelli F, Rocca C, Hanna MG, Vandrovcova J, Ossowski S, Laurie S, and Gilissen C
- Subjects
- Humans, Benchmarking, Exome Sequencing, Genetic Testing methods, Rare Diseases genetics, Exome
- Abstract
Mobile element insertions (MEIs) are a known cause of genetic disease but have been underexplored due to technical limitations of genetic testing methods. Various bioinformatic tools have been developed to identify MEIs in Next Generation Sequencing data. However, most tools have been developed specifically for genome sequencing (GS) data rather than exome sequencing (ES) data, which remains more widely used for routine diagnostic testing. In this study, we benchmarked six MEI detection tools (ERVcaller, MELT, Mobster, SCRAMble, TEMP2 and xTea) on ES data and on GS data from publicly available genomic samples (HG002, NA12878). For all the tools we evaluated sensitivity and precision of different filtering strategies. Results show that there were substantial differences in tool performance between ES and GS data. MELT performed best with ES data and its combination with SCRAMble increased substantially the detection rate of MEIs. By applying both tools to 10,890 ES samples from Solve-RD and 52,624 samples from Radboudumc we were able to diagnose 10 patients who had remained undiagnosed by conventional ES analysis until now. Our study shows that MELT and SCRAMble can be used reliably to identify clinically relevant MEIs in ES data. This may lead to an additional diagnosis for 1 in 3000 to 4000 patients in routine clinical ES., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
18. Lessons learned from rapid exome sequencing for 575 critically ill patients across the broad spectrum of rare disease.
- Author
-
Marouane A, Neveling K, Deden AC, van den Heuvel S, Zafeiropoulou D, Castelein S, van de Veerdonk F, Koolen DA, Simons A, Rodenburg R, Westra D, Mensenkamp AR, de Leeuw N, Ligtenberg M, Matthijsse R, Pfundt R, Kamsteeg EJ, Brunner HG, Gilissen C, Feenstra I, de Boode WP, Yntema HG, van Zelst-Stams WAG, Nelen M, and Vissers LELM
- Abstract
Introduction: Rapid exome sequencing (rES) has become the first-choice genetic test for critically ill patients, mostly neonates, young infants, or fetuses in prenatal care, in time-sensitive situations and when it is expected that the genetic test result may guide clinical decision making. The implementation of rES has revolutionized medicine by enabling timely identification of genetic causes for various rare diseases. The utilization of rES has increasingly been recognized as an essential diagnostic tool for the identification of complex and undiagnosed genetic disorders. Methods: We conducted a retrospective evaluation of our experiences with rES performed on 575 critically ill patients from various age groups (prenatal to adulthood), over a four-year period (2016-2019). These patients presented with a wide spectrum of rare diseases, including but not limited to neurological disorders, severe combined immune deficiency, and cancer. Results: During the study period, there was a significant increase in rES referrals, with a rise from a total of two referrals in Q1-2016 to 10 referrals per week in Q4-2019. The median turnaround time (TAT) decreased from 17 to 11 days in the period 2016-2019, with an overall median TAT of 11 days (IQR 8-15 days). The overall diagnostic yield for this cohort was 30.4%, and did not significantly differ between the different age groups (e.g. adults 22.2% vs children 31.0%; p -value 0.35). However, variability in yield was observed between clinical entities: craniofacial anomalies yielded 58.3%, while for three clinical entities (severe combined immune deficiency, aneurysm, and hypogonadotropic hypogonadism) no diagnoses were obtained. Discussion: Importantly, whereas clinical significance is often only attributed to a conclusive diagnosis, we also observed impact on clinical decision-making for individuals in whom no genetic diagnosis was established. Hence, our experience shows that rES has an important role for patients of all ages and across the broad spectrum of rare diseases to impact clinical outcomes., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024 Marouane, Neveling, Deden, van den Heuvel, Zafeiropoulou, Castelein, van de Veerdonk, Koolen, Simons, Rodenburg, Westra, Mensenkamp, de Leeuw, Ligtenberg, Matthijsse, Pfundt, Kamsteeg, Brunner, Gilissen, Feenstra, de Boode, Yntema, van Zelst-Stams, Nelen and Vissers.)
- Published
- 2024
- Full Text
- View/download PDF
19. Reanalysis of whole-exome sequencing (WES) data of children with neurodevelopmental disorders in a standard patient care context.
- Author
-
van Slobbe M, van Haeringen A, Vissers LELM, Bijlsma EK, Rutten JW, Suerink M, Nibbeling EAR, Ruivenkamp CAL, and Koene S
- Subjects
- Child, Humans, Adolescent, Exome Sequencing, Retrospective Studies, Phenotype, Genetic Testing methods, Exome genetics, Intellectual Disability diagnosis
- Abstract
This study aims to inform future genetic reanalysis management by evaluating the yield of whole-exome sequencing (WES) reanalysis in standard patient care in the Netherlands. Single-center data of 159 patients with a neurodevelopmental disorder (NDD), in which WES analysis and reanalysis were performed between January 1, 2014, and December 31, 2021, was retrospectively collected. Patients were included if they were under the age of 18 years at initial analysis and if this initial analysis did not result in a diagnosis. Demographic, phenotypic, and genotypic characteristics of patients were collected and analyzed. The primary outcomes of our study were (i) diagnostic yield at reanalysis, (ii) reasons for detecting a new possibly causal variant at reanalysis, (iii) unsolicited findings, and (iv) factors associated with positive result of reanalysis. In addition, we conducted a questionnaire study amongst the 7 genetic department in the Netherlands creating an overview of used techniques, yield, and organization of WES reanalysis. The single-center data show that in most cases, WES reanalysis was initiated by the clinical geneticist (65%) or treating physician (30%). The mean time between initial WES analysis and reanalysis was 3.7 years. A new (likely) pathogenic variant or VUS with a clear link to the phenotype was found in 20 initially negative cases, resulting in a diagnostic yield of 12.6%. In 75% of these patients, the diagnosis had clinical consequences, as for example, a screening plan for associated signs and symptoms could be devised. Most (32%) of the (likely) causal variants identified at WES reanalysis were discovered due to a newly described gene-disease association. In addition to the 12.6% diagnostic yield based on new diagnoses, reclassification of a variant of uncertain significance found at initial analysis led to a definite diagnosis in three patients. Diagnostic yield was higher in patients with dysmorphic features compared to patients without clear dysmorphic features (yield 27% vs. 6%; p = 0.001)., Conclusions: Our results show that WES reanalysis in patients with NDD in standard patient care leads to a substantial increase in genetic diagnoses. In the majority of newly diagnosed patients, the diagnosis had clinical consequences. Knowledge about the clinical impact of WES reanalysis, clinical characteristics associated with higher yield, and the yield per year after a negative WES in larger clinical cohorts is warranted to inform guidelines for genetic reanalysis. These guidelines will be of great value for pediatricians, pediatric rehabilitation specialists, and pediatric neurologists in daily care of patients with NDD., What Is Known: • Whole exome sequencing can cost-effectively identify a genetic cause of intellectual disability in about 30-40% of patients. • WES reanalysis in a research setting can lead to a definitive diagnosis in 10-20% of previously exome negative cases., What Is New: • WES reanalysis in standard patient care resulted in a diagnostic yield of 13% in previously exome negative children with NDD. • The presence of dysmorphic features is associated with an increased diagnostic yield of WES reanalysis., (© 2023. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
20. Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein.
- Author
-
de Boer E, Ockeloen CW, Kampen RA, Hampstead JE, Dingemans AJM, Rots D, Lütje L, Ashraf T, Baker R, Barat-Houari M, Angle B, Chatron N, Denommé-Pichon AS, Devinsky O, Dubourg C, Elmslie F, Elloumi HZ, Faivre L, Fitzgerald-Butt S, Geneviève D, Goos JAC, Helm BM, Kini U, Lasa-Aranzasti A, Lesca G, Lynch SA, Mathijssen IMJ, McGowan R, Monaghan KG, Odent S, Pfundt R, Putoux A, van Reeuwijk J, Santen GWE, Sasaki E, Sorlin A, van der Spek PJ, Stegmann APA, Swagemakers SMA, Valenzuela I, Viora-Dupont E, Vitobello A, Ware SM, Wéber M, Gilissen C, Low KJ, Fisher SE, Vissers LELM, Wong MMK, and Kleefstra T
- Published
- 2023
- Full Text
- View/download PDF
21. PhenoScore quantifies phenotypic variation for rare genetic diseases by combining facial analysis with other clinical features using a machine-learning framework.
- Author
-
Dingemans AJM, Hinne M, Truijen KMG, Goltstein L, van Reeuwijk J, de Leeuw N, Schuurs-Hoeijmakers J, Pfundt R, Diets IJ, den Hoed J, de Boer E, Coenen-van der Spek J, Jansen S, van Bon BW, Jonis N, Ockeloen CW, Vulto-van Silfhout AT, Kleefstra T, Koolen DA, Campeau PM, Palmer EE, Van Esch H, Lyon GJ, Alkuraya FS, Rauch A, Marom R, Baralle D, van der Sluijs PJ, Santen GWE, Kooy RF, van Gerven MAJ, Vissers LELM, and de Vries BBA
- Subjects
- Humans, Phenotype, Algorithms, Machine Learning, Biological Variation, Population, DNA-Binding Proteins, Transcription Factors, Artificial Intelligence, Matrix Attachment Region Binding Proteins
- Abstract
Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally., (© 2023. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2023
- Full Text
- View/download PDF
22. Noncoding variants alter GATA2 expression in rhombomere 4 motor neurons and cause dominant hereditary congenital facial paresis.
- Author
-
Tenney AP, Di Gioia SA, Webb BD, Chan WM, de Boer E, Garnai SJ, Barry BJ, Ray T, Kosicki M, Robson CD, Zhang Z, Collins TE, Gelber A, Pratt BM, Fujiwara Y, Varshney A, Lek M, Warburton PE, Van Ryzin C, Lehky TJ, Zalewski C, King KA, Brewer CC, Thurm A, Snow J, Facio FM, Narisu N, Bonnycastle LL, Swift A, Chines PS, Bell JL, Mohan S, Whitman MC, Staffieri SE, Elder JE, Demer JL, Torres A, Rachid E, Al-Haddad C, Boustany RM, Mackey DA, Brady AF, Fenollar-Cortés M, Fradin M, Kleefstra T, Padberg GW, Raskin S, Sato MT, Orkin SH, Parker SCJ, Hadlock TA, Vissers LELM, van Bokhoven H, Jabs EW, Collins FS, Pennacchio LA, Manoli I, and Engle EC
- Subjects
- Animals, Mice, GATA2 Transcription Factor genetics, GATA2 Transcription Factor metabolism, Motor Neurons metabolism, Neurogenesis, Neurons, Efferent, Facial Paralysis genetics, Facial Paralysis congenital, Facial Paralysis metabolism
- Abstract
Hereditary congenital facial paresis type 1 (HCFP1) is an autosomal dominant disorder of absent or limited facial movement that maps to chromosome 3q21-q22 and is hypothesized to result from facial branchial motor neuron (FBMN) maldevelopment. In the present study, we report that HCFP1 results from heterozygous duplications within a neuron-specific GATA2 regulatory region that includes two enhancers and one silencer, and from noncoding single-nucleotide variants (SNVs) within the silencer. Some SNVs impair binding of NR2F1 to the silencer in vitro and in vivo and attenuate in vivo enhancer reporter expression in FBMNs. Gata2 and its effector Gata3 are essential for inner-ear efferent neuron (IEE) but not FBMN development. A humanized HCFP1 mouse model extends Gata2 expression, favors the formation of IEEs over FBMNs and is rescued by conditional loss of Gata3. These findings highlight the importance of temporal gene regulation in development and of noncoding variation in rare mendelian disease., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
23. Rapid exome sequencing as a first-tier test in neonates with suspected genetic disorder: results of a prospective multicenter clinical utility study in the Netherlands.
- Author
-
Olde Keizer RACM, Marouane A, Kerstjens-Frederikse WS, Deden AC, Lichtenbelt KD, Jonckers T, Vervoorn M, Vreeburg M, Henneman L, de Vries LS, Sinke RJ, Pfundt R, Stevens SJC, Andriessen P, van Lingen RA, Nelen M, Scheffer H, Stemkens D, Oosterwijk C, van Amstel HKP, de Boode WP, van Zelst-Stams WAG, Frederix GWJ, and Vissers LELM
- Subjects
- Infant, Newborn, Humans, Exome Sequencing, Prospective Studies, Retrospective Studies, Netherlands, Cohort Studies, Critical Illness, Genetic Testing methods
- Abstract
The introduction of rapid exome sequencing (rES) for critically ill neonates admitted to the neonatal intensive care unit has made it possible to impact clinical decision-making. Unbiased prospective studies to quantify the impact of rES over routine genetic testing are, however, scarce. We performed a clinical utility study to compare rES to conventional genetic diagnostic workup for critically ill neonates with suspected genetic disorders. In a multicenter prospective parallel cohort study involving five Dutch NICUs, we performed rES in parallel to routine genetic testing for 60 neonates with a suspected genetic disorder and monitored diagnostic yield and the time to diagnosis. To assess the economic impact of rES, healthcare resource use was collected for all neonates. rES detected more conclusive genetic diagnoses than routine genetic testing (20% vs. 10%, respectively), in a significantly shorter time to diagnosis (15 days (95% CI 10-20) vs. 59 days (95% CI 23-98, p < 0.001)). Moreover, rES reduced genetic diagnostic costs by 1.5% (€85 per neonate)., Conclusion: Our findings demonstrate the clinical utility of rES for critically ill neonates based on increased diagnostic yield, shorter time to diagnosis, and net healthcare savings. Our observations warrant the widespread implementation of rES as first-tier genetic test in critically ill neonates with disorders of suspected genetic origin., What Is Known: • Rapid exome sequencing (rES) enables diagnosing rare genetic disorders in a fast and reliable manner, but retrospective studies with neonates admitted to the neonatal intensive care unit (NICU) indicated that genetic disorders are likely underdiagnosed as rES is not routinely used. • Scenario modeling for implementation of rES for neonates with presumed genetic disorders indicated an expected increase in costs associated with genetic testing., What Is New: • This unique prospective national clinical utility study of rES in a NICU setting shows that rES obtained more and faster diagnoses than conventional genetic tests. • Implementation of rES as replacement for all other genetic tests does not increase healthcare costs but in fact leads to a reduction in healthcare costs., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
24. The clinical and molecular spectrum of the KDM6B-related neurodevelopmental disorder.
- Author
-
Rots D, Jakub TE, Keung C, Jackson A, Banka S, Pfundt R, de Vries BBA, van Jaarsveld RH, Hopman SMJ, van Binsbergen E, Valenzuela I, Hempel M, Bierhals T, Kortüm F, Lecoquierre F, Goldenberg A, Hertz JM, Andersen CB, Kibæk M, Prijoles EJ, Stevenson RE, Everman DB, Patterson WG, Meng L, Gijavanekar C, De Dios K, Lakhani S, Levy T, Wagner M, Wieczorek D, Benke PJ, Lopez Garcia MS, Perrier R, Sousa SB, Almeida PM, Simões MJ, Isidor B, Deb W, Schmanski AA, Abdul-Rahman O, Philippe C, Bruel AL, Faivre L, Vitobello A, Thauvin C, Smits JJ, Garavelli L, Caraffi SG, Peluso F, Davis-Keppen L, Platt D, Royer E, Leeuwen L, Sinnema M, Stegmann APA, Stumpel CTRM, Tiller GE, Bosch DGM, Potgieter ST, Joss S, Splitt M, Holden S, Prapa M, Foulds N, Douzgou S, Puura K, Waltes R, Chiocchetti AG, Freitag CM, Satterstrom FK, De Rubeis S, Buxbaum J, Gelb BD, Branko A, Kushima I, Howe J, Scherer SW, Arado A, Baldo C, Patat O, Bénédicte D, Lopergolo D, Santorelli FM, Haack TB, Dufke A, Bertrand M, Falb RJ, Rieß A, Krieg P, Spranger S, Bedeschi MF, Iascone M, Josephi-Taylor S, Roscioli T, Buckley MF, Liebelt J, Dagli AI, Aten E, Hurst ACE, Hicks A, Suri M, Aliu E, Naik S, Sidlow R, Coursimault J, Nicolas G, Küpper H, Petit F, Ibrahim V, Top D, Di Cara F, Louie RJ, Stolerman E, Brunner HG, Vissers LELM, Kramer JM, and Kleefstra T
- Subjects
- Humans, Animals, Facies, Phenotype, Drosophila, Jumonji Domain-Containing Histone Demethylases genetics, Neurodevelopmental Disorders genetics, Neurodevelopmental Disorders pathology, Intellectual Disability pathology
- Abstract
De novo variants are a leading cause of neurodevelopmental disorders (NDDs), but because every monogenic NDD is different and usually extremely rare, it remains a major challenge to understand the complete phenotype and genotype spectrum of any morbid gene. According to OMIM, heterozygous variants in KDM6B cause "neurodevelopmental disorder with coarse facies and mild distal skeletal abnormalities." Here, by examining the molecular and clinical spectrum of 85 reported individuals with mostly de novo (likely) pathogenic KDM6B variants, we demonstrate that this description is inaccurate and potentially misleading. Cognitive deficits are seen consistently in all individuals, but the overall phenotype is highly variable. Notably, coarse facies and distal skeletal anomalies, as defined by OMIM, are rare in this expanded cohort while other features are unexpectedly common (e.g., hypotonia, psychosis, etc.). Using 3D protein structure analysis and an innovative dual Drosophila gain-of-function assay, we demonstrated a disruptive effect of 11 missense/in-frame indels located in or near the enzymatic JmJC or Zn-containing domain of KDM6B. Consistent with the role of KDM6B in human cognition, we demonstrated a role for the Drosophila KDM6B ortholog in memory and behavior. Taken together, we accurately define the broad clinical spectrum of the KDM6B-related NDD, introduce an innovative functional testing paradigm for the assessment of KDM6B variants, and demonstrate a conserved role for KDM6B in cognition and behavior. Our study demonstrates the critical importance of international collaboration, sharing of clinical data, and rigorous functional analysis of genetic variants to ensure correct disease diagnosis for rare disorders., Competing Interests: Declaration of interests S.W.S. is a scientific consultant of Population Bio and the King Abdullaziz University, and Athena Diagnostics has licensed intellectual property from his work held by the Hospital for Sick Children, Toronto., (Copyright © 2023 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
25. Comprehensive de novo mutation discovery with HiFi long-read sequencing.
- Author
-
Kucuk E, van der Sanden BPGH, O'Gorman L, Kwint M, Derks R, Wenger AM, Lambert C, Chakraborty S, Baybayan P, Rowell WJ, Brunner HG, Vissers LELM, Hoischen A, and Gilissen C
- Subjects
- Humans, Alleles, Microsatellite Repeats, High-Throughput Nucleotide Sequencing, INDEL Mutation
- Abstract
Background: Long-read sequencing (LRS) techniques have been very successful in identifying structural variants (SVs). However, the high error rate of LRS made the detection of small variants (substitutions and short indels < 20 bp) more challenging. The introduction of PacBio HiFi sequencing makes LRS also suited for detecting small variation. Here we evaluate the ability of HiFi reads to detect de novo mutations (DNMs) of all types, which are technically challenging variant types and a major cause of sporadic, severe, early-onset disease., Methods: We sequenced the genomes of eight parent-child trios using high coverage PacBio HiFi LRS (~ 30-fold coverage) and Illumina short-read sequencing (SRS) (~ 50-fold coverage). De novo substitutions, small indels, short tandem repeats (STRs) and SVs were called in both datasets and compared to each other to assess the accuracy of HiFi LRS. In addition, we determined the parent-of-origin of the small DNMs using phasing., Results: We identified a total of 672 and 859 de novo substitutions/indels, 28 and 126 de novo STRs, and 24 and 1 de novo SVs in LRS and SRS respectively. For the small variants, there was a 92 and 85% concordance between the platforms. For the STRs and SVs, the concordance was 3.6 and 0.8%, and 4 and 100% respectively. We successfully validated 27/54 LRS-unique small variants, of which 11 (41%) were confirmed as true de novo events. For the SRS-unique small variants, we validated 42/133 DNMs and 8 (19%) were confirmed as true de novo event. Validation of 18 LRS-unique de novo STR calls confirmed none of the repeat expansions as true DNM. Confirmation of the 23 LRS-unique SVs was possible for 19 candidate SVs of which 10 (52.6%) were true de novo events. Furthermore, we were able to assign 96% of DNMs to their parental allele with LRS data, as opposed to just 20% with SRS data., Conclusions: HiFi LRS can now produce the most comprehensive variant dataset obtainable by a single technology in a single laboratory, allowing accurate calling of substitutions, indels, STRs and SVs. The accuracy even allows sensitive calling of DNMs on all variant levels, and also allows for phasing, which helps to distinguish true positive from false positive DNMs., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
26. A complex structural variant near SOX3 causes X-linked split-hand/foot malformation.
- Author
-
de Boer E, Marcelis C, Neveling K, van Beusekom E, Hoischen A, Klein WM, de Leeuw N, Mantere T, Melo US, van Reeuwijk J, Smeets D, Spielmann M, Kleefstra T, van Bokhoven H, and Vissers LELM
- Subjects
- Humans, In Situ Hybridization, Fluorescence, Genetic Loci, SOXB1 Transcription Factors genetics, Limb Deformities, Congenital genetics
- Abstract
Split-hand/foot malformation (SHFM) is a congenital limb defect most typically presenting with median clefts in hands and/or feet, that can occur in a syndromic context as well as in isolated form. SHFM is caused by failure to maintain normal apical ectodermal ridge function during limb development. Although several genes and contiguous gene syndromes are implicated in the monogenic etiology of isolated SHFM, the disorder remains genetically unexplained for many families and associated genetic loci. We describe a family with isolated X-linked SHFM, for which the causative variant could be detected after a diagnostic journey of 20 years. We combined well-established approaches including microarray-based copy number variant analysis and fluorescence in situ hybridization coupled with optical genome mapping and whole genome sequencing. This strategy identified a complex structural variant (SV) comprising a 165-kb gain of 15q26.3 material ([GRCh37/hg19] chr15:99795320-99960362dup) inserted in inverted position at the site of a 38-kb deletion on Xq27.1 ([GRCh37/hg19] chrX:139481061-139518989del). In silico analysis suggested that the SV disrupts the regulatory framework on the X chromosome and may lead to SOX3 misexpression. We hypothesize that SOX3 dysregulation in the developing limb disturbed the fine balance between morphogens required for maintaining AER function, resulting in SHFM in this family., Competing Interests: The authors declare no competing interests., (© 2023 The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
27. A Solve-RD ClinVar-based reanalysis of 1522 index cases from ERN-ITHACA reveals common pitfalls and misinterpretations in exome sequencing.
- Author
-
Denommé-Pichon AS, Matalonga L, de Boer E, Jackson A, Benetti E, Banka S, Bruel AL, Ciolfi A, Clayton-Smith J, Dallapiccola B, Duffourd Y, Ellwanger K, Fallerini C, Gilissen C, Graessner H, Haack TB, Havlovicova M, Hoischen A, Jean-Marçais N, Kleefstra T, López-Martín E, Macek M, Mencarelli MA, Moutton S, Pfundt R, Pizzi S, Posada M, Radio FC, Renieri A, Rooryck C, Ryba L, Safraou H, Schwarz M, Tartaglia M, Thauvin-Robinet C, Thevenon J, Tran Mau-Them F, Trimouille A, Votypka P, de Vries BBA, Willemsen MH, Zurek B, Verloes A, Philippe C, Vitobello A, Vissers LELM, and Faivre L
- Subjects
- Humans, Exome Sequencing, Alleles, Genotype, Intellectual Disability diagnosis, Intellectual Disability genetics
- Abstract
Purpose: Within the Solve-RD project (https://solve-rd.eu/), the European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies aimed to investigate whether a reanalysis of exomes from unsolved cases based on ClinVar annotations could establish additional diagnoses. We present the results of the "ClinVar low-hanging fruit" reanalysis, reasons for the failure of previous analyses, and lessons learned., Methods: Data from the first 3576 exomes (1522 probands and 2054 relatives) collected from European Reference Network for Intellectual disability, TeleHealth, Autism and Congenital Anomalies was reanalyzed by the Solve-RD consortium by evaluating for the presence of single-nucleotide variant, and small insertions and deletions already reported as (likely) pathogenic in ClinVar. Variants were filtered according to frequency, genotype, and mode of inheritance and reinterpreted., Results: We identified causal variants in 59 cases (3.9%), 50 of them also raised by other approaches and 9 leading to new diagnoses, highlighting interpretation challenges: variants in genes not known to be involved in human disease at the time of the first analysis, misleading genotypes, or variants undetected by local pipelines (variants in off-target regions, low quality filters, low allelic balance, or high frequency)., Conclusion: The "ClinVar low-hanging fruit" analysis represents an effective, fast, and easy approach to recover causal variants from exome sequencing data, herewith contributing to the reduction of the diagnostic deadlock., Competing Interests: Conflict of Interest The authors declare no conflicts of interest., (Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
28. Optical genome mapping and revisiting short-read genome sequencing data reveal previously overlooked structural variants disrupting retinal disease-associated genes.
- Author
-
de Bruijn SE, Rodenburg K, Corominas J, Ben-Yosef T, Reurink J, Kremer H, Whelan L, Plomp AS, Berger W, Farrar GJ, Ferenc Kovács Á, Fajardy I, Hitti-Malin RJ, Weisschuh N, Weener ME, Sharon D, Pennings RJE, Haer-Wigman L, Hoyng CB, Nelen MR, Vissers LELM, van den Born LI, Gilissen C, Cremers FPM, Hoischen A, Neveling K, and Roosing S
- Subjects
- Humans, Retrospective Studies, Chromosome Mapping, Sequence Analysis, Genomic Structural Variation, Eye Proteins genetics, Genome, Human genetics, Retinal Diseases genetics
- Abstract
Purpose: Structural variants (SVs) play an important role in inherited retinal diseases (IRD). Although the identification of SVs significantly improved upon the availability of genome sequencing, it is expected that involvement of SVs in IRDs is higher than anticipated. We revisited short-read genome sequencing data to enhance the identification of gene-disruptive SVs., Methods: Optical genome mapping was performed to improve SV detection in short-read genome sequencing-negative cases. In addition, reanalysis of short-read genome sequencing data was performed to improve the interpretation of SVs and to re-establish SV prioritization criteria., Results: In a monoallelic USH2A case, optical genome mapping identified a pericentric inversion (173 megabase), with 1 breakpoint disrupting USH2A. Retrospectively, the variant could be observed in genome sequencing data but was previously deemed false positive. Reanalysis of short-read genome sequencing data (427 IRD cases) was performed which yielded 30 pathogenic SVs affecting, among other genes, USH2A (n = 15), PRPF31 (n = 3), and EYS (n = 2). Eight of these (>25%) were overlooked during previous analyses., Conclusion: Critical evaluation of our findings allowed us to re-establish and improve our SV prioritization and interpretation guidelines, which will prevent missing pathogenic events in future analyses. Our data suggest that more attention should be paid to SV interpretation and the current contribution of SVs in IRDs is still underestimated., Competing Interests: Conflict of Interest The authors declare no conflicts of interest., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
29. The Genetics of Intellectual Disability.
- Author
-
Jansen S, Vissers LELM, and de Vries BBA
- Abstract
Intellectual disability (ID) has a prevalence of ~2-3% in the general population, having a large societal impact. The underlying cause of ID is largely of genetic origin; however, identifying this genetic cause has in the past often led to long diagnostic Odysseys. Over the past decades, improvements in genetic diagnostic technologies and strategies have led to these causes being more and more detectable: from cytogenetic analysis in 1959, we moved in the first decade of the 21st century from genomic microarrays with a diagnostic yield of ~20% to next-generation sequencing platforms with a yield of up to 60%. In this review, we discuss these various developments, as well as their associated challenges and implications for the field of ID, which highlight the revolutionizing shift in clinical practice from a phenotype-first into genotype-first approach.
- Published
- 2023
- Full Text
- View/download PDF
30. Whole genome sequencing for USH2A -associated disease reveals several pathogenic deep-intronic variants that are amenable to splice correction.
- Author
-
Reurink J, Weisschuh N, Garanto A, Dockery A, van den Born LI, Fajardy I, Haer-Wigman L, Kohl S, Wissinger B, Farrar GJ, Ben-Yosef T, Pfiffner FK, Berger W, Weener ME, Dudakova L, Liskova P, Sharon D, Salameh M, Offenheim A, Heon E, Girotto G, Gasparini P, Morgan A, Bergen AA, Ten Brink JB, Klaver CCW, Tranebjærg L, Rendtorff ND, Vermeer S, Smits JJ, Pennings RJE, Aben M, Oostrik J, Astuti GDN, Corominas Galbany J, Kroes HY, Phan M, van Zelst-Stams WAG, Thiadens AAHJ, Verheij JBGM, van Schooneveld MJ, de Bruijn SE, Li CHZ, Hoyng CB, Gilissen C, Vissers LELM, Cremers FPM, Kremer H, van Wijk E, and Roosing S
- Subjects
- Humans, RNA Precursors, Mutation, Pedigree, Whole Genome Sequencing, Extracellular Matrix Proteins genetics, Usher Syndromes diagnosis, Retinitis Pigmentosa diagnosis
- Abstract
A significant number of individuals with a rare disorder such as Usher syndrome (USH) and (non-)syndromic autosomal recessive retinitis pigmentosa (arRP) remain genetically unexplained. Therefore, we assessed subjects suspected of USH2A -associated disease and no or mono-allelic USH2A variants using whole genome sequencing (WGS) followed by an improved pipeline for variant interpretation to provide a conclusive diagnosis. One hundred subjects were screened using WGS to identify causative variants in USH2A or other USH/arRP-associated genes. In addition to the existing variant interpretation pipeline, a particular focus was put on assessing splice-affecting properties of variants, both in silico and in vitro . Also structural variants were extensively addressed. For variants resulting in pseudoexon inclusion, we designed and evaluated antisense oligonucleotides (AONs) using minigene splice assays and patient-derived photoreceptor precursor cells. Biallelic variants were identified in 49 of 100 subjects, including novel splice-affecting variants and structural variants, in USH2A or arRP/USH-associated genes. Thirteen variants were shown to affect USH2A pre-mRNA splicing, including four deep-intronic USH2A variants resulting in pseudoexon inclusion, which could be corrected upon AON treatment. We have shown that WGS, combined with a thorough variant interpretation pipeline focused on assessing pre-mRNA splicing defects and structural variants, is a powerful method to provide subjects with a rare genetic condition, a (likely) conclusive genetic diagnosis. This is essential for the development of future personalized treatments and for patients to be eligible for such treatments., Competing Interests: The authors declare no competing interests., (© 2023 The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
31. De novo mutation hotspots in homologous protein domains identify function-altering mutations in neurodevelopmental disorders.
- Author
-
Wiel L, Hampstead JE, Venselaar H, Vissers LELM, Brunner HG, Pfundt R, Vriend G, Veltman JA, and Gilissen C
- Subjects
- Humans, Protein Domains genetics, Mutation genetics, Neurodevelopmental Disorders genetics
- Abstract
Variant interpretation remains a major challenge in medical genetics. We developed Meta-Domain HotSpot (MDHS) to identify mutational hotspots across homologous protein domains. We applied MDHS to a dataset of 45,221 de novo mutations (DNMs) from 31,058 individuals with neurodevelopmental disorders (NDDs) and identified three significantly enriched missense DNM hotspots in the ion transport protein domain family (PF00520). The 37 unique missense DNMs that drive enrichment affect 25 genes, 19 of which were previously associated with NDDs. 3D protein structure modeling supports the hypothesis of function-altering effects of these mutations. Hotspot genes have a unique expression pattern in tissue, and we used this pattern alongside in silico predictors and population constraint information to identify candidate NDD-associated genes. We also propose a lenient version of our method, which identifies 32 hotspot positions across 16 different protein domains. These positions are enriched for likely pathogenic variation in clinical databases and DNMs in other genetic disorders., Competing Interests: Declaration of interests The authors have no competing interests., (Copyright © 2022 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
32. The performance of genome sequencing as a first-tier test for neurodevelopmental disorders.
- Author
-
van der Sanden BPGH, Schobers G, Corominas Galbany J, Koolen DA, Sinnema M, van Reeuwijk J, Stumpel CTRM, Kleefstra T, de Vries BBA, Ruiterkamp-Versteeg M, Leijsten N, Kwint M, Derks R, Swinkels H, den Ouden A, Pfundt R, Rinne T, de Leeuw N, Stegmann AP, Stevens SJ, van den Wijngaard A, Brunner HG, Yntema HG, Gilissen C, Nelen MR, and Vissers LELM
- Subjects
- Humans, Genetic Testing methods, Base Sequence, Chromosome Mapping, Exome Sequencing, Neurodevelopmental Disorders diagnosis, Neurodevelopmental Disorders genetics
- Abstract
Genome sequencing (GS) can identify novel diagnoses for patients who remain undiagnosed after routine diagnostic procedures. We tested whether GS is a better first-tier genetic diagnostic test than current standard of care (SOC) by assessing the technical and clinical validity of GS for patients with neurodevelopmental disorders (NDD). We performed both GS and exome sequencing in 150 consecutive NDD patient-parent trios. The primary outcome was diagnostic yield, calculated from disease-causing variants affecting exonic sequence of known NDD genes. GS (30%, n = 45) and SOC (28.7%, n = 43) had similar diagnostic yield. All 43 conclusive diagnoses obtained with SOC testing were also identified by GS. SOC, however, required integration of multiple test results to obtain these diagnoses. GS yielded two more conclusive diagnoses, and four more possible diagnoses than ES-based SOC (35 vs. 31). Interestingly, these six variants detected only by GS were copy number variants (CNVs). Our data demonstrate the technical and clinical validity of GS to serve as routine first-tier genetic test for patients with NDD. Although the additional diagnostic yield from GS is limited, GS comprehensively identified all variants in a single experiment, suggesting that GS constitutes a more efficient genetic diagnostic workflow., (© 2022. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
33. Diagnostic analysis of the highly complex OPN1LW/OPN1MW gene cluster using long-read sequencing and MLPA.
- Author
-
Haer-Wigman L, den Ouden A, van Genderen MM, Kroes HY, Verheij J, Smailhodzic D, Hoekstra AS, Vijzelaar R, Blom J, Derks R, Tjon-Pon-Fong M, Yntema HG, Nelen MR, Vissers LELM, Lugtenberg D, and Neveling K
- Abstract
Pathogenic variants in the OPN1LW/OPN1MW gene cluster are causal for a range of mild to severe visual impairments with color deficiencies. The widely utilized short-read next-generation sequencing (NGS) is inappropriate for the analysis of the OPN1LW/OPN1MW gene cluster and many patients with pathogenic variants stay underdiagnosed. A diagnostic genetic assay was developed for the OPN1LW/OPN1MW gene cluster, consisting of copy number analysis via multiplex ligation-dependent probe amplification and sequence analysis via long-read circular consensus sequencing. Performance was determined on 50 clinical samples referred for genetic confirmation of the clinical diagnosis (n = 43) or carrier status analysis (n = 7). A broad range of pathogenic haplotypes were detected, including deletions, hybrid genes, single variants and combinations of variants. The developed genetic assay for the OPN1LW/OPN1MW gene cluster is a diagnostic test that can detect both structural and nucleotide variants with a straightforward analysis, improving diagnostic care of patients with visual impairment., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
34. Episignature Mapping of TRIP12 Provides Functional Insight into Clark-Baraitser Syndrome.
- Author
-
van der Laan L, Rooney K, Alders M, Relator R, McConkey H, Kerkhof J, Levy MA, Lauffer P, Aerden M, Theunis M, Legius E, Tedder ML, Vissers LELM, Koene S, Ruivenkamp C, Hoffer MJV, Wieczorek D, Bramswig NC, Herget T, González VL, Santos-Simarro F, Tørring PM, Denomme-Pichon AS, Isidor B, Keren B, Julia S, Schaefer E, Francannet C, Maillard PY, Misra-Isrie M, Van Esch H, Mannens MMAM, Sadikovic B, van Haelst MM, and Henneman P
- Subjects
- Humans, Facies, Ubiquitin-Protein Ligases genetics, Ubiquitin-Protein Ligases metabolism, Ubiquitin metabolism, Carrier Proteins metabolism, Mental Retardation, X-Linked
- Abstract
Clark-Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12 . We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark-Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders.
- Published
- 2022
- Full Text
- View/download PDF
35. The phenotypic spectrum and genotype-phenotype correlations in 106 patients with variants in major autism gene CHD8.
- Author
-
Dingemans AJM, Truijen KMG, van de Ven S, Bernier R, Bongers EMHF, Bouman A, de Graaff-Herder L, Eichler EE, Gerkes EH, De Geus CM, van Hagen JM, Jansen PR, Kerkhof J, Kievit AJA, Kleefstra T, Maas SM, de Man SA, McConkey H, Patterson WG, Dobson AT, Prijoles EJ, Sadikovic B, Relator R, Stevenson RE, Stumpel CTRM, Heijligers M, Stuurman KE, Löhner K, Zeidler S, Lee JA, Lindy A, Zou F, Tedder ML, Vissers LELM, and de Vries BBA
- Subjects
- DNA-Binding Proteins genetics, Female, Genetic Association Studies, Humans, Male, Phenotype, Transcription Factors genetics, Autism Spectrum Disorder genetics, Autistic Disorder genetics, Intellectual Disability genetics, Megalencephaly genetics
- Abstract
CHD8, a major autism gene, functions in chromatin remodelling and has various roles involving several biological pathways. Therefore, unsurprisingly, previous studies have shown that intellectual developmental disorder with autism and macrocephaly (IDDAM), the syndrome caused by pathogenic variants in CHD8, consists of a broad range of phenotypic abnormalities. We collected and reviewed 106 individuals with IDDAM, including 36 individuals not previously published, thus enabling thorough genotype-phenotype analyses, involving the CHD8 mutation spectrum, characterization of the CHD8 DNA methylation episignature, and the systematic analysis of phenotypes collected in Human Phenotype Ontology (HPO). We identified 29 unique nonsense, 25 frameshift, 24 missense, and 12 splice site variants. Furthermore, two unique inframe deletions, one larger deletion (exons 26-28), and one translocation were observed. Methylation analysis was performed for 13 patients, 11 of which showed the previously established episignature for IDDAM (85%) associated with CHD8 haploinsufficiency, one analysis was inconclusive, and one showing a possible gain-of-function signature instead of the expected haploinsufficiency signature was observed. Consistent with previous studies, phenotypical abnormalities affected multiple organ systems. Many neurological abnormalities, like intellectual disability (68%) and hypotonia (29%) were observed, as well as a wide variety of behavioural abnormalities (88%). Most frequently observed behavioural problems included autism spectrum disorder (76%), short attention span (32%), abnormal social behaviour (31%), sleep disturbance (29%) and impaired social interactions (28%). Furthermore, abnormalities in the digestive (53%), musculoskeletal (79%) and genitourinary systems (18%) were noted. Although no significant difference in severity was observed between males and females, individuals with a missense variant were less severely affected. Our study provides an extensive review of all phenotypic abnormalities in patients with IDDAM and provides clinical recommendations, which will be of significant value to individuals with a pathogenic variant in CHD8, their families, and clinicians as it gives a more refined insight into the clinical and molecular spectrum of IDDAM, which is essential for accurate care and counselling., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
36. Missense variants in ANKRD11 cause KBG syndrome by impairment of stability or transcriptional activity of the encoded protein.
- Author
-
de Boer E, Ockeloen CW, Kampen RA, Hampstead JE, Dingemans AJM, Rots D, Lütje L, Ashraf T, Baker R, Barat-Houari M, Angle B, Chatron N, Denommé-Pichon AS, Devinsky O, Dubourg C, Elmslie F, Elloumi HZ, Faivre L, Fitzgerald-Butt S, Geneviève D, Goos JAC, Helm BM, Kini U, Lasa-Aranzasti A, Lesca G, Lynch SA, Mathijssen IMJ, McGowan R, Monaghan KG, Odent S, Pfundt R, Putoux A, van Reeuwijk J, Santen GWE, Sasaki E, Sorlin A, van der Spek PJ, Stegmann APA, Swagemakers SMA, Valenzuela I, Viora-Dupont E, Vitobello A, Ware SM, Wéber M, Gilissen C, Low KJ, Fisher SE, Vissers LELM, Wong MMK, and Kleefstra T
- Subjects
- Chromosome Deletion, Facies, Humans, Mutation, Missense, Phenotype, Proteasome Endopeptidase Complex genetics, Transcription Factors genetics, Abnormalities, Multiple genetics, Bone Diseases, Developmental etiology, Bone Diseases, Developmental genetics, Intellectual Disability genetics, Repressor Proteins genetics, Tooth Abnormalities diagnosis
- Abstract
Purpose: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants., Methods: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments., Results: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity., Conclusion: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping., Competing Interests: Conflict of Interest H.Z.E. and K.G.M. are employees of GeneDx, Inc. All other authors declare no conflicts of interest., (Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
37. How to proceed after "negative" exome: A review on genetic diagnostics, limitations, challenges, and emerging new multiomics techniques.
- Author
-
Wortmann SB, Oud MM, Alders M, Coene KLM, van der Crabben SN, Feichtinger RG, Garanto A, Hoischen A, Langeveld M, Lefeber D, Mayr JA, Ockeloen CW, Prokisch H, Rodenburg R, Waterham HR, Wevers RA, van de Warrenburg BPC, Willemsen MAAP, Wolf NI, Vissers LELM, and van Karnebeek CDM
- Subjects
- DNA, Mitochondrial, Genetic Testing methods, Phenotype, Exome Sequencing methods, Exome genetics, Genomics methods
- Abstract
Exome sequencing (ES) in the clinical setting of inborn metabolic diseases (IMDs) has created tremendous improvement in achieving an accurate and timely molecular diagnosis for a greater number of patients, but it still leaves the majority of patients without a diagnosis. In parallel, (personalized) treatment strategies are increasingly available, but this requires the availability of a molecular diagnosis. IMDs comprise an expanding field with the ongoing identification of novel disease genes and the recognition of multiple inheritance patterns, mosaicism, variable penetrance, and expressivity for known disease genes. The analysis of trio ES is preferred over singleton ES as information on the allelic origin (paternal, maternal, "de novo") reduces the number of variants that require interpretation. All ES data and interpretation strategies should be exploited including CNV and mitochondrial DNA analysis. The constant advancements in available techniques and knowledge necessitate the close exchange of clinicians and molecular geneticists about genotypes and phenotypes, as well as knowledge of the challenges and pitfalls of ES to initiate proper further diagnostic steps. Functional analyses (transcriptomics, proteomics, and metabolomics) can be applied to characterize and validate the impact of identified variants, or to guide the genomic search for a diagnosis in unsolved cases. Future diagnostic techniques (genome sequencing [GS], optical genome mapping, long-read sequencing, and epigenetic profiling) will further enhance the diagnostic yield. We provide an overview of the challenges and limitations inherent to ES followed by an outline of solutions and a clinical checklist, focused on establishing a diagnosis to eventually achieve (personalized) treatment., (© 2022 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.)
- Published
- 2022
- Full Text
- View/download PDF
38. Reanalysis of exome negative patients with rare disease: a pragmatic workflow for diagnostic applications.
- Author
-
Schobers G, Schieving JH, Yntema HG, Pennings M, Pfundt R, Derks R, Hofste T, de Wijs I, Wieskamp N, van den Heuvel S, Galbany JC, Gilissen C, Nelen M, Brunner HG, Kleefstra T, Kamsteeg EJ, Willemsen MAAP, and Vissers LELM
- Subjects
- Child, Genetic Testing methods, Humans, Sequence Analysis, DNA, Exome Sequencing methods, Workflow, Exome, Rare Diseases genetics
- Abstract
Background: Approximately two third of patients with a rare genetic disease remain undiagnosed after exome sequencing (ES). As part of our post-test counseling procedures, patients without a conclusive diagnosis are advised to recontact their referring clinician to discuss new diagnostic opportunities in due time. We performed a systematic study of genetically undiagnosed patients 5 years after their initial negative ES report to determine the efficiency of diverse reanalysis strategies., Methods: We revisited a cohort of 150 pediatric neurology patients originally enrolled at Radboud University Medical Center, of whom 103 initially remained genetically undiagnosed. We monitored uptake of physician-initiated routine clinical and/or genetic re-evaluation (ad hoc re-evaluation) and performed systematic reanalysis, including ES-based resequencing, of all genetically undiagnosed patients (systematic re-evaluation)., Results: Ad hoc re-evaluation was initiated for 45 of 103 patients and yielded 18 diagnoses (including 1 non-genetic). Subsequent systematic re-evaluation identified another 14 diagnoses, increasing the diagnostic yield in our cohort from 31% (47/150) to 53% (79/150). New genetic diagnoses were established by reclassification of previously identified variants (10%, 3/31), reanalysis with enhanced bioinformatic pipelines (19%, 6/31), improved coverage after resequencing (29%, 9/31), and new disease-gene associations (42%, 13/31). Crucially, our systematic study also showed that 11 of the 14 further conclusive genetic diagnoses were made in patients without a genetic diagnosis that did not recontact their referring clinician., Conclusions: We find that upon re-evaluation of undiagnosed patients, both reanalysis of existing ES data as well as resequencing strategies are needed to identify additional genetic diagnoses. Importantly, not all patients are routinely re-evaluated in clinical care, prolonging their diagnostic trajectory, unless systematic reanalysis is facilitated. We have translated our observations into considerations for systematic and ad hoc reanalysis in routine genetic care., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
39. Inherited variants in CHD3 show variable expressivity in Snijders Blok-Campeau syndrome.
- Author
-
van der Spek J, den Hoed J, Snijders Blok L, Dingemans AJM, Schijven D, Nellaker C, Venselaar H, Astuti GDN, Barakat TS, Bebin EM, Beck-Wödl S, Beunders G, Brown NJ, Brunet T, Brunner HG, Campeau PM, Čuturilo G, Gilissen C, Haack TB, Hüning I, Husain RA, Kamien B, Lim SC, Lovrecic L, Magg J, Maver A, Miranda V, Monteil DC, Ockeloen CW, Pais LS, Plaiasu V, Raiti L, Richmond C, Rieß A, Schwaibold EMC, Simon MEH, Spranger S, Tan TY, Thompson ML, de Vries BBA, Wilkins EJ, Willemsen MH, Francks C, Vissers LELM, Fisher SE, and Kleefstra T
- Subjects
- Heterozygote, Humans, Phenotype, Syndrome, DNA Helicases genetics, Mi-2 Nucleosome Remodeling and Deacetylase Complex genetics, Neurodevelopmental Disorders genetics
- Abstract
Purpose: Common diagnostic next-generation sequencing strategies are not optimized to identify inherited variants in genes associated with dominant neurodevelopmental disorders as causal when the transmitting parent is clinically unaffected, leaving a significant number of cases with neurodevelopmental disorders undiagnosed., Methods: We characterized 21 families with inherited heterozygous missense or protein-truncating variants in CHD3, a gene in which de novo variants cause Snijders Blok-Campeau syndrome., Results: Computational facial and Human Phenotype Ontology-based comparisons showed that the phenotype of probands with inherited CHD3 variants overlaps with the phenotype previously associated with de novo CHD3 variants, whereas heterozygote parents are mildly or not affected, suggesting variable expressivity. In addition, similarly reduced expression levels of CHD3 protein in cells of an affected proband and of healthy family members with a CHD3 protein-truncating variant suggested that compensation of expression from the wild-type allele is unlikely to be an underlying mechanism. Notably, most inherited CHD3 variants were maternally transmitted., Conclusion: Our results point to a significant role of inherited variation in Snijders Blok-Campeau syndrome, a finding that is critical for correct variant interpretation and genetic counseling and warrants further investigation toward understanding the broader contributions of such variation to the landscape of human disease., Competing Interests: Conflict of Interest M.L.T. is an employee of HudsonAlpha Institute for Biotechnology. For D.M., the following statements are applicable: “Research disclaimer: The views expressed in this article reflect the results of research conducted by the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the United States Government. Copyright statement: I am a military service member. This work was prepared as part of my official duties. Title 17 U.S.C. 105 provides that "Copyright protection under this title is not available for any work of the United States Government." Title 17 U.S.C. 101 defines a United States Government work as a work prepared by a military service member or employee of the United States Government as part of that person’s official duties.” All other authors declare no conflicts of interest., (Copyright © 2022 American College of Medical Genetics and Genomics. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
40. De novo mutations in children born after medical assisted reproduction.
- Author
-
Smits RM, Xavier MJ, Oud MS, Astuti GDN, Meijerink AM, de Vries PF, Holt GS, Alobaidi BKS, Batty LE, Khazeeva G, Sablauskas K, Vissers LELM, Gilissen C, Fleischer K, Braat DDM, Ramos L, and Veltman JA
- Subjects
- Adult, Child, Female, Fertilization, Humans, Male, Mutation, Pilot Projects, Fertilization in Vitro, Sperm Injections, Intracytoplasmic methods
- Abstract
Study Question: Are there more de novo mutations (DNMs) present in the genomes of children born through medical assisted reproduction (MAR) compared to spontaneously conceived children?, Summary Answer: In this pilot study, no statistically significant difference was observed in the number of DNMs observed in the genomes of MAR children versus spontaneously conceived children., What Is Known Already: DNMs are known to play a major role in sporadic disorders with reduced fitness such as severe developmental disorders, including intellectual disability and epilepsy. Advanced paternal age is known to place offspring at increased disease risk, amongst others by increasing the number of DNMs in their genome. There are very few studies reporting on the effect of MAR on the number of DNMs in the offspring, especially when male infertility is known to be affecting the potential fathers. With delayed parenthood an ongoing epidemiological trend in the 21st century, there are more children born from fathers of advanced age and more children born through MAR every day., Study Design, Size, Duration: This observational pilot study was conducted from January 2015 to March 2019 in the tertiary care centre at Radboud University Medical Center. We included a total of 53 children and their respective parents, forming 49 trios (mother, father and child) and two quartets (mother, father and two siblings). One group of children was born after spontaneous conception (n = 18); a second group of children born after IVF (n = 17) and a third group of children born after ICSI combined with testicular sperm extraction (ICSI-TESE) (n = 18). In this pilot study, we also subdivided each group by paternal age, resulting in a subgroup of children born to younger fathers (<35 years of age at conception) and older fathers (>45 years of age at conception)., Participants/materials, Setting, Methods: Whole-genome sequencing (WGS) was performed on all parent-offspring trios to identify DNMs. For 34 of 53 trios/quartets, WGS was performed twice to independently detect and validate the presence of DNMs. Quality of WGS-based DNM calling was independently assessed by targeted Sanger sequencing., Main Results and the Role of Chance: No significant differences were observed in the number of DNMs per child for the different methods of conception, independent of parental age at conception (multi-factorial ANOVA, f(2) = 0.17, P-value = 0.85). As expected, a clear paternal age effect was observed after adjusting for method of conception and maternal age at conception (multiple regression model, t = 5.636, P-value = 8.97 × 10-7), with on average 71 DNMs in the genomes of children born to young fathers (<35 years of age) and an average of 94 DNMs in the genomes of children born to older fathers (>45 years of age)., Limitations, Reasons for Caution: This is a pilot study and other small-scale studies have recently reported contrasting results. Larger unbiased studies are required to confirm or falsify these results., Wider Implications of the Findings: This pilot study did not show an effect for the method of conception on the number of DNMs per genome in offspring. Given the role that DNMs play in disease risk, this negative result is good news for IVF and ICSI-TESE born children, if replicated in a larger cohort., Study Funding/competing Interest(s): This research was funded by the Netherlands Organisation for Scientific Research (918-15-667) and by an Investigator Award in Science from the Wellcome Trust (209451). The authors have no conflicts of interest to declare., Trial Registration Number: N/A., (© The Author(s) 2022. Published by Oxford University Press on behalf of European Society of Human Reproduction and Embryology.)
- Published
- 2022
- Full Text
- View/download PDF
41. Medical costs of children admitted to the neonatal intensive care unit: The role and possible economic impact of WES in early diagnosis.
- Author
-
Olde Keizer RACM, Marouane A, Deden AC, van Zelst-Stams WAG, de Boode WP, Keusters WR, Henneman L, van Amstel JKP, Frederix GWJ, and Vissers LELM
- Subjects
- Child, Early Diagnosis, Female, Humans, Infant, Newborn, Pregnancy, Retrospective Studies, Exome Sequencing, Genetic Testing, Intensive Care Units, Neonatal
- Abstract
It has been estimated that at least 6.0% of neonates admitted to the Neonatal Intensive Care Unit remains genetically undiagnosed because genetic testing is not routinely performed. The objective of this study is to provide an overview of average healthcare costs for patients admitted to the Neonatal Intensive Care Unit and to assess possible impact of implementing Whole Exome Sequencing (WES) on these total healthcare costs. Hereto, we retrospectively collected postnatal healthcare data of all patients admitted to the level IV Neonatal Intensive Care Unit at the Radboudumc (October 2013-October 2015) and linked unit costs to these healthcare consumptions. Average healthcare costs were calculated and a distinction between patients was made based on performance of genetic tests and the presence of congenital anomalies. Overall, on average €26,627 was spent per patient. Genetic costs accounted for 2.3% of all costs. Healthcare costs were higher for patients with congenital anomalies compared to patients without congenital anomalies. Patients with genetic diagnostics were also more expensive than patients without genetic diagnostics. We next modelled four scenarios based on clinical preselection. First, when performing trio-WES for all patients instead of current diagnostics, overall healthcare costs will increase with 22.2%. Second, performing trio-WES only for patients with multiple congenital anomalies will not result in any cost changes, but this would leave patients with an isolated congenital anomalies untested. We therefore next modelled a scenario performing trio-WES for all patients with congenital anomalies, increasing the average per patient healthcare costs by 5.3%. This will rise to a maximum of 5.5% when also modelling for an extra genetic test for clinically selected patients to establish genetic diagnoses that are undetectable by WES. In conclusion, genetic diagnostic testing accounted for a small fraction of total costs. Implementation of trio-WES as first-tier test for all patients with congenital anomalies will lead to a limited increase in overall healthcare budget, but will facilitate personalized treatments options guided by the diagnoses made., (Copyright © 2022. Published by Elsevier Masson SAS.)
- Published
- 2022
- Full Text
- View/download PDF
42. FAIR Genomes metadata schema promoting Next Generation Sequencing data reuse in Dutch healthcare and research.
- Author
-
van der Velde KJ, Singh G, Kaliyaperumal R, Liao X, de Ridder S, Rebers S, Kerstens HHD, de Andrade F, van Reeuwijk J, De Gruyter FE, Hiltemann S, Ligtvoet M, Weiss MM, van Deutekom HWM, Jansen AML, Stubbs AP, Vissers LELM, Laros JFJ, van Enckevort E, Stemkens D, 't Hoen PAC, Beliën JAM, van Gijn ME, and Swertz MA
- Subjects
- Delivery of Health Care, Genomics, Humans, Software, High-Throughput Nucleotide Sequencing, Metadata
- Abstract
The genomes of thousands of individuals are profiled within Dutch healthcare and research each year. However, this valuable genomic data, associated clinical data and consent are captured in different ways and stored across many systems and organizations. This makes it difficult to discover rare disease patients, reuse data for personalized medicine and establish research cohorts based on specific parameters. FAIR Genomes aims to enable NGS data reuse by developing metadata standards for the data descriptions needed to FAIRify genomic data while also addressing ELSI issues. We developed a semantic schema of essential data elements harmonized with international FAIR initiatives. The FAIR Genomes schema v1.1 contains 110 elements in 9 modules. It reuses common ontologies such as NCIT, DUO and EDAM, only introducing new terms when necessary. The schema is represented by a YAML file that can be transformed into templates for data entry software (EDC) and programmatic interfaces (JSON, RDF) to ease genomic data sharing in research and healthcare. The schema, documentation and MOLGENIS reference implementation are available at https://fairgenomes.org ., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
43. Establishing the phenotypic spectrum of ZTTK syndrome by analysis of 52 individuals with variants in SON.
- Author
-
Dingemans AJM, Truijen KMG, Kim JH, Alaçam Z, Faivre L, Collins KM, Gerkes EH, van Haelst M, van de Laar IMBH, Lindstrom K, Nizon M, Pauling J, Heropolitańska-Pliszka E, Plomp AS, Racine C, Sachdev R, Sinnema M, Skranes J, Veenstra-Knol HE, Verberne EA, Vulto-van Silfhout AT, Wilsterman MEF, Ahn EE, de Vries BBA, and Vissers LELM
- Subjects
- Humans, Mutation, Missense, Phenotype, Syndrome, DNA-Binding Proteins genetics, Intellectual Disability genetics, Minor Histocompatibility Antigens genetics
- Abstract
Zhu-Tokita-Takenouchi-Kim (ZTTK) syndrome, an intellectual disability syndrome first described in 2016, is caused by heterozygous loss-of-function variants in SON. Its encoded protein promotes pre-mRNA splicing of many genes essential for development. Whereas individual phenotypic traits have previously been linked to erroneous splicing of SON target genes, the phenotypic spectrum and the pathogenicity of missense variants have not been further evaluated. We present the phenotypic abnormalities in 52 individuals, including 17 individuals who have not been reported before. In total, loss-of-function variants were detected in 49 individuals (de novo in 47, inheritance unknown in 2), and in 3, a missense variant was observed (2 de novo, 1 inheritance unknown). Phenotypic abnormalities, systematically collected and analyzed in Human Phenotype Ontology, were found in all organ systems. Significant inter-individual phenotypic variability was observed, even in individuals with the same recurrent variant (n = 13). SON haploinsufficiency was previously shown to lead to downregulation of downstream genes, contributing to specific phenotypic features. Similar functional analysis for one missense variant, however, suggests a different mechanism than for heterozygous loss-of-function. Although small in numbers and while pathogenicity of these variants is not certain, these data allow for speculation whether de novo missense variants cause ZTTK syndrome via another mechanism, or a separate overlapping syndrome. In conclusion, heterozygous loss-of-function variants in SON define a recognizable syndrome, ZTTK, associated with a broad, severe phenotypic spectrum, characterized by a large inter-individual variability. These observations provide essential information for affected individuals, parents, and healthcare professionals to ensure appropriate clinical management., (© 2021. The Author(s), under exclusive licence to European Society of Human Genetics.)
- Published
- 2022
- Full Text
- View/download PDF
44. Phenotype based prediction of exome sequencing outcome using machine learning for neurodevelopmental disorders.
- Author
-
Dingemans AJM, Hinne M, Jansen S, van Reeuwijk J, de Leeuw N, Pfundt R, van Bon BW, Vulto-van Silfhout AT, Kleefstra T, Koolen DA, van Gerven MAJ, Vissers LELM, and de Vries BBA
- Subjects
- Humans, Machine Learning, Phenotype, Exome Sequencing, Exome genetics, Neurodevelopmental Disorders diagnosis, Neurodevelopmental Disorders genetics
- Abstract
Purpose: Although the introduction of exome sequencing (ES) has led to the diagnosis of a significant portion of patients with neurodevelopmental disorders (NDDs), the diagnostic yield in actual clinical practice has remained stable at approximately 30%. We hypothesized that improving the selection of patients to test on the basis of their phenotypic presentation will increase diagnostic yield and therefore reduce unnecessary genetic testing., Methods: We tested 4 machine learning methods and developed PredWES from these: a statistical model predicting the probability of a positive ES result solely on the basis of the phenotype of the patient., Results: We first trained the tool on 1663 patients with NDDs and subsequently showed that diagnostic ES on the top 10% of patients with the highest probability of a positive ES result would provide a diagnostic yield of 56%, leading to a notable 114% increase. Inspection of our model revealed that for patients with NDDs, comorbid abnormal (lower) muscle tone and microcephaly positively correlated with a conclusive ES diagnosis, whereas autism was negatively associated with a molecular diagnosis., Conclusion: In conclusion, PredWES allows prioritizing patients with NDDs eligible for diagnostic ES on the basis of their phenotypic presentation to increase the diagnostic yield, making a more efficient use of health care resources., Competing Interests: Conflict of Interest The authors declare no conflicts of interests., (Copyright © 2021. Published by Elsevier Inc.)
- Published
- 2022
- Full Text
- View/download PDF
45. Lessons learned from unsolicited findings in clinical exome sequencing of 16,482 individuals.
- Author
-
van der Schoot V, Haer-Wigman L, Feenstra I, Tammer F, Oerlemans AJM, van Koolwijk MPA, van Agt F, Arens YHJM, Brunner HG, Vissers LELM, and Yntema HG
- Subjects
- Genetic Testing, Humans, Exome Sequencing, Disclosure, Exome
- Abstract
Unsolicited findings (UFs) are uncovered unintentionally and predispose to a disease unrelated to the clinical question. The frequency and nature of UFs uncovered in clinical practice remain largely unexplored. We here evaluated UFs identified during a 5-year period in which 16,482 index patients received clinical whole-exome sequencing (WES). UFs were identified in 0.58% (95/16,482) of index patients, indicating that the overall frequency of UFs in clinical WES is low. Fewer UFs were identified using restricted disease-gene panels (0.03%) than when using whole-exome/Mendeliome analysis (1.03%). The UF was disclosed to 86 of 95 individuals, for reasons of medical actionability. Only 61% of these UFs reside in a gene that is listed on the "ACMG59"-list, representing a list of 59 genes for which the American College of Medical Genetics recommends UF disclosure. The remaining 39% were grouped into four categories: disorders similar to "ACMG59"-listed disorders (25%); disorders for which disease manifestation could be influenced (7%); UFs providing reproductive options (2%); and UFs with pharmacogenetic implications (5%). Hence, our experience shows that UFs predisposing to medically actionable disorders affect a broader range of genes than listed on the "ACMG59", advocating that a pre-defined gene list is too restrictive, and that UFs may require ad hoc evaluation of medical actionability. While both the identification and disclosure of UFs depend on local policy, our lessons learned provide general essential insight into the nature and odds of UFs in clinical exome sequencing., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
46. A de novo paradigm for male infertility.
- Author
-
Oud MS, Smits RM, Smith HE, Mastrorosa FK, Holt GS, Houston BJ, de Vries PF, Alobaidi BKS, Batty LE, Ismail H, Greenwood J, Sheth H, Mikulasova A, Astuti GDN, Gilissen C, McEleny K, Turner H, Coxhead J, Cockell S, Braat DDM, Fleischer K, D'Hauwers KWM, Schaafsma E, Nagirnaja L, Conrad DF, Friedrich C, Kliesch S, Aston KI, Riera-Escamilla A, Krausz C, Gonzaga-Jauregui C, Santibanez-Koref M, Elliott DJ, Vissers LELM, Tüttelmann F, O'Bryan MK, Ramos L, Xavier MJ, van der Heijden GW, and Veltman JA
- Subjects
- Adult, Azoospermia pathology, Case-Control Studies, Cell Cycle Proteins deficiency, DNA-Binding Proteins deficiency, Exome, Gene Expression, Gene Expression Profiling, Humans, Male, Oligospermia pathology, Tumor Suppressor Proteins deficiency, Exome Sequencing, Azoospermia genetics, Cell Cycle Proteins genetics, DNA-Binding Proteins genetics, Genetic Predisposition to Disease, Loss of Function Mutation, Mutation, Missense, Oligospermia genetics, RNA-Binding Proteins genetics, Tumor Suppressor Proteins genetics
- Abstract
De novo mutations are known to play a prominent role in sporadic disorders with reduced fitness. We hypothesize that de novo mutations play an important role in severe male infertility and explain a portion of the genetic causes of this understudied disorder. To test this hypothesis, we utilize trio-based exome sequencing in a cohort of 185 infertile males and their unaffected parents. Following a systematic analysis, 29 of 145 rare (MAF < 0.1%) protein-altering de novo mutations are classified as possibly causative of the male infertility phenotype. We observed a significant enrichment of loss-of-function de novo mutations in loss-of-function-intolerant genes (p-value = 1.00 × 10
-5 ) in infertile men compared to controls. Additionally, we detected a significant increase in predicted pathogenic de novo missense mutations affecting missense-intolerant genes (p-value = 5.01 × 10-4 ) in contrast to predicted benign de novo mutations. One gene we identify, RBM5, is an essential regulator of male germ cell pre-mRNA splicing and has been previously implicated in male infertility in mice. In a follow-up study, 6 rare pathogenic missense mutations affecting this gene are observed in a cohort of 2,506 infertile patients, whilst we find no such mutations in a cohort of 5,784 fertile men (p-value = 0.03). Our results provide evidence for the role of de novo mutations in severe male infertility and point to new candidate genes affecting fertility., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF
47. Congenital anomalies and genetic disorders in neonates and infants: a single-center observational cohort study.
- Author
-
Marouane A, Olde Keizer RACM, Frederix GWJ, Vissers LELM, de Boode WP, and van Zelst-Stams WAG
- Subjects
- Cohort Studies, Humans, Infant, Infant, Newborn, Morbidity, Retrospective Studies, Genetic Testing, Intensive Care Units, Neonatal
- Abstract
Neonates with genetic disorders or congenital anomalies (CA) contribute considerably to morbidity and mortality in neonatal intensive care units (NICUs). The objective of this study is to study the prevalence of genetic disorders in an academic level IV NICU. We retrospective collected and analyzed both clinical and genetic data of all 1444 infants admitted to the NICU of the Radboudumc (October 2013 to October 2015). Data were collected until infants reached at least 2 years of age. A total of 13% (194/1444) of the patients were genetically tested, and 32% (461/1444) had a CA. A total of 37% (72/194) had a laboratory-confirmed genetic diagnosis. In 53%, the diagnosis was made post-neonatally (median age = 209 days) using assays including exome sequencing. Exactly 63% (291/461) of the patients with CA, however, never received genetic testing, despite being clinically similar those who did.Conclusions: Genetic disorders were suspected in 13% of the cohort, but only confirmed in 5%. Most received their genetic diagnosis in the post-neonatal period. Extrapolation of the diagnostic yield suggests that up to 6% of our cohort may have remained genetically undiagnosed. Our data show the need to improve genetic care in the NICU for more inclusive, earlier, and faster genetic diagnosis to enable tailored management. What is Known: • Genetic disorders are suspected in many neonates but only genetically confirmed in a minority. • The presence of a genetic disorder can be easily missed and will often lead to a diagnostic odyssey requiring extensive evaluations, both clinically and genetically. What is New: • Different aspects of the clinical features and uptake of genetic test in a NICU cohort. • The need to improve genetic care in the NICU for more inclusive, earlier, and faster genetic diagnosis to enable tailored management., (© 2021. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
48. Genetic convergence of developmental and epileptic encephalopathies and intellectual disability.
- Author
-
Carvill GL, Jansen S, Lacroix A, Zemel M, Mehaffey M, De Vries P, Brunner HG, Scheffer IE, De Vries BBA, Vissers LELM, and Mefford HC
- Subjects
- Adolescent, Child, Exome, Female, Humans, Infant, Male, Intellectual Disability genetics, Mutation, NAV1.2 Voltage-Gated Sodium Channel genetics, Phenotype, Receptors, N-Methyl-D-Aspartate genetics, Spasms, Infantile genetics
- Abstract
Aim: To determine whether genes that cause developmental and epileptic encephalopathies (DEEs) are more commonly implicated in intellectual disability with epilepsy as a comorbid feature than in intellectual disability only., Method: We performed targeted resequencing of 18 genes commonly implicated in DEEs in a cohort of 830 patients with intellectual disability (59% male) and 393 patients with DEEs (52% male)., Results: We observed a significant enrichment of pathogenic/likely pathogenic variants in patients with epilepsy and intellectual disability (16 out of 159 in seven genes) compared with intellectual disability only (2 out of 671) (p<1.86×10
-10 , odds ratio 37.22, 95% confidence interval 8.60-337.0)., Interpretation: We identified seven genes that are more likely to cause epilepsy and intellectual disability than intellectual disability only. Conversely, two genes, GRIN2B and SCN2A, can be implicated in intellectual disability without epilepsy; in these instances intellectual disability is not a secondary consequence of ongoing seizures but rather a primary cause. What this paper adds A subset of genes are more commonly implicated in epilepsy than other neurodevelopmental disorders. GRIN2B and SCN2A are implicated in intellectual disability and epilepsy independently., (© 2021 Mac Keith Press.)- Published
- 2021
- Full Text
- View/download PDF
49. SPRED2 loss-of-function causes a recessive Noonan syndrome-like phenotype.
- Author
-
Motta M, Fasano G, Gredy S, Brinkmann J, Bonnard AA, Simsek-Kiper PO, Gulec EY, Essaddam L, Utine GE, Guarnetti Prandi I, Venditti M, Pantaleoni F, Radio FC, Ciolfi A, Petrini S, Consoli F, Vignal C, Hepbasli D, Ullrich M, de Boer E, Vissers LELM, Gritli S, Rossi C, De Luca A, Ben Becher S, Gelb BD, Dallapiccola B, Lauri A, Chillemi G, Schuh K, Cavé H, Zenker M, and Tartaglia M
- Subjects
- Alleles, Animals, COS Cells, Chlorocebus aethiops, HEK293 Cells, Humans, MAP Kinase Signaling System, Mice, Mice, Knockout, Zebrafish, Loss of Function Mutation, Noonan Syndrome genetics, Phenotype, Repressor Proteins genetics
- Abstract
Upregulated signal flow through RAS and the mitogen-associated protein kinase (MAPK) cascade is the unifying mechanistic theme of the RASopathies, a family of disorders affecting development and growth. Pathogenic variants in more than 20 genes have been causally linked to RASopathies, the majority having a dominant role in promoting enhanced signaling. Here, we report that SPRED2 loss of function is causally linked to a recessive phenotype evocative of Noonan syndrome. Homozygosity for three different variants-c.187C>T (p.Arg63
∗ ), c.299T>C (p.Leu100Pro), and c.1142_1143delTT (p.Leu381Hisfs∗ 95)-were identified in four subjects from three families. All variants severely affected protein stability, causing accelerated degradation, and variably perturbed SPRED2 functional behavior. When overexpressed in cells, all variants were unable to negatively modulate EGF-promoted RAF1, MEK, and ERK phosphorylation, and time-course experiments in primary fibroblasts (p.Leu100Pro and p.Leu381Hisfs∗ 95) documented an increased and prolonged activation of the MAPK cascade in response to EGF stimulation. Morpholino-mediated knockdown of spred2a and spred2b in zebrafish induced defects in convergence and extension cell movements indicating upregulated RAS-MAPK signaling, which were rescued by expressing wild-type SPRED2 but not the SPRED2Leu381Hisfs ∗ 95 protein. The clinical phenotype of the four affected individuals included developmental delay, intellectual disability, cardiac defects, short stature, skeletal anomalies, and a typical facial gestalt as major features, without the occurrence of the distinctive skin signs characterizing Legius syndrome. These features, in part, characterize the phenotype of Spred2-/- mice. Our findings identify the second recessive form of Noonan syndrome and document pleiotropic consequences of SPRED2 loss of function in development., Competing Interests: Declaration of interests The authors declare no competing interests., (Copyright © 2021 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.)- Published
- 2021
- Full Text
- View/download PDF
50. Economic evaluations of exome and genome sequencing in pediatric genetics: considerations towards a consensus strategy.
- Author
-
Olde Keizer RACM, Henneman L, Ploos van Amstel JK, Vissers LELM, and Frederix GWJ
- Subjects
- Child, Cost-Benefit Analysis, Delivery of Health Care, Hospital Costs, Humans, Exome, Pediatrics
- Abstract
Objective: Next Generation Sequencing (NGS) is increasingly used for the diagnosis of rare genetic disorders. The aim of this study is to review the different approaches for economic evaluations of Next Generation Sequencing (NGS) in pediatric care used to date, to identify all costs, effects, and time horizons taken into account., Methods: A systematic literature review was conducted to identify published economic evaluations of NGS applications in pediatric diagnostics, i.e. exome sequencing (ES) and/or genome sequencing (GS). Information regarding methodological approach, costs, effects, and time horizon was abstracted from these publications., Results: Twenty-eight economic evaluations of ES/GS within pediatrics were identified. Costs included were mainly restricted to direct in-hospital healthcare costs and varied widely in inclusion of sort of costs and time-horizon. Nineteen studies included diagnostic yield and eight studies included cost-effectiveness as outcome measures. Studies varied greatly in terms of included sort of costs data, effects, and time horizon., Conclusion: Large differences in inclusion of cost and effect parameters were identified between studies. Validity of outcomes can therefore be questioned, which hinders valid comparison and widespread generalization of conclusions. In addition to current health economic guidance, specific guidance for evaluations in pediatric care is therefore necessary to improve the validity of outcomes and furthermore facilitate comparable decision-making for implementing novel NGS-based diagnostic modalities in pediatric genetics and beyond.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.