20 results on '"Viktorsson, Lena"'
Search Results
2. Gaps in current Baltic Sea environmental monitoring – Science versus management perspectives
- Author
-
Kahlert, Maria, Eilola, Kari, Mack, Leoni, Meissner, Kristian, Sandin, Leonard, Strömberg, Helena, Uusitalo, Laura, Viktorsson, Lena, and Liess, Antonia
- Published
- 2020
- Full Text
- View/download PDF
3. Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA
- Author
-
De Brabandere, Loreto, Bonaglia, Stefano, Kononets, Mikhail Y., Viktorsson, Lena, Stigebrandt, Anders, Thamdrup, Bo, and Hall, Per O. J.
- Published
- 2015
4. An Experiment with Forced Oxygenation of the Deepwater of the Anoxic By Fjord, Western Sweden
- Author
-
Stigebrandt, Anders, Liljebladh, Bengt, de Brabandere, Loreto, Forth, Michael, Granmo, Åke, Hall, Per, Hammar, Jonatan, Hansson, Daniel, Kononets, Mikhail, Magnusson, Marina, Norén, Fredrik, Rahm, Lars, Treusch, Alexander H., and Viktorsson, Lena
- Published
- 2015
5. A New Phosphorus Paradigm for the Baltic Proper
- Author
-
Stigebrandt, Anders, Rahm, Lars, Viktorsson, Lena, Ödalen, Malin, Hall, Per O. J., and Liljebladh, Bengt
- Published
- 2014
6. Benthic Phosphorus Dynamics in the Gulf of Finland, Baltic Sea
- Author
-
Viktorsson, Lena, Almroth-Rosell, Elin, Tengberg, Anders, Vankevich, Roman, Neelov, Ivan, Isaev, Alexey, Kravtsov, Victor, and Hall, Per O. J.
- Published
- 2012
- Full Text
- View/download PDF
7. The Swedish National Marine Monitoring Programme 2020 : Hydrography, Nutrients, Phytoplankton
- Author
-
Skjevik, Ann-Turi, Wesslander, Karin, and Viktorsson, Lena
- Subjects
Oceanography, Hydrology and Water Resources ,Oceanografi, hydrologi och vattenresurser - Abstract
Despite a year of pandemic, the environmental monitoring in the pelagic could be done largely as planned in 2020. It was the warmest year on land since national statistics started in 1860. This was also shown in the sea where especially the surface temperature in winter was higher than usual. In the Baltic Sea, the lowest winter temperature was two degrees above normal and the maximum distribution of sea ice was the lowest ever measured. The autumn was also warm and in November the surface water in the Baltic Sea was about 1 degree warmer than normal.In the Kattegat, there were signs of the spring bloom in February with high chlorophyll levels and high species diversity. In March, the nutrients were largely depleted in the surface water and the spring bloom of diatoms was over for this time. At one occasion, in April, toxins were reported in mussels along the West Coast that exceeded the warning limit. In the Skagerrak, the spring bloom started a little later than in the Kattegat, and in the Baltic Sea even later. In April, the spring bloom was observed in the Western Gotland Basin with high chlorophyll concentrations and typical dinoflagellates species for the season. In the Gulf of Bothnia, there was an early spring bloom of diatoms in April. This early bloom may have been an effect of the mild winter. The bloom of cyanobacteria in the Baltic Sea started already in May when cyanobacteria were observed at several stations. In August, cyanobacteria were also observed along the West Coast. These had probably been transported out with water from the Baltic Sea. A late bloom of the microzooplankton Noctiluca scintillans was observed at several sites along the West Coast in December. N. scintillans turns the water red during blooms and when it is dark, its fluorescence causes beautiful bioluminescence.Throughout the year high levels of silicate were observed in the Baltic Sea and low levels of DIN in the surface waters of the Gulf of Bothnia. Otherwise, the levels of nutrients did not deviate much from normal.In the bottom water of the Baltic Sea, no direct improvement of the oxygen situation was seen. In December 2019, there was a small inflow to the Baltic Sea that temporarily raised oxygen levels in the southern and south-eastern parts at the beginning of 2020. But this increase in oxygen was consumed quickly. In the East Gotland Basin, there was an acute lack of oxygen from 80 m and hydrogen sulphide was measured from depths exceeding 125 m. In the Western Gotland Basin, acute oxygen deficiency was found from 70 m and completely oxygen-free conditions from 80 m. An effect of stagnation in the deep basin parts is, in addition to increased levels of hydrogen sulphide, also increased levels of ammonium. Ammonium levels in the deep water increase in both the Eastern and Western Gotland Basins. The highest concentration of ammonia was observed in the eastern parts, but in the western parts they were above normal levels and closer to the levels in the eastern parts than they have been before. In the Kattegat, oxygen concentrations just above the limit for acute oxygen deficiency were found at some stations during August-October. Trots ett år med pandemi så kunde miljöövervakningen i pelagialen göras i stort sett som planerat under 2020. Det blev det varmaste året på land sedan nationell statistik startade 1860. Detta visade sig även i havet där i synnerhet yttemperaturen vintertid var högre än normalt. I Östersjön blev den lägsta vintertemperaturen två grader över det normala och den maximala utbredningen av havsis var den lägsta som någonsin uppmätts. Även hösten var varm och i november var ytvattnet i Östersjön ca 1 grad varmare än normalt.I februari observerades de första tecknen på att vårblomningen hade startat i Kattegatt, med höga klorofyllhalter och hög artdiversitet. I mars var näringsämnena i stort sett slut i ytvattnet och vårblomningen av kiselalger var över för denna gång. Vid ett tillfälle, i april, rapporterades gifter i musslor längs Västkusten som översteg varningsgränsen. I Skagerrak startade vårblomningen aningen senare än i Kattegatt och i Östersjön ännu något senare. I april observerades vårblomningen i västra Gotlandsbassängen med hög klorofyllkoncentration och för våren typiska dinoflagellater. I Bottenviken var det en tidig vårblomning av kiselalger i april. Denna tidiga blomning kan ha varit en effekt av den milda vintern. En början på blomningen av cyanobakterier i Östersjön startade redan i maj då cyanobakterier observerades vid flera stationer. I augusti observerades ytansamlingar av cyanobakterier även längs Västkusten, vilka hade transporterats ut med vatten från Östersjön. En sen blomning av microzooplanktonet Noctiluca scintillans observerades vid flera platser längs Västkusten i december. N. scintillans färgar vattnet rött när den massförekommer och när det är mörkt orsakar dess fluorescens vacker mareld.Generellt så var det under året höga halter av kisel i Östersjöns och låga halter av DIN i Bottniska Vikens ytvatten. I övrigt avvek inte halterna av näringsämnen från det normala.I Östersjöns bottenvatten syntes ingen direkt förbättring av syresituationen. I december 2019 skedde ett mindre inflöde till Östersjön som höjde syrenivåerna tillfälligt i de södra och sydöstra delarna i början av året. Men denna syreökning konsumerades snabbt. I Östra Gotlandsbassängen var det akut syrebrist från 80 m och svavelväte uppmättes från 125m. I Västra Gotlandsbassängen var det akut syrebrist från 70 m och helt syrefritt från 80 m. En effekt av stagnation i de djupa bassängdelarna är förutom ökade halter av svavelväte även ökade halter av ammonium. Ammoniumhalterna ökar i både Östra- och Västra Gotlandsbassängerna. Högst koncentration återfanns i de östra delarna men i de västra delarna är de över det normala och närmre de högsta koncentrationerna i de östra delarna än vad de varit tidigare. I Kattegatts bottenvatten var syrenivåerna som lägst under augusti-oktober då det vid några stationer var strax över gränsen för akut syrebrist.
- Published
- 2021
8. Oxygen Survey in the Baltic Sea 2019 - Extent of Anoxia and Hypoxia, 1960-2019
- Author
-
Hansson, Martin, Viktorsson, Lena, and Andersson, Lars
- Subjects
Oceanography, Hydrology and Water Resources ,Oceanografi, hydrologi och vattenresurser - Abstract
A climatological atlas of the oxygen situation in the deep water of the Baltic Sea was firstpublished in 2011 in SMHI Report Oceanography No 42. Since 2011, annual updates have beenmade as additional data have been reported to the ICES data center. In this report the results for2018 have been updated and the preliminary results for 2019 are presented. Oxygen data from2019 have been collected from various sources such as international trawl survey, nationalmonitoring programmes and research projects with contributions from Poland, Estonia, Russia,Denmark, Sweden and Finland.For the autumn period each profile in the dataset was examined for the occurrence of hypoxia(oxygen deficiency) and anoxia (total absence of oxygen). The depths of onset of hypoxia andanoxia were then interpolated between sampling stations producing two surfaces representingthe depths at which hypoxic and anoxic conditions respectively are found. The volume and areaof hypoxia and anoxia were then calculated and the results transferred to maps and diagrams tovisualize the annual autumn oxygen situation during the analysed period.The updated results for 2018 and the preliminary results for 2019 show that the severe oxygenconditions in the Baltic Proper after the regime shift in 1999 continue. In 2018 the largestbottom areas and volumes affected by anoxia was recorded during the analysed period startingin 1960. Anoxic conditions affected ~24% of the bottom areas and ~33% suffered from hypoxiain 2018 and similar values just below was noted during 2019. The results from these two yearscould be the beginning of a new trend as the anoxia has reached another stage and new areas areaffected regularly. In the southern basins of the Baltic Proper, such as the Gulf of Gdansk, HanöBight and in the Bornholm Basin, hypoxia has previously been found in the deep water butanoxia is now found regularly in the deep water. The hydrogen sulphide that had disappearedfrom the Eastern and Northern Gotland Basin due to the inflows in 2014-2016 is now steadilyincreasing in the deep water again. No major inflow has occurred since 2016. En klimatologisk atlas över syresituationen i Östersjöns djupvatten publicerades 2011 i SMHIsReport Oceanography No 42. Sedan 2011 har årliga uppdateringar gjorts då kompletterandedata från länder runt Östersjön har rapporerats till ICES datacenter. I denna rapport harresultaten från 2018 uppdaterats och preliminära resultat för 2019 tagits fram. Resultaten för2019 baseras på data insamlade under internationella fiskeriundersökningar, nationellmiljöövervakning och forskningsprojekt med bidrag från Danmark, Estland, Sverige, Finland,Ryssland och Polen.Förekomsten av hypoxi (syrebrist) och anoxi (helt syrefria förhållanden) under höstperioden,har undersökts i varje mätprofil. Djupet där hypoxi eller anoxi först påträffas i en profil harinterpolerats mellan provtagningsstationer och kombinerats med en djupdatabas för beräkningav utbredning och volym av hypoxiska och anoxiska förhållanden. Resultaten har överförts tillkartor och diagram för att visualisera syresituationen i Östersjöns djupvatten 1960-2019.Resultaten för 2018 och de preliminära resultaten för 2019 visar att den extrema syrebristen somobserverats i Egentliga Östersjön, efter regimskiftet 1999, fortsätter. Under 2018 noterades denstörsta utbredningen av syrefria bottnar sedan tidsseriens start 1960. Omkring ~24% avbottnarna var syrefria och ~33% var påverkade av syrebrist. Liknande nivåer återfinns 2019.Resultaten från de senaste två åren indikerar en ny fas då utbredningen av syrefria bottnar harnått nya områden. I de södra områdena av Egentliga Östersjön; Hanöbukten, Gdanskbukten ochBornholmsbassängen har syrebrist förekommit i djupvattnet tidigare men nu återfinns syrefriaområden regelbundet. Mängden svavelväte, som på grund av inflödena 2014-2016, heltförsvann från Östra och Norra Gotlandsbassängerna, ökar åter i dessa bassängers djupvatten.Inget större inflöde till Östersjön har inträffat under perioden 2017-2019.
- Published
- 2020
9. The Swedish National Marine Monitoring Programme 2019 : Hydrography Nutrients Phytoplankton
- Author
-
Wesslander, Karin, Viktorsson, Lena, Thor, Peter, Nilsson, Madeleine, and Skjevik, Ann-Turi
- Subjects
Oceanography, Hydrology and Water Resources ,Oceanografi, hydrologi och vattenresurser - Abstract
The Swedish national marine monitoring programme of the pelagic, the water column, includes monthly measurements of hydrography, nutrient concentration and phytoplankton for the seas around Sweden; the Skagerrak, the Kattegat, the Sound, the Baltic Proper and the Gulf of Bothnia. Data is collected, analysed and reported on behalf of SwAM (Swedish Agency for Marine and Water Management). This annual report describes interesting observations from the monitoring and summarizes the main results of 2019. At the end of the report and in the Appendix time series from 1960 to 2019 are also presented. 2019 was the 10th warmest year since reporting started in 1860 and the precipitation was also higher than normal, despite this; groundwater levels were low, especially in southern Sweden. Two stronger storms passed Sweden during the beginning of the year, Alfrida (January 1-2) and Jan (January 10- 11). This year's winter was very mild and the maximum ice spread was only 88,000 km2 which is less than normal, the ice season ended in mid-May. There were no autumn storms in 2019 and the autumn was slightly colder than normal in the north but warmer in the south. During the year, only a few minor inflows of water from the Kattegat to the Baltic Sea occurred through the Sound. Three inflows were large enough to improve the oxygen situation in the southern Baltic Proper. The largest occurred in late November to mid-December. The effects of this inflow will be observable in spring 2020. A small change was observed in the oxygen concentration in the Eastern Gotland Basin at the beginning of the year, as a result of an inflow during the fall of 2018. The spring bloom started in February in the Kattegat and sometime between March and April in the Skagerrak. In April, a small bloom of the fish toxic genus Pseudochattonella was observed at stations Anholt E and N14 Falkenberg. The nontoxic coccolitophoride Emiliania huxleyi was found in the Kattegat and Skagerrak from May to November in varying quantities. The potentially toxic diatom genus Pseudo-nitzschia was present in high cell numbers in October and November. In the Baltic Proper, the spring bloom was observed from March to April with high cell numbers of diatoms and a dinoflagellate typical for the spring, Peridiniella catenata. Cyanobacteria were observed in elevated quantities as early as May and increased in late June to culminate at the end of July when they had also spread into the Bothnian Sea. The amount of filamentous cyanobacteria decreased in August, and colony forming pico cyanobacteria increased. Nutrient concentrations in the surface water were mainly within normal levels except in the Skagerrak and the Kattegat at the start of the year when slightly lower levels of phosphate, silicate and dissolved inorganic nitrogen were measured. Even in Skagerrak's and Kattegat's deep waters, the levels of dissolved inorganic nitrogen were lower than normal during parts of the first half of the year, and in the Kattegat and the Sound phosphate levels were also low. The levels of dissolved inorganic nitrogen were also low during the beginning of the year in the Baltic Proper, while phosphate levels were more normal. In the Baltic Proper, elevated silicates and phosphate levels were observed in deep water with little or no oxygen. Det svenska nationella marina övervakningsprogrammet av pelagialen, den fria vattenmassan omfattar månatliga mätningar av hydrografi, halten av näringsämnen och växtplankton för haven runt Sverige; Skagerrak, Kattegatt, Öresund, Egentliga Östersjön, Bottenhavet och Bottenviken. Uppdraget att samla in, analysera och rapportera data kommer från HaV (Havs och vattenmyndigheten). Den här årsrapporten tar upp intressanta observationer från övervakningen och sammanfattar de huvudsakliga resultaten från 2019. I slutet av rapporten och i appendix redovisas även tidsserier från 1960 till 2019. 2019 blev det 10e varmaste året sedan rapporteringen startade år 1860 och var också rikare på nederbörd än normalt, men trots det var grundvattennivåerna låga framförallt i södra Sverige. Några kraftigare stormar passerade Sverige under början av året, Alfrida (1-2 januari) och Jan (10-11 januari). Höststormarna uteblev under 2019 och hösten var något kallare än normalt i norr men varmare i söder. Årets vinter var mycket mild och den maximala isutbredningen blev endast 88 000 km2 vilket är mindre än normalt, issäsongen klassades också som mild. Issäsongen var slut i mitten av maj. Under året skedde endast några mindre inflöden av vatten från Kattegatt till Östersjön genom Öresund som beräknats genom vattenståndsskillnader mellan norra (Viken) och södra (Klagshamn) Öresund (Accumulated inflow through the Öresundl). Tre inflöden var tillräckligt stora för att förbättra syresituationen i södra Egentliga Östersjön, men hade ingen effekt längre in i Egentliga Östersjön. Det största skedde i slutet av november till mitten av december, effekterna av detta inflöde kommer att kunna observeras under våren 2020. I början av året observerades en liten förändring i syrekoncentrationen i Östra Gotlandsbassängen till följd av ett inflöde under hösten 2018. Vårblomningen startade i februari i Kattegatt och pågick mellan mars och april i Skagerrak. I april observerades en mindre blomning av det för fisk skadliga släktet Pseudochattonella vid stationerna Anholt E och N14 Falkenberg. I Egentliga Östersjön observerades vårblomningen i mars-april med höga cellantal av kiselalger och en dinoflagellat typisk för våren, Peridiniella catenata. Cyanobakterier observerades i förhöjda mängder redan i maj och ökade i juni för sen att kulminera i slutet av juli då de även hade spridit sig upp i Bottenhavet. Mängden trådlika cyanobakterier minskade i augusti, och kolonibildande pico cyanobakterier ökade. Näringsämneskoncentrationer i ytvattnet var i huvudsak inom normala nivåer förutom i Skagerrak och Kattegatt under början av året då något lägre nivåer av fosfat, silikat och löst oorganiskt kväve uppmättes. Även i Skagerraks och Kattegatts djupvatten var halterna av löst oorganiskt kväve lägre än normalt under delar av första halvåret, i Kattegatt och Öresund var också fosfathalterna låga. Halterna av löst oorganiskt kväve var också låga under början av året i Egentliga Östersjön, medan fosfat halterna var mer normala. I Egentliga Östersjön observerades förhöjda silikat och fosfathalter i djupvatten med lågt eller inget syre.
- Published
- 2020
10. The SwedishNational MarineMonitoringProgramme 2017 : HydrographyNutrientsPhytoplankton
- Author
-
Wesslander, Karin, Viktorsson, Lena, and Skjevik, Ann-Turi
- Subjects
Oceanography, Hydrology and Water Resources ,Baltic Sea ,nutrients ,Oceanografi, hydrologi och vattenresurser ,Oceanography ,Gulf of Bothnia ,Skagerrak ,Kattegat ,marine monitoring - Abstract
This report presents the main results of the Swedish national marine monitoring programme of the pelagic during 2017. The monitoring data of hydrography, nutrients and phytoplankton are analysed for the seas surrounding Sweden: Skagerrak, Kattegat, The Sound, Baltic Proper, Bothnian Sea and Bothnian Bay. The monitoring is carried out by SMHI (Swedish Meteorological and Hydrological Institute), SU (Stockholm University) and UMF (Umeå Marine Sciences Centre) and the monitoring programme is co-funded by SwAM (Swedish Agency for Marine and Water Management), SMHI, SU and UMF. Data is collected, analysed and reported with support from Swedish environmental monitoring and commissioned by SwaM. The Baltic current along the Swedish west coast implies large variations in surface salinity and the unusually large outflow of brackish water from the Baltic Sea in 2017 was reflected as low surface salinity in Skagerrak and Kattegat in the beginning of the year. There were no major deep water inflows to the Baltic Sea during 2017 but a few inflows of minor magnitude. These minor inflows only temporarily improved the oxygen condition in the Bornholm Basin and in the southern part of the Eastern Gotland Basin. The salinity below the halocline was above normal in the Gotland Basins and in the Northern Baltic Proper, and also in the surface layer in the Eastern Gotland Basin for almost the whole year. In Skagerrak and Kattegat, surface concentrations of phosphate and dissolved inorganic nitrogen were normal while dissolved silica concentrations were elevated especially in spring. In the Baltic Sea, the concentration of silicate in the surface water was elevated in all basins. According to the estimated total content of silicate there has been an increase in silica content in the Baltic Sea since the early 1990’s. Surface concentrations of phosphate were above normal in the Gotland basins and the Northern Baltic Proper while inorganic nitrogen content was above normal in parts of the Arkona and Bornholm basins. During spring and summer, the inorganic nitrogen was consumed at greater depths than usual in the Baltic Proper. In particular concentrations of phosphate and dissolved silica were generally lower than normal in the bottom layer. Instead of diatoms, the flagellate genus Pseudochattonella, which is potentially toxic to fish, bloomed in the Kattegat and Skagerrak areas in February – April. During autumn there was a prolonged diatom bloom though. In the Baltic Sea spring bloom occurred in April. The cyanobacteria bloom began in May already with Aphanizomenon flos-aquae. During June and July all three of the filamentous cyanobacteria, A. flos-aquae, Dolichospermum lemmermannii and the potentially harmful Nodularia spumigena were found in the phytoplankton samples in various amounts. In the Bothnian Sea, the sea surface temperature during summer was lower than normal and the oxygen conditions in the bottom layer was not critical but still below normal levels. Den här rapporten sammanfattar de huvudsakliga resultaten av det svenska nationella marina övervakningsprogrammet av pelagialen under 2017. Resultat från mätningar av hydrografi, näringsämnen och växtplankton diskuteras för haven runt Sverige; Skagerrak, Kattegatt, Öresund, Egentliga Östersjön, Bottenhavet och Bottenviken. Övervakningen utförs av SMHI (Sveriges meteorologiska och hydrologiska institut), SU (Stockholms Universitet) och UMF (Umeå marina forskningscentrum) och övervakningsprogrammet samfinansieras av HaV (Havs- och vattenmyndigheten), SMHI, SU and UMF. Data är insamlade, analyserade och rapporterade med stöd från svensk miljöövervakning och på uppdrag HaV. Den Baltiska strömmen längs Västkusten medför stora fluktuationer av salthalten i ytan och det ovanligt höga utflödet med bräckt vatten från Östersjön under 2017 avspeglades som låg ytsalthalt i Skagerrak och Kattegatt i början av året. Det var inga stora djupvatteninflöden till Östersjön under 2017 men ett par av mindre storlek. Dessa mindre inflöden förbättrade syreförhållanden endast temporärt i Bornholms-bassängen och i södra delen av Östra Gotlandsbassängen. Salthalten under haloklinen var högre än normalt i Gotlands-bassängerna och i Norra Egentliga Östersjön samt även i ytlagret i Östra Gotlandsbassängen. Koncentrationen av fosfat och oorganiskt kväve i Skagerrak och Kattegatts ytvatten var normal medan silikatkoncentrationen var hög, speciellt under våren. I Östersjöns ytvatten var det höga nivåer av silikat i alla bassänger. Enligt det uppskattade totala innehållet av kisel i Östersjön har det pågått en ökning av kisel sedan början av 90-talet. Koncentrationen av fosfat i ytvattnet var över normal i Gotlandsbassängerna och Norra Egentliga Östersjön medan koncentrationen av oorganiskt kväve var mer än normalt i Arkona- och Bornholmsbassängen. Under vår och sommar var det djup där det oorganiska kvävet tar slut i Egentliga Östersjön större än normalt. I djupvattenlagret var det lägre koncentrationer än normalt av särskilt fosfat och silikat. I stället för de sedvanliga kiselalgerna var det det för fisk skadliga flagellatsläktet Pseudochattonella som blommade på Västkusten i februari till april. Under hösten förekom däremot en utdragen kiselalgsblomning. I Östersjön förekom vårblomningen i april. Cyanobakterieblomningen startade redan i maj med Aphanizomenon flos-aquae. Under juni och juli fanns alla tre av de filamentösa cyanobakterierna, A. flos-aquae, Dolichospermum lemmermannii och den potentiellt skadliga Nodularia spumigena, i växtplanktonproverna i varierande mängd. I Bottenhavet var ytvattentemperaturen lägre än normalt och koncentrationen av syre var under normala nivåer, men ändå högre än kritiska.
- Published
- 2018
11. Oxygen Survey in the Baltic Sea 2017 - Extent of Anoxia and Hypoxia, 1960-2017
- Author
-
Hansson, Martin, Viktorsson, Lena, and Andersson, Lars
- Subjects
Oceanography, Hydrology and Water Resources ,Oceanografi, hydrologi och vattenresurser - Abstract
En klimatologisk atlas över syresituationen i Östersjöns djupvatten publicerades 2011 i SMHIs Report Oceanography No 42. Sedan 2011 har årliga uppdateringar gjorts då kompletterande data från länder runt Östersjön har rapporerats till ICES. I denna rapport har resultaten från 2016 uppdaterats. De preliminära resultaten för 2017 baseras på data insamlade under Baltic International Acoustic Survey (BIAS) och nationell miljöövervakning med bidrag från Sverige, Finland och Polen. Förekomsten av hypoxi (syrebrist) och anoxi (helt syrefria förhållanden) under höstperioden, har undersökts i varje mätprofil. Djupet där hypoxi eller anoxi först påträffas i en profil har interpolerats mellan provtagningsstationer och kombinerats med en djupdatabas för beräkning av utbredning och volym av hypoxiska och anoxiska förhållanden. Resultaten har överförts till kartor och diagram för att visualisera syresituationen i Östersjöns djupvatten. Resultaten för 2016 och de preliminära resultaten för 2017 visar att de extremasyreförhållanden som observerats i Egentliga Östersjön fortsätter. Utbredningen av anoxi fortsätter att vara konstant förhöjd till nivåer som bara observerats i Östersjön enstaka år före 1999. Trots ett flertal inflöden under perioden 2014-2016 beräknas ungefär 18% av bottnarna i Egentliga Östersjön, Finska viken och Rigabukten vara påverkade av anoxiska förhållanden och omkring 28% av hypoxi under 2017. Inflödena 2014-2016 har minskat poolen av svavelväte så att den nästan helt försvunnit i Östra och Norra Gotlandsbassängen. Dock är syrgashalterna fortsatt noll eller mycket nära noll i djupvattnet och tecken på ökade halter av svavelväte har noterats under 2017. A climatological atlas of the oxygen situation in the deep water of the Baltic Sea was firstpublished in 2011 in SMHI Report Oceanography No 42. Since 2011, annual updates have beenmade as additional data have been reported to ICES. In this report the results for 2016 havebeen updated and the preliminary results for 2017 are presented. Oxygen data from 2017 havebeen collected during the annual Baltic International Acoustic Survey (BIAS) and from nationalmonitoring programmes with contributions from Sweden, Finland and Poland.For the autumn period each profile in the dataset was examined for the occurrence of hypoxia(oxygen deficiency) and anoxia (total absence of oxygen). The depths of onset of hypoxia andanoxia were then interpolated between sampling stations producing two surfaces representingthe depth at which hypoxic and anoxic conditions respectively are found. The volume and areaof hypoxia and anoxia have been calculated and the results have then been transformed to mapsand diagrams to visualize the annual autumn oxygen situation during the analysed period.The updated results for 2016 and the preliminary results for 2017 show that the severe oxygenconditions in the Baltic Proper after the regime shift in 1999 continue. Both the areal extent andthe volume with anoxic conditions have, after 1999, been constantly elevated to levels onlyobserved occasionally before the regime shift. Despite the frequent inflows to the Baltic Seaduring the period 2014-2016 approximately 18% of the bottom area was affected by anoxia and28% by hypoxia during 2017. The hydrogen sulphide has, due to the inflows, disappeared fromthe Eastern and Northern Gotland Basin. However, the oxygen concentrations in the deep waterare still near zero and signs of increasing hydrogen sulphide close to the bottom have beenobserved during 2017.Sammanfattning
- Published
- 2018
12. Influence of natural oxygenation of Baltic proper deep water on benthic recycling and removal of phosphorus, nitrogen, silicon and carbon
- Author
-
Hall, Per O. J., Almroth Rosell, Elin, Bonaglia, Stefano, Dale, Andrew W., Hylén, Astrid, Kononets, Mikhail, Nilsson, Madeleine, Sommer, Stefan, van de Velde, Sebastiaan, Viktorsson, Lena, Chemistry, and Faculty of Sciences and Bioengineering Sciences
- Subjects
Global and Planetary Change ,denitrification ,Ocean Engineering ,Geokemi ,Oceanografi, hydrologi och vattenresurser ,major baltic inflow ,Aquatic Science ,Environmental Science (miscellaneous) ,DNRA ,Oceanography, Hydrology and Water Resources ,Geochemistry ,internal P load ,Marine Science ,benthic nutrient and DIC fluxes ,oceanography ,Sciences exactes et naturelles ,Water Science and Technology - Abstract
At the end of 2014, a Major Baltic Inflow (MBI) brought oxygenated, salty water into the Baltic proper and reached the long-term anoxic Eastern Gotland Basin (EGB) by March 2015. In July 2015, we measured benthic fluxes of phosphorus (P), nitrogen (N) and silicon (Si) nutrients and dissolved inorganic carbon (DIC) in situ using an autonomous benthic lander at deep sites (170–210 m) in the EGB, where the bottom water oxygen concentration was 30–45 μM. The same in situ methodology was used to measure benthic fluxes at the same sites in 2008–2010, but then under anoxic conditions. The high efflux of phosphate under anoxic conditions became lower upon oxygenation, and turned into an influx in about 50% of the flux measurements. The C:P and N:P ratios of the benthic solute flux changed from clearly below the Redfield ratio (on average about 70 and 3–4, respectively) under anoxia to approaching or being well above the Redfield ratio upon oxygenation. These observations demonstrate retention of P in newly oxygenated sediments. We found no significant effect of oxygenation on the benthic ammonium, silicate and DIC flux. We also measured benthic denitrification, anammox, and dissimilatory nitrate reduction to ammonium (DNRA) rates at the same sites using isotope-pairing techniques. The bottom water of the long-term anoxic EGB contained less than 0.5 μM nitrate in 2008–2010, but the oxygenation event created bottom water nitrate concentrations of about 10 μM in July 2015 and the benthic flux of nitrate was consistently directed into the sediment. Nitrate reduction to both dinitrogen gas (denitrification) and ammonium (DNRA) was initiated in the newly oxygenated sediments, while anammox activity was negligible. We estimated the influence of this oxygenation event on the magnitudes of the integrated benthic P flux (the internal P load) and the fixed N removal through benthic and pelagic denitrification by comparing with a hypothetical scenario without the MBI. Our calculations suggest that the oxygenation triggered by the MBI in July 2015, extrapolated to the basin-wide scale of the Baltic proper, decreased the internal P load by 23% and increased the total (benthic plus pelagic) denitrification by 18%.
- Published
- 2017
13. Summary of the Swedish National Marine Monitoring 2016 - Hydrography, nutrients and phytoplankton
- Author
-
Wesslander, Karin and Viktorsson, Lena
- Subjects
Oceanography, Hydrology and Water Resources ,hydrography ,Baltic Sea ,nutrients ,phytoplankton ,Marine monitoring ,Oceanografi, hydrologi och vattenresurser ,Skagerrak ,Kattegat - Abstract
Results from the Swedish national marine monitoring in the pelagic during 2016 are presented. The institutes who conduct the national monitoring are SMHI (Swedish meteorological and hydrological institute), SU (Stockholm University) and UMF (Umeå marine sciences centre). The presented parameters in this report are; salinity, temperature, oxygen, dissolved inorganic phosphorous, total phosphorous, dissolved inorganic nitrogen, total nitrogen, dissolved silica, chlorophyll and phytoplankton. Secchi depth, zooplankton, humus, primary production, pH and alkalinity are also measured but not presented. Seasonal plots for surface waters are presented in Appendix I. Time series for surface waters (0-10 m) and bottom waters are presented in Appendix II. The amount of nutrients in the sub-basins of the Baltic Sea is presented per season and year in Appendix III.Exceptional events 2016 A warm September due to several high pressure systems, with temperatures more than one standard deviation above mean in almost all stations from Skagerrak, Kattegat and the Baltic Proper. Low oxygen in Kattegat bottom water during autumn as can be seen in the seasonal plots for both Anholt E and Fladen. Improved oxygen condition in the East Gotland Basin, due to an increased frequency of deep water inflows in comparison to the period 1983 until the large inflow in December 2014. The inflow of 30 km3 in the beginning of the year could be tracked in the deep water in the Eastern Gotland Basin in June. Elevated levels of silicate have been observed in the Baltic Sea since 2014 and the silicate levels were also elevated this year but mainly in the central and the northern parts of the Baltic Proper. In July there were high cell numbers of the dinoflagellate Dinophysis acuminata, which caused high levels of toxins in blue mussels. During this period it was forbidden to harvest blue mussels along the Bohus coast. Unusual long period of cyanobacteria bloom in the Baltic Sea. Resultat från Sveriges nationella samlade nationella marina övervakning i den fria vattenmassan under året 2016 presenteras. De nationella utförarna är Sveriges metrorologiska och hydrologiska institut (SMHI), Stockholms Universitet (SU) och Umeå marina forskningscentrum (UMF). De parametrar som presenteras i rapporten är salthalt, temperatur, syre, löst oorganiskt fosfor, totalfosfor, löst oorganiskt kväve, totalkväve, löst kisel, klorofyll och växtplankton. Även siktdjup, djurplankton, humus, primär produktion, pH och alkalinitet provtas men de presenteras inte. Säsongsfigurer tillsammans med statistik presenteras för ytvatten i Bilaga I. Tidsserier för ytvatten (0-10 m) och bottenvatten presenteras i Bilaga II. Mängden närsalter i Östersjöns delbassänger under vintern presenteras i bilaga III.Speciella händelser 2016 Flertalet högtryckspassager orsakade en ovanligt varm septembermånad, vilket gav yttemperaturer mer än en standard avvikelse över det normala vid nästa alla stationer i Skagerrak, Kattegatt och Östersjön. I Kattegatts bottenvatten var det mycket låga syrgashalter under hösten men förhållandena återgick till det normala under vintern. Detta syns framförallt i säsongsfigurerna för Anholt E och Fladen. Syresituationen i Östra Gotlandsbassängen har förbättrats något och anledningen är att antalet inflöden har blivit fler sedan det senaste stora inflödet som skedde i december 2014. Inflödet på 30 km3 i början av året kunde senare under juni spåras i bottenvattnet i Östra Gotlandsbassängen. Nivåerna av kisel i Östersjön har under de senaste åren varit över det normala och så även detta år men främst i de centrala och norra delarna av Egentliga Östersjön. I juli noterades förhållandevis stora mängder av dinoflagellaten Dinophysis acuminata. Detta orsakade förhöjda halter av Dinophysis-toxiner i blåmusslor vilket i sin tur ledde till att Livsmedelsverket förbjöd musselskörd i vissa områden längs Bohuskusten. Ovanligt lång blomning av cyanobakterier i Östersjön.
- Published
- 2017
14. RESPONSE OF BENTHIC NITROGEN CYCLING TO A WHOLE-FJORD OXYGENATION EXPERIMENT
- Author
-
De Brabandere, Loreto, Bonaglia, Stefano, Kononets, Mikhail Y., Viktorsson, Lena, Stigebrandt, Anders, Thamdrup, Bo, Hall, Per O.J., Analytical and Environmental Chemistry, and Analytical, Environmental & Geo-Chemistry
- Subjects
equipment and supplies - Abstract
Benthic nitrogen cycling pathways were studied in a euxinic fjord in western Sweden subject to artificial oxygenation as part of an environmental engineering experiment. Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) were investigated in situ by means of 15N-nitrate additions to benthic chambers. At stations above the oxic/anoxic interface, denitrification dominated nitrate reduction and N2 production both before and after oxygenation, while DNRA accounted for
- Published
- 2015
15. BOX – complementary results obtained during 2012. Swedish Environmental Protection Agency, Stockholm, Sweden
- Author
-
Stigebrandt, Anders, Liljebladh, Bengt, Rahm, Lars, De Brabandere, Loreto, Ekeroth, Nils, Granmo, Å, Hall, Per O. J., Kononets, Mikhail, Viktorsson, Lena, Analytical, Environmental & Geo-Chemistry, Chemistry, Earth System Sciences, and Analytical and Environmental Chemistry
- Subjects
denitrification ,By Fjord ,oxygenation ,phosphorous - Published
- 2013
16. Phosphorus recycling in brackish and marine environments - Sediment investigations in situ in the Baltic Sea and the By Fjord
- Author
-
Viktorsson, Lena
- Subjects
sediment ,Baltic Sea ,benthic flux ,By Fjord ,fungi ,anoxia ,phosphorus ,humanities ,geographic locations - Abstract
The phosphorus load to the oceans from land started to increase since around 1950 when man started to mine phosphorus-mineral from phosphorus-rich soils and bedrock. The increased use of phosphorus fertilizers in agriculture together with the growth of coastal cities increased the load of phosphorus to the coastal ocean where plankton production flourished. In the Baltic Sea the increase in plankton production resulted in an increased frequency of harmful cyanobacterial blooms and in expanding areas of anoxic bottoms due to the restricted water exchange with the North Sea. Introduction of sewage treatment plants in major cities in the 1960’s and further improvements of these in the 70’s and 80’s decreased the phosphorus and later nitrogen loads to the waters. Despite the decreased loads to the Baltic Sea the water quality did not improve. Recently, this led researchers to focus more on internal feedback mechanisms instead of external sources to understand the eutrophication of the Baltic Sea. From a combination of in situ measurements of the phosphorus flux from sediment to water and a budget model for the Baltic Sea, the importance of the sediments as a source of phosphorus have been investigated. In situ measurements were performed in two basins of the Baltic Sea (the Eastern Gotland Basin and the Gulf of Finland) and in a small fjord on the Swedish west coast (the By Fjord). These measurements showed that the flux of dissolved inorganic phosphorus (DIP) was higher at anoxic bottoms than at oxic in all three areas. Furthermore the flux at anoxic bottoms was enriched in phosphorus compared to carbon (and nitrogen). At oxic bottoms, on the other hand, the flux was lower and at times also showed an uptake of DIP from the water to the sediment. The fluxes at oxic bottoms in the Baltic Sea did not show any correlation with the degradation rate of organic carbon while the fluxes from anoxic bottoms in the Baltic Sea and at all bottoms in the By Fjord showed a positive correlation with the degradation rate of organic carbon. This indicated that at the oxic bottoms in By Fjord the DIP flux was primarily controlled by the degradation rate. On the contrary, the fluxes at oxic bottoms in the Baltic Sea were controlled by secondary mechanisms like adsorption to iron-oxides or storage of poly-phosphates in bacteria. The flux measurements indicate that phosphorus is preferentially remineralised under anoxic conditions and the budget model shows that anoxic sediment act as a source of phosphorus in the Baltic Sea. This calls for further investigations of phosphorus remineralisation under anoxic conditions and highlights the importance of the anoxic bottoms for the on-going eutrophication of the Baltic Sea.
- Published
- 2012
17. Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA.
- Author
-
Brabandere, Loreto, Bonaglia, Stefano, Kononets, Mikhail, Viktorsson, Lena, Stigebrandt, Anders, Thamdrup, Bo, and Hall, Per
- Subjects
OXYGENATION (Chemistry) ,ANOXIC zones ,BENTHIC ecology ,DENITRIFICATION ,EUTROPHICATION ,BOTTOM water (Oceanography) - Abstract
Hypoxia hampers eutrophication reduction efforts by enabling high nutrient fluxes from sediment to bottom waters. Oxygenation of hypoxic water bodies is often proposed to reduce benthic ammonium and phosphate release. This study investigates the functional response of benthic nitrate-reducing processes to a long-term engineered oxygenation effort in a density-stratified fjord with euxinic bottom waters. Oxygenation was achieved by mixing surface water with deep, euxinic water, which increased oxygen and nitrate concentrations in the deep water column. The presence of nitrate instigated benthic nitrate reduction in the newly oxidized sediments by equally stimulating denitrification and dissimilatory nitrate reduction to ammonium (DNRA). DNRA and total nitrate reduction rates, as well as the contribution of DNRA to total nitrate reduction, decreased with increasing exposure time of the sediments to oxygen. The relative importance of DNRA as a nitrate sink was correlated to nitrate concentrations, with more nitrate being reduced to ammonium at higher bottom water nitrate concentrations. Overall, engineered oxygenation decreased the net efflux of dissolved inorganic nitrogen from the sediments by stimulating net nitrate removal through denitrification. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
18. Recycling and burial of phosphorus in sediments of an anoxic fjord--the By Fjord, western Sweden.
- Author
-
Viktorsson, Lena, Kononets, Mikhail, Roos, Per, and Hall, Per O. J.
- Subjects
- *
SEDIMENTS , *BENTHIC zone , *SALINE waters , *PHOSPHORUS - Abstract
Recycling and burial of sediment phosphorus were studied in the By Fjord, western Sweden, during the years 2009 to 2010 using autonomous benthic landers and sediment sampling. The By Fjord is a small fjord with a shallow sill at its narrow mouth, which limits water exchange of the fjord's basin water. The water in the basin is exchanged only every 3 to 5 years and the water below sill level is anoxic or sulfidic between water renewals. Five sites were examined in the By Fjord; three shallow sites above the sill level with oxic bottom waters and two deeper sites with anoxic bottom waters. Contents of sediment organic carbon, total nitrogen and organic phosphorus were higher at deep stations when compared to shallow ones, whereas the contents of sediment inorganic phosphorus was higher at shallow than at deep stations both in surficial and buried sediment. One shallow oxic site and one deep anoxic site were also examined in the adjacent Koljo Fjord having similar characteristics as the By Fjord. In situ measurements of benthic fluxes of dissolved inorganic phosphorus (DIP) showed that the fluxes from sediments with oxic overlying water (0.05-0.23 mmol m-2 d-1) were much lower than fluxes from sediments with anoxic overlying water (1.25-2.26 mmol m-2 d-1). The DIP flux increased with increasing flux of dissolved inorganic carbon (DIC) not only at anoxic but also at oxic bottoms, which is different from observations in brackish water environments. The average ratio between the DIC and DIP fluxes at oxic bottoms was almost 10 times higher than the Redfield C:P ratio indicating partial immobilization of P in oxic sediments. In contrast, the C:P ratio in fluxes was on average 1.5 times lower than Redfield at the anoxic bottoms. The benthic fluxes from anoxic bottoms were P rich not only in relation to C, but also to N. The low C:P flux ratio at anoxic sites coincided with an about 2.5 times higher than Redfield C:P ratio of organic matter in the sediment solid phase clearly suggesting preferential regeneration of P at anoxic bottoms. Burial of inorganic P was higher than organic P burial at both anoxic and oxic sites; the former made up 59 to 60% of the total P burial at the deep anoxic stations, and 80% at the main shallow oxic station. The burial efficiency for organic P at anoxic bottoms was estimated to be only 1 to 3%, which indicates extremely efficient recycling of deposited organic P under anoxic conditions in this fjord environment. [ABSTRACT FROM AUTHOR]
- Published
- 2013
- Full Text
- View/download PDF
19. Processing 50 years of oxygen and hydrogen-sulphide observations in the Baltic Sea.
- Author
-
Feistel, Susanne, Naumann, Michael, Nausch, Günther, Hiller, Anne, Paysen, Philipp, Hansson, Martin, Andersson, Lars, Viktorsson, Lena, Lysiak-Pastuszak, Elzbieta, Feistel, Rainer, and Meier, H. E. Markus
- Subjects
- *
HYDROGEN sulfide , *SALINE waters , *CLIMATE research , *OCEANOGRAPHIC maps - Published
- 2018
20. The Copernicus Marine Environment Monitoring Service Ocean State Report
- Author
-
Simon A. Good, Roshin P. Raj, Tanguy Szekely, Yann Drillet, Pierre-Marie Poulain, Charles Desportes, M. Hamon, Irene Perez-Gonzalez, Sandrine Mulet, Lars Axell, Enrique Álvarez-Fanjul, Owen Embury, Gerasimos Korres, Clement Bricaud, Elin Almroth-Rosell, Bruno Buongiorno Nardelli, Jean François Legeais, Quentin Dagneaux, Vidar S. Lien, Shubha Sathyendranath, Angélique Melet, Marie-Fanny Racault, Marcos García Sotillo, Pat Hyder, Aurélien Paulmier, Nathalie Verbrugge, Stephen Dye, Robert J. W. Brewin, Jun She, Mélanie Juza, Antonio G. Ramos, Laurent Parent, Elodie Gutknecht, Isabelle Pujol, Jérôme Gourrion, John Kennedy, Jason Holt, Antonio Bonaduce, Annette Samuelsen, Clotilde Dubois, Stephanie Guinehut, Florent Gasparin, Begoña Pérez-Gómez, Jonathan Tinker, Benoit Meyssignac, Lars-Anders Breivik, Karina von Schuckmann, Peter Sykes, Enda O'Dea, Magdalena Balmaseda, Bengt Karlson, Michael Ablain, Fabrice Hernandez, Gianpiero Cossarini, Alvaro De Pascual, Lena Viktorsson, Emanuela Clementi, Herve Roquet, Urmas Raudsepp, Rosemary Morrow, Giulio Notarstefano, Pierre-Yves Le Traon, Rebecca Reid, Cosimo Solidoro, Joaquín Tintoré, Marie Drevillon, Gilles Garric, Andrea Pisano, Dionysios E. Raitsos, Simona Simoncelli, Eric Greiner, Einar Olason, Coralie Perruche, Hélène Etienne, Fernando Manzano-Munoz, Claudia Fratianni, Nadia Pinardi, Bruno Levier, von Schuckmann, Karina, Le Traon, Pierre-Yve, Alvarez-Fanjul, Enrique, Axell, Lar, Balmaseda, Magdalena, Breivik, Lars-Ander, Brewin, Robert J. W., Bricaud, Clement, Drevillon, Marie, Drillet, Yann, Dubois, Clotilde, Embury, Owen, Etienne, Hélène, Sotillo, Marcos García, Garric, Gille, Gasparin, Florent, Gutknecht, Elodie, Guinehut, Stéphanie, Hernandez, Fabrice, Juza, Melanie, Karlson, Bengt, Korres, Gerasimo, Legeais, Jean-Françoi, Levier, Bruno, Lien, Vidar S., Morrow, Rosemary, Notarstefano, Giulio, Parent, Laurent, Pascual, Álvaro, Pérez-Gómez, Begoña, Perruche, Coralie, Pinardi, Nadia, Pisano, Andrea, Poulain, Pierre-Marie, Pujol, Isabelle M., Raj, Roshin P., Raudsepp, Urma, Roquet, Hervé, Samuelsen, Annette, Sathyendranath, Shubha, She, Jun, Simoncelli, Simona, Solidoro, Cosimo, Tinker, Jonathan, Tintoré, Joaquín, Viktorsson, Lena, Ablain, Michael, Almroth-Rosell, Elin, Bonaduce, Antonio, Clementi, Emanuela, Cossarini, Gianpiero, Dagneaux, Quentin, Desportes, Charle, Dye, Stephen, Fratianni, Claudia, Good, Simon, Greiner, Eric, Gourrion, Jerome, Hamon, Mathieu, Holt, Jason, Hyder, Pat, Kennedy, John, Manzano-Muñoz, Fernando, Melet, Angélique, Meyssignac, Benoit, Mulet, Sandrine, Buongiorno Nardelli, Bruno, O’Dea, Enda, Olason, Einar, Paulmier, Aurélien, Pérez-González, Irene, Reid, Rebecca, Racault, Marie-Fanny, Raitsos, Dionysios E., Ramos, Antonio, Sykes, Peter, Szekely, Tanguy, and Verbrugge, Nathalie
- Subjects
0106 biological sciences ,Arctic sea ice decline ,State of the ocean ,010504 meteorology & atmospheric sciences ,Effects of global warming on oceans ,Antarctic sea ice ,Oceanografi, hydrologi och vattenresurser ,Oceanography ,Ocean reporting ,01 natural sciences ,Oceanography, Hydrology and Water Resources ,Copernicus Marine Environment Monitoring Service ,Sea ice ,Operational oceanography ,Ocean climate variability ,14. Life underwater ,0105 earth and related environmental sciences ,geography ,geography.geographical_feature_category ,010604 marine biology & hydrobiology ,Arctic ice pack ,Sea surface temperature ,13. Climate action ,Climatology ,Environmental science ,Thermohaline circulation ,Ocean variability ,Ocean monitoring ,Ocean heat content - Abstract
The Copernicus Marine Environment Monitoring Service (CMEMS) Ocean State Report (OSR) provides an annual report of the state of the global ocean and European regional seas for policy and decision-makers with the additional aim of increasing general public awareness about the status of, and changes in, the marine environment. The CMEMS OSR draws on expert analysis and provides a 3-D view (through reanalysis systems), a view from above (through remote-sensing data) and a direct view of the interior (through in situ measurements) of the global ocean and the European regional seas. The report is based on the unique CMEMS monitoring capabilities of the blue (hydrography, currents), white (sea ice) and green (e.g. Chlorophyll) marine environment. This first issue of the CMEMS OSR provides guidance on Essential Variables, large-scale changes and specific events related to the physical ocean state over the period 1993–2015. Principal findings of this first CMEMS OSR show a significant increase in global and regional sea levels, thermosteric expansion, ocean heat content, sea surface temperature and Antarctic sea ice extent and conversely a decrease in Arctic sea ice extent during the 1993–2015 period. During the year 2015 exceptionally strong large-scale changes were monitored such as, for example, a strong El Niño Southern Oscillation, a high frequency of extreme storms and sea level events in specific regions in addition to areas of high sea level and harmful algae blooms. At the same time, some areas in the Arctic Ocean experienced exceptionally low sea ice extent and temperatures below average were observed in the North Atlantic Ocean.
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.