1. COMBINED USE OF MULTIMODAL SIMILARITY MEASURES FOR VISUAL TO RADAR IMAGE REGISTRATION
- Author
-
Uss, M. L., Vozel, B., Lukin, V. V., Chehdi, K., Institut d'Électronique et des Technologies du numéRique (IETR), Université de Nantes (UN)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), Université de Nantes (UN)-Université de Rennes 1 (UR1), Université de Rennes (UNIV-RENNES)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Université de Rennes (UNIV-RENNES)-Institut National des Sciences Appliquées (INSA)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS), and Nantes Université (NU)-Université de Rennes 1 (UR1)
- Subjects
remote sensing ,image registration ,[SPI]Engineering Sciences [physics] ,visual-to-radar ,SVM ,combined similarity measure ,multimodal similarity measure - Abstract
International audience; This paper deals with the problem of measuring similarity between visual and radar remote sensing images. It is proposed to combine the benefits of a finite set of representative Similarity Measures (SM) to obtain a combined SM with improved performance in terms of usual assessment criteria (ROC, AUC and LR+). This combined SM relies on a binary linear support vector machines (SVM) classifier trained using real visual-to-radar image pairs RS images. The best combination of SMs among those considered in the finite set is found to be SIFT-OCT, MIND and logLR SMs. It reaches a value of AUC criterion about 0.05 higher than that obtained by the best individual SM. This obtained gain is mainly attributed to the complementary properties of structural (SIFT-OCT, MIND) and area-based (logLR) SMs.
- Published
- 2018