15 results on '"Trebuchet, Philippe"'
Search Results
2. Threshold signature for distributed time stamping scheme
- Author
-
Bonnecaze, Alexis and Trebuchet, Philippe
- Published
- 2007
- Full Text
- View/download PDF
3. Anion-exchange displacement centrifugal partition chromatography
- Author
-
Maciuk, Alexandre, Renault, Jean-Hugues, Margraff, Rodolphe, Trebuchet, Philippe, Zeches-Hanrot, Monique, and Nuzillard, Jean-Marc
- Subjects
Chromatography -- Methods ,Ion exchange ,Chemistry - Abstract
Ion-exchange displacement chromatography has been adapted to centrifugal partition chromatography. The use of an ionic liquid, benzalkonium chloride, as a strong anion-exchanger has proven to be efficient for the preparative separation of phenolic acid regioisomers. Multigram quantities of a mixture of three hydroxycinnamic acid isomers were separated using iodide as a displacer. The displacement process was characterized by a trapezoidal profile of analyte concentration in the eluate with narrow transition zones. By taking advantage of the partition rules involved in support-free liquid-liquid chromatography, a numerical separation model is proposed as a tool for preliminary process validation and further optimization.
- Published
- 2004
4. Circular Cylinders through Four or Five Points in Space
- Author
-
Devillers, Olivier, Mourrain, Bernard, Preparata, Franco P., and Trebuchet, Philippe
- Published
- 2002
- Full Text
- View/download PDF
5. WooKey: designing a trusted and efficient USB device.
- Author
-
Benadjila, Ryad, Michelizza, Arnauld, Renard, Mathieu, Thierry, Philippe, and Trebuchet, Philippe
- Published
- 2019
- Full Text
- View/download PDF
6. Unconstraint global polynomial optimization via Gradient Ideal
- Author
-
Bucero, Marta Abril, Mourrain, Bernard, Trebuchet, Philippe, Geometry, algebra, algorithms (GALAAD), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Algorithmes, Programmes et Résolution (APR), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
Mathematics - Algebraic Geometry ,SDP ,polynomial ,moment matrices ,FOS: Mathematics ,[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG] ,border basis ,Algebraic Geometry (math.AG) ,optimization - Abstract
In this paper, we describe a new method to compute the minimum of a real polynomial function and the ideal defining the points which minimize this polynomial function, assuming that the minimizer ideal is zero-dimensional. Our method is a generalization of Lasserre relaxation method and stops in a finite number of steps. The proposed algorithm combines Border Basis, Moment Matrices and Semidefinite Programming. In the case where the minimum is reached at a finite number of points, it provides a border basis of the minimizer ideal., Comment: arXiv admin note: text overlap with arXiv:1112.3197
- Published
- 2013
7. Mathemagix
- Author
-
van Der Hoeven, Joris, Lecerf, Grégoire, Mourrain, Bernard, Trebuchet, Philippe, Berthomieu, Jérémy, Diatta, Daouda Niang, Mantzaflaris, Angelos, Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX), École polytechnique (X)-Centre National de la Recherche Scientifique (CNRS), Geometry, algebra, algorithms (GALAAD), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Algorithmes, Programmes et Résolution (APR), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), African Institute for Mathematical Sciences (AIMS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA), Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
ComputingMilieux_MISCELLANEOUS ,[INFO.INFO-MS]Computer Science [cs]/Mathematical Software [cs.MS] - Abstract
International audience
- Published
- 2012
- Full Text
- View/download PDF
8. Strong bi-homogeneous B\'{e}zout theorem and its use in effective real algebraic geometry
- Author
-
Din, Mohab Safey El and Trebuchet, Philippe
- Subjects
Computer Science - Symbolic Computation - Abstract
Let f1, ..., fs be a polynomial family in Q[X1,..., Xn] (with s less than n) of degree bounded by D. Suppose that f1, ..., fs generates a radical ideal, and defines a smooth algebraic variety V. Consider a projection P. We prove that the degree of the critical locus of P restricted to V is bounded by D^s(D-1)^(n-s) times binomial of n and n-s. This result is obtained in two steps. First the critical points of P restricted to V are characterized as projections of the solutions of Lagrange's system for which a bi-homogeneous structure is exhibited. Secondly we prove a bi-homogeneous B\'ezout Theorem, which bounds the sum of the degrees of the equidimensional components of the radical of an ideal generated by a bi-homogeneous polynomial family. This result is improved when f1,..., fs is a regular sequence. Moreover, we use Lagrange's system to design an algorithm computing at least one point in each connected component of a smooth real algebraic set. This algorithm generalizes, to the non equidimensional case, the one of Safey El Din and Schost. The evaluation of the output size of this algorithm gives new upper bounds on the first Betti number of a smooth real algebraic set. Finally, we estimate its arithmetic complexity and prove that in the worst cases it is polynomial in n, s, D^s(D-1)^(n-s) and the binomial of n and n-s, and the complexity of evaluation of f1,..., fs.
- Published
- 2006
9. Strong bi-homogeneous Bézout theorem and its use in effective real algebraic geometry
- Author
-
Safey El Din, Mohab, Trebuchet, Philippe, Systèmes Polynomiaux, Implantation, Résolution Algébrique (SPIRAL), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and INRIA
- Subjects
[INFO.INFO-SC]Computer Science [cs]/Symbolic Computation [cs.SC] ,Bihomogeneous Bezout Bound ,Real Algebraic Geometry ,ACM: F.: Theory of Computation/F.2: ANALYSIS OF ALGORITHMS AND PROBLEM COMPLEXITY/F.2.2: Nonnumerical Algorithms and Problems/F.2.2.2: Geometrical problems and computations ,ACM: G.: Mathematics of Computing - Abstract
Let f1, ..., fs be a polynomial family in Q[X1,..., Xn] (with s less than n) of degree bounded by D. Suppose that f1, ..., fs generates a radical ideal, and defines a smooth algebraic variety V. Consider a projection P. We prove that the degree of the critical locus of P restricted to V is bounded by D^s(D-1)^(n-s) times binomial of n and n-s. This result is obtained in two steps. First the critical points of P restricted to V are characterized as projections of the solutions of Lagrange's system for which a bi-homogeneous structure is exhibited. Secondly we prove a bi-homogeneous Bézout Theorem, which bounds the sum of the degrees of the equidimensional components of the radical of an ideal generated by a bi-homogeneous polynomial family. This result is improved when f1,..., fs is a regular sequence. Moreover, we use Lagrange's system to design an algorithm computing at least one point in each connected component of a smooth real algebraic set. This algorithm generalizes, to the non equidimensional case, the one of Safey El Din and Schost. The evaluation of the output size of this algorithm gives new upper bounds on the first Betti number of a smooth real algebraic set. Finally, we estimate its arithmetic complexity and prove that in the worst cases it is polynomial in n, s, D^s(D-1)^(n-s) and the binomial of n and n-s, and the complexity of evaluation of f1,..., fs.
- Published
- 2006
10. Strong Bi-homogeneous Bézout's Theorem and degree bounds for algebraic optimization
- Author
-
Safey El Din, Mohab, Trebuchet, Philippe, Solving problems through algebraic computation and efficient software (SPACES), INRIA Lorraine, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA), Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS), Systèmes Polynomiaux, Implantation, Résolution Algébrique (SPIRAL), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), INRIA, Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP), and Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
REAL SOLUTIONS ,Mathematics::Commutative Algebra ,POLYNOMIAL SYSTEMS ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,Computer Science::Symbolic Computation - Abstract
Let $(f_1, \ldots, f_s)$ be a polynomial family in $\Q[X_1, \ldots, X_n]$ (with $s\leq n-1$) of degree bounded by $D$, generating a radical ideal, and defining a smooth algebraic variety $\mathcal{V}\subset\C Consider a {\em generic} projection $\pi:\Cightarrow\Cts restriction to $\mathcal{V}$ and its critical locus which is supposed to be zero-dimensional. We state that the number of critical points of $\pi$ restricted to $\mathcal{V}$ is bounded by $D^s(D-1)^{n-s}{{n}\choose{n-s}}$. This result is obtained in two steps. First the critical points of $\pi$ restricted to $\mathcal{V}$ are characterized as projections of the solutions of the Lagrange system for which a bi-homogeneous structure is exhibited. Secondly we apply a bi-homogeneous Bézout Theorem, for which we give a proof and which bounds the sum of the degrees of the isolated primary components of an ideal generated by a bi-homogeneous family for which we give a proof. This result is improved in the case where $(f_1, \ldots, f_s)$ is a regular sequence. Moreover, we use Lagrange's system to generalize the algorithm due to Safey El Din and Schost for computing at least one point in each connected component of a smooth real algebraic set to the non equidimensional case. Then, evaluating the size of the output of this algorithm gives new upper bounds on the first Betti number of a smooth real algebraic set.
- Published
- 2004
11. Circular Cylinders by Four or Five Points in Space
- Author
-
Devillers, Olivier, Mourrain, Bernard, Preparata, Franco, Trebuchet, Philippe, Geometric computing (GEOMETRICA), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Geometry, algebra, algorithms (GALAAD), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS), Department of Computer Science (Brown University), Brown University, Calcul formel (CALFOR), Laboratoire d'Informatique de Paris 6 (LIP6), Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Centre National de la Recherche Scientifique (CNRS), and Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (... - 2019) (UNS)
- Subjects
[INFO.INFO-CG]Computer Science [cs]/Computational Geometry [cs.CG] - Abstract
International audience; We are interested in computing effectively cylinders through 5 points, and in other problems involved in metrology. In particular, we consider the cylinders through 4 points with a fix radius and with extremal radius. For these different problems, we give bounds on the number of solutions and exemples show that these bounds are optimal. Finally, we describe two algebraic methods which can be used here to solve efficiently these problems and some experimentation results.
- Published
- 2002
- Full Text
- View/download PDF
12. On circular Cylinders by Four or Five Points in Space
- Author
-
Devillers, Olivier, Mourrain, Bernard, Preparata, Franco, Trebuchet, Philippe, Geometry, Algorithms and Robotics (PRISME), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), Algebraic Systems, Geometry and Applications (SAGA), and INRIA
- Subjects
RESOLUTION ,GEOMETRY ,[INFO.INFO-OH]Computer Science [cs]/Other [cs.OH] ,METROLOGY ,CYLINDER ,ALGEBRA - Abstract
We are interested in computing effectively cylinders through 5 points, and in other problems involved in metrology. In particular, we consider the cylinders through 4 points with a fix radius and with extremal radius. For these different problems, we give bounds on the number of solutions and exemples show that these bounds are optimal. Finally, we describe two algebraic methods which can be used here to solve efficiently these problems and some experimentation results.
- Published
- 2001
13. Generalized normal forms and polynomial system solving.
- Author
-
Mourrain, Bernard and Trebuchet, Philippe
- Published
- 2005
- Full Text
- View/download PDF
14. Solving projective complete intersection faster.
- Author
-
Mourrain, Bernard and Trebuchet, Philippe
- Published
- 2000
- Full Text
- View/download PDF
15. Analytical Blind Channel Identification.
- Author
-
Grellier, Ollivier, Comon, Piere, Mourrain, Bernard, and Trebuchet, Philippe
- Subjects
ALGORITHMS ,POLYNOMIALS - Abstract
Presents a novel analytical blind single-input single-output identification algorithm. Introduction of the assumptions made on the input and the related second-order properties; Description of the principles of the novel procedure used to solve polynomial systems; Estimation of the channel.
- Published
- 2002
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.