4 results on '"Thuriot-Roukos, Joelle"'
Search Results
2. Versatility of Supported Gold Nanoparticles on Hydrotalcites used for Oxidation and Reduction Reactions
- Author
-
Drault, Fabien, Snoussi, Youssef, Ferraz, Camila, Thuriot-Roukos, Joelle, Heyte, Svetlana, Junior, Ivaldo, Marinova, Maya, Paul, Sébastien, Wojcieszak, Robert, Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Universidade Federal do Rio de Janeiro (UFRJ), Institut Michel Eugène Chevreul - FR 2638 (IMEC), and Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
catalysis ,oxidation ,CO 2 ,Gold nanoparticles ,reduction ,furfural ,[CHIM.CATA]Chemical Sciences/Catalysis - Abstract
Regardless of their size, supported gold nanoparticles are largely used for liquid-phase oxidation reactions. Small gold nanoparticles exhibit good performance during the reduction of organic compounds. The direct reduction of carboxylic acid to aldehyde is a famous and familiar reaction in the field of organic chemistry and is considered as one of the fundamental chemical transformations. Herein, we present Au/hydrotalcite, Au/MgO, and Au/Al2O3 systems as heterogeneous versatile catalysts to realize the oxidation of furfural (FF) to furoic acid (FA) and realize the reduction of FA to FF. Experiments showed that in standard aqueous conditions under air, FF can be easily oxidized to FA. When DMSO was used as a solvent to conduct the experiments under an atmosphere of CO2, FA was reduced to FF. The Au/HT series of catalysts was found to be active in both transformations, pointing out the versatility of the gold-based catalysts. The activity significantly depends on the acid-base properties of the catalyst.
- Published
- 2022
3. Ru(III) single site solid micellar catalyst for selective aqueous phase hydrogenation of carbonyl groups in biomass-derived compounds
- Author
-
Mark Saeys, Qiyan Wang, Walid Baaziz, Thuriot-Roukos Joelle, Olga V. Safonova, Sara Santos, Svetlana Heyte, Vitaly V. Ordomsky, Ovidiu Ersen, César A. Urbina-Blanco, Maya Marinova, Wen-Juan Zhou, Yong Yang, Eco-Efficient Products & Processes Laboratory (E2P2L), RHODIA-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Huazhong Agricultural University [Wuhan] (HZAU), Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Unité de Catalyse et Chimie du Solide - UMR 8181 (UCCS), Université d'Artois (UA)-Centrale Lille-Institut de Chimie du CNRS (INC)-Université de Lille-Centre National de la Recherche Scientifique (CNRS), Paul Scherrer Institute (PSI), Universiteit Gent = Ghent University (UGENT), and ANR-16-CE06-0013,NANO4FuT,Synthèse des carburants alternatifs et des molécules plateforme sur nanoréacteurs(2016)
- Subjects
Chemistry ,Hydride ,Process Chemistry and Technology ,Inorganic chemistry ,Aqueous two-phase system ,Heterolysis ,Catalysis ,Dissociation (chemistry) ,Metal ,visual_art ,visual_art.visual_art_medium ,[CHIM]Chemical Sciences ,Leaching (metallurgy) ,Selectivity ,General Environmental Science - Abstract
Catalytic processes in water have a lower environmental impact, cost, and toxicity than in organic solvents. Considering the high content of water in biomass, it would be natural to use aqueous phase catalytic technology for the production of valuable products. However, in the aqueous phase, most metal-based catalysts suffer from low activity, low selectivity and deactivation due to metal oxidation and leaching. In this paper, we propose a solid micellar Ru catalyst (Ru(III)@MCM) based on single-site Ru(III) species stabilized by cetyltrimethylammonium (CTA+) surfactant and immobilized in the walls of MCM-41 for the selective aqueous phase hydrogenation of carbonyl groups. This catalyst demonstrates exceptional selectivity, activity, and stability in comparison with conventional metallic catalysts. DFT modeling suggests that the reaction proceeds via heterolytic dissociation of hydrogen, forming a Ru-Hydride species, and subsequent hydride transfer to the carbonyl group. Water plays a key role in avoiding product inhibition.
- Published
- 2022
4. Performance of Cu/ZnO Nanosheets on Electrospun Al 2 O 3 Nanofibers in CO 2 Catalytic Hydrogenation to Methanol and Dimethyl Ether.
- Author
-
Maor, Itzhak I., Heyte, Svetlana, Elishav, Oren, Mann-Lahav, Meirav, Thuriot-Roukos, Joelle, Paul, Sébastien, and Grader, Gideon S.
- Subjects
METHYL ether ,ALUMINUM oxide ,COPPER ,CATALYTIC hydrogenation ,CARBON dioxide ,NANOFIBERS - Abstract
The synthesis of methanol and dimethyl ether (DME) from carbon dioxide (CO
2 ) and green hydrogen (H2 ) offers a sustainable pathway to convert CO2 emissions into value-added products. This heterogeneous catalytic reaction often uses copper (Cu) catalysts due to their low cost compared with their noble metal analogs. Nevertheless, improving the activity and selectivity of these Cu catalysts for these products is highly desirable. In the present study, a new architecture of Cu- and Cu/Zn-based catalysts supported on electrospun alumina nanofibers were synthesized. The catalysts were tested under various reaction conditions using high-throughput equipment to highlight the role of the hierarchical fibrous structure on the reaction activity and selectivity. The Cu or Cu/ZnO formed a unique structure of nanosheets, covering the alumina fiber surface. This exceptional morphology provides a large surface area, up to ~300 m2 /g, accessible for reaction. Maximal production of methanol (~1106 gmethanol KgCu −1 ∙h−1 ) and DME (760 gDME KgCu −1 ∙h−1 ) were obtained for catalysts containing 7% wt. Cu/Zn with a weight ratio of 2.3 Zn to Cu (at 300 °C, 50 bar). The promising results in CO2 hydrogenation to methanol and DME obtained here point out the significant advantage of nanofiber-based catalysts in heterogeneous catalysis. [ABSTRACT FROM AUTHOR]- Published
- 2023
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.