1. Detecting heterogeneous risk attitudes with mixed gambles
- Author
-
Luís Santos-Pinto, Adrian Bruhin, José Mata, and Thomas B. Astebro
- Subjects
Mathematical optimization ,Finite mixture ,Computer science ,General Social Sciences ,General Decision Sciences ,Field (computer science) ,Computer Science Applications ,Task (project management) ,Arts and Humanities (miscellaneous) ,Simple (abstract algebra) ,Loss aversion ,Developmental and Educational Psychology ,General Economics, Econometrics and Finance ,Applied Psychology ,Expected utility hypothesis - Abstract
We propose a task for eliciting attitudes toward risk that is close to real-world risky decisions which typically involve gains and losses. The task consists of accepting or rejecting gambles that provide a gain with probability $$p$$ and a loss with probability $$1-p$$ . We employ finite mixture models to uncover heterogeneity in risk preferences and find that (i) behavior is heterogeneous, with one half of the subjects behaving as expected utility maximizers, (ii) for the others, reference-dependent models perform better than those where subjects derive utility from final outcomes, (iii) models with sign-dependent decision weights perform better than those without, and (iv) there is no evidence for loss aversion. The procedure is sufficiently simple so that it can be easily used in field or lab experiments where risk elicitation is not the main experiment.
- Published
- 2021