1. Understanding the Inherent Properties of Vapor Phase Poly (3,4 – Ethylenedioxythiophene) Deposited Stretchable Conducting Films.
- Author
-
Sethumadhavan, Vithyasaahar, Switalska, Eliza, Shahbazi, Mahboobeh, Li, Yong, Zuber, Kamil, Wang, Tony, Alarco, Jose, Evans, Drew R., and Sonar, Prashant
- Subjects
CHARGE carrier mobility ,SUBSTRATES (Materials science) ,POLYBUTENES ,ELECTRIC conductivity ,VAPORS ,WEARABLE technology - Abstract
Stretchable conducting films are a prime necessity for future stretchable and wearable electronics. In this work, highly conducting poly(3,4 ethylenedioxythiophene):Tosylate (PEDOT:Tos) films are deposited on extremely stretchable styrene‐ethylene‐butylene‐styrene (SEBS) substrates via vapor phase polymerization (VPP) and their inherent properties are systematically studied. The charge transport and electrical properties of VPP PEDOT:Tos stretchable films are measured from room temperature down to the low temperature of 5 K. Interestingly, the mechanical properties of the stretchable substrate lead to buckling of the PEDOT:Tos that affect the electrical conductivity but not the charge carrier mobility, optical, and structural properties. The VPP PEDOT:Tos on the stretchable SEBS substrate show a semiconducting behavior as electrical resistance is enhanced upon cooling from room temperature to 5 K. Such kind of stretchable conducting films can be used for stretchable transistors, wearable sensing, energy storage, and electrochromic applications. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF