74 results on '"Strintzi, D"'
Search Results
2. Overview of the JET results with the ITER-like wall
- Author
-
Romanelli, F., Abel, I., Afanesyev, V., Aftanas, M., Agarici, G., Aggarwal, K. M., Aho-Mantila, L., Ahonen, E., Aints, M., Airila, M., Akers, R., Alarcon, Th., Albanese, R., Alexeev, A., Alfier, A., Allan, P., Almaviva, S., Alonso, A., Alper, B., Altmann, H., Alves, D., Ambrosino, G., Amosov, V., Andersson, F., Andersson Sundén, E., Andreev, V., Andrew, Y., Angelone, M., Anghel, M., Anghel, A., Angioni, C., Apruzzese, G., Arcis, N., Arena, P., Argouarch, A., Ariola, M., Armitano, A., Armstrong, R., Arnoux, G., Arshad, S., Artaserse, G., Artaud, J. F., Ash, A., Asp, E., Asunta, O., Atanasiu, C. V., Atkins, G., Avotina, L., Axton, M. D., Ayres, C., Baciero, A., Bailescu, V., Baiocchi, B., Baker, R. A., Balboa, I., Balden, M., Balorin, C., Balshaw, N., Banks, J. W., Baranov, Y. F., Barbier, D., Barlow, I. L., Barnard, M. A., Barnsley, R., Barrena, L., Barrera, L., Baruzzo, M., Basiuk, V., Bateman, G., Batistoni, P., Baumgarten, N., Baylor, L., Bazylev, B., Beaumont, P. S., Beausang, K., Bã©coulet, M., Bekris, N., Beldishevski, M., Bell, A. C., Belli, F., Bellinger, M., Bellizio, T., Belo, P. S. A., Belonohy, Ã., Bennett, P. E., Benterman, N. A., Berger-By, G., Bergsã¥ker, H., Berk, H., Bernardo, J., Bernert, M., Bertrand, B., Beurskens, M. N. A., Bieg, B., Bienkowska, B., Biewer, T. M., Bigi, M., Bãlkovã¡, P., Bin, W., Bird, J., Bizarro, J., Bjã¶rkas, C., Blackman, T. R., Blanchard, P., Blanco, E., Blum, J., Bobkov, V., Boboc, A., Boilson, D., Bolshakova, I., Bolzonella, T., Boncagni, L., Bonheure, G., Bonnin, X., Borba, D., Borthwick, A., Botrugno, A., Boulbe, C., Bouquey, F., Bourdelle, C., Bovert, K. v., Bowden, M., Boyce, T., Boyer, H. J., Bozhenkov, A., Brade, R. J., Bradshaw, J. M. A., Braet, J., Braic, V., Braithwaite, G. C., Brault, C., Breizman, B., Bremond, S., Brennan, P. D., Brett, A., Breue, J., Brezinsek, S., Bright, M. D. J., Briscoe, F., Brix, M., Brombin, M., Brown, B. C., Brown, D. P. D., Brzozowski, J., Bucalossi, J., Buckley, M. A., Budd, T., Budny, R. V., Bunting, P., Buratti, P., Burcea, G., Burckhart, A., Butcher, P. R., Buttery, R. J., Cahyna, P., Calabrã², G., Callaghan, C. P., Caminade, J. P., Camp, P. G., Campling, D. C., Caniello, R., Canik, J., Cannas, B., Capel, A. J., Carannante, G., Card, P. J., Cardinali, A., Carlstrom, T., Carman, P., Carralero, D., Carraro, L., Carter, T., Carvalho, B. B., Carvalho, I., Carvalho, P., Casati, A., Castaldo, C., Caughman, J., Cavazzana, R., Cavinato, M., Cecconello, M., Cecil, E., Cecil, F. E., Cenedese, A., Centioli, C., Cesario, R., Challis, C. D., Chandler, M., Chang, C., Chankin, A., Chapman, I. T., Chektybayev, B., Chernyshova, M., Child, D. J., Chiru, P., Chitarin, G., Chugonov, I., Chugunov, I., Ciric, D., Clairet, F., Clarke, R. H., Clay, R., Clever, M., Coad, J. P., Coates, P. A., Cocilovo, V., Coda, S., Coelho, R., Coenen, J., Coffey, I., Colas, L., Cole, M., Collins, S., Combs, S., Compan, J., Conboy, J. E., Conroy, S., Cook, N., Cook, S. P., Coombs, D., Cooper, S. R., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Counsell, G. F., Courtois, X., Cox, M., Craciunescu, T., Cramp, S., Crisanti, F., Croci, G., Croft, O., Crombe, K., Crombã©, K., Crowley, B. J., Cruz, N., Cseh, G., Cupido, L., Curuia, M., Cusack, R. A., Czarnecka, A., Czarski, T., Dalley, S., Daly, E. T., Dalziel, A., Daniel, R., Darrow, D., David, O., Davies, N., Davies, W., Davis, J. J., Day, I. E., Day, C., De Angelis, R., De Arcas, G., De Baar, M. R., De La Cal, E., De La Luna, E., De Pablos, J. L., De Tommasi, G., De Vries, P. C., De-Angelis, R., Degli Agostini, F., Delabie, E., Del-Castillo-Negrete, D., Delpech, L., Denisov, G., Denyer, A. J., Denyer, R. F., Devaux, S., Devynck, P., Di Matteo, L., Di Pace, L., Dirken, P. J., Dittmar, T., Dodt, D., Dnestrovskiy, A., Doerner, R., Doldatov, S., Dominiczak, K., Dooley, P., Dorling, S. E., Douai, D., Down, A. P., Doyle, P. T., Drake, J. R., Dreischuh, T., Drozdov, V., Dumortier, P., Dunai, D., Duran, I., Durodiã©, F., Dutta, P., Dux, R., Dylst, K., Eaton, R., Edlington, T., Edwards, A. M., Edwards, D. T., Edwards, P. K., Eich, Th., Ekedahl, A., Elevant, T., Ellingboe, B., Elsmore, C. G., Emmoth, B., Erdei, G., Ericsson, G., Eriksson, L. G., Eriksson, A., Esposito, B., Esser, H. G., Estrada, T., Evangelidis, E. A., Evans, G. E., Ewart, G. D., Ewers, D. T., Falchetto, G., Falie, D., Fanthome, J. G. A., Farthing, J. W., Fasoli, A., Faugeras, B., Fedorczak, N., Felton, R. C., Fenzi, C., Fernades, A., Fernandes, H., Ferreira, J. A., Ferreira, J., Ferron, J., Fessey, J. A., Figini, L., Figueiredo, J., Figueiredo, A., Finburg, P., Finken, K. H., Fischer, U., Fitzgerald, N., Flanagan, J., Fleming, C., Forbes, A. D., Ford, O., Formisano, A., Fraboulet, D., Francis, R. J., Frassinetti, L., Fresa, R., Friconneau, J. P., Frigione, D., Fullard, K., Fundamenski, W., Furno Palumbo, M., Gã¡l, K., Gao, X., Garavaglia, S., Garbet, X., Garcia, J., Garcia Munoz, M., Gardner, W., Garibaldi, P., Garnier, D., Garzotti, L., Gatu Johnson, M., Gaudio, P., Gauthier, E., Gaze, J. W., Gear, D. F., Gedney, J., Gee, S. J., Gelfusa, M., Genangeli, E., Gerasimov, S., Geraud, A., Gerbaud, T., Gherendi, M., Ghirelli, N., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Gil, C., Gilligan, S. J., Gimblett, C. G., Gin, D., Giovannozzi, E., Giroud, C., Giruzzi, G., Godwin, J., Goff, J. K., Gohil, P., Gã³jska, A., Goloborod'Ko, V., Gonã§alves, B., Goniche, M., Gonzales, S., González De Vicente, S. M., Goodyear, A., Gorelenkov, N., Gorini, G., Goulding, R., Graham, B., Graham, D., Graham, M. E., Graves, J., Green, N. R., Greuner, H., Grigore, E., Griph, F. S., Grisolia, C., Gros, G., Groth, M., Grã¼nhagen, S., Gryaznevich, M. P., Guirlet, R., Gunn, J., Gupta, A., Guzdar, P., Hackett, L. J., Hacquin, S., Haist, B., Hakola, A., Halitovs, M., Hall, S. J., Hallworth Cook, S. P., Hamilton, D. T., Han, H., Handley, R. C., Harding, S., Harling, J. D. W., Harting, D., Harvey, M. J., Haupt, T. D. V., Hawkes, N. C., Hawryluk, R., Hay, J. H., Hayashi, N., Haydon, P. W., Hayward, I. R., Hazel, S., Heesterman, P. J. L., Heidbrink, W., Heinola, K., Hellesen, C., Hellsten, T., Hemming, O. N., Hender, T. C., Henderson, M., Hennion, V., Hidalgo, C., Higashijima, S., Hill, J. W., Hill, M., Hill, K., Hillairet, J., Hillis, D., Hirai, T., Hitchin, M., Hobirk, J., Hogan, C., Hogben, C. H. A., Hogeweij, G. M. D., Hollingham, I. C., Holyaka, R., Homfray, D. A., Honeyands, G., Hong, S. H., Hong, J. H., Horã¡cek, J., Horn, B. A., Horton, A. R., Horton, L. D., Hotchin, S. P., Hough, M. R., Houlberg, W., Howell, D. F., Huber, A., Huddleston, T. M., Hudson, Z., Hughes, M., Hã¼hnerbein, M., Hume, C. C., Hunt, A. J., Hunter, C. L., Hutchinson, T. S., Huygen, S., Huysmans, G., Ide, S., Illescas, C., Imbeaux, F., Ivanova, D., Ivanova-Stanik, I., Ivings, E., Jachmich, S., Jackson, G., Jacquet, P., Jakubowska, K., James, P. V., Janky, F., Jã¤rvinen, A., Jednorog, S., Jenkins, I., Jennison, M. A. C., Jeskins, C., Jin Kwon, O., Joffrin, E., Johnson, M. F., Johnson, R., Johnson, T., Jolovic, D., Jonauskas, V., Jones, E. M., Jones, G., Jones, H. D., Jones, T. T. C., Jouvet, M., Jupã©n, C., Kachtchouk, I., Kaczmarczyk, J., Kallenbach, A., Kã¤llne, J., Kalupin, D., Kã¡lvin, S., Kamelander, G., Kamendje, R., Kamiya, K., Kappatou, A., Kasparek, W., Kasprowicz, G., Katramados, I., Kaveney, G., Kaye, A. S., Kear, M. J., Keeling, D. L., Kelliher, D., Kempenaars, M., Khilar, P., Khilkevich, E., Kidd, N. G., Kiisk, M., Kim, K. M., Kim, H., King, R. F., Kinna, D. J., Kiptily, V., Kirnev, G., Kirneva, N., Kirov, K., Kirschner, A., Kisielius, R., Kislov, D., Kiss, G., Kizane, G., Klein, A., Klepper, C., Klimov, N., Klix, A., Knaup, M., Kneuper, K., Kneupner, H., Knight, P. J., Knipe, S. J., Kocan, M., Koch, R., Kã¶chl, F., Kocsis, G., Koivuranta, S., Koppitz, T., Korotkov, A., Koskela, T., Koslowski, H. R., Kotov, V., Kovari, M. D., Kramer, G., Krasilnikov, A., Krasilnikov, V., Kraus, S., Kreter, A., Krieger, K., Kritz, A., Krivchenkov, Y., Kruezi, U., Krylov, S., Ksiazek, I., Kuhn, S., Kã¼hnlein, W., Kukushkin, A., Kundu, A., Kurki-Suonio, T., Kurowski, A., Kuteev, B., Kuyanov, A., Kyrytsya, V., La Haye, R., Laan, M., Labate, C., Lachichi, A., Laguardia, L., Lam, N., Lang, P., Large, M. T., Lasa, A., Lassiwe, I., Last, J. R., Lawson, K. D., Laxã¥back, M., Layne, R. A., Le Guern, F., Leblanc, B., Lee, S., Lee, J., Leggate, H. J., Lehnen, M., Leigheb, M., Lengar, I., Lennholm, M., Lerche, E., Lescure, C. N., Li, Y., Li Puma, A., Liang, Y., Likonen, J., Lin, Y., Lindholm, V., Linke, J., Linstead, S. A., Lipshultz, B., Litaudon, X., Litvak, A. G., Liu, Y., Loarer, T., Loarte, A., Lobel, R. C., Lomas, P. J., Long, F. D., Lã¶nnroth, J., Looker, D. J., Lopez, J., Lotte, Ph., Louche, F., Loughlin, M. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukanitsa, A., Lukin, A., Lungu, A. M., Lungu, C. P., Lyssoivan, A., Macheta, P., Mackenzie, A. S., Macrae, M., Maddaluno, G., Maddison, G. P., Madsen, J., Magesh, B., Maget, P., Maggi, C. F., Maier, H., Mailloux, J., Makkonen, T., Makowski, M., Malaquias, A., Manning, C. J., Mansfield, M., Manso, M. E., Mantica, P., Marcenko, N., Marchitti, M. A., Mardenfeld, M., Marechal, J. L., Marinelli, M., Marinucci, M., Marocco, D., Marren, C. A., Marsen, S., Martin, D., Martin, D. L., Martin, G., Martin, Y., MartÃn-SolÃs, J. R., Masaki, K., Masiello, A., Maszl, C., Matejcik, S., Matilal, A., Mattei, M., Matthews, G. F., Mattoo, S., Matveev, D., Maviglia, F., May, C. R., Mayer, M., Mayoral, M. L., Mazon, D., Mazzotta, C., Mazzucato, E., Mccarthy, P., Mcclements, K. G., Mccormick, K., Mccullen, P. A., Mccune, D., Mcdonald, D. C., Mcgregor, R., Mckivitt, J. P., Meakins, A., Medina, F., Meigs, A. G., Menard, M., Meneses, L., Menmuir, S., Merrigan, I. R., Mertens, Ph., Messiaen, A., Mã©szã¡ros, B., Meyer, H., Miano, G., Michling, R., Miele, M., Miettunen, J., Migliucci, P., Miller, A. G., Mills, S. F., Milnes, J. J., Min Kim, K., Mindham, T., Miorin, E., Mirizzi, F., Mirones, E., Mironov, M., Mitteau, R., Mlynã¡r, J., Mollard, P., Monakhov, I., Monier-Garbet, P., Mooney, R., Moreau, D., Moreau, Ph., Moreira, L., Morgan, A., Morgan, P. D., Morlock, C., Morris, A. W., Mort, G. L., Murakami, M., Murari, A., Mustata, I., Nabais, F., Nakano, T., Nardon, E., Nash, G., Naulin, V., Nave, M. F. F., Nazikian, R., Nedzelski, I., Negus, C. R., Neilson, J. D., Nemtsev, G., Neto, A., Neu, R., Neubauer, O., Newbert, G. J., Newman, M., Nicholls, K. J., Nicolai, A., Nicolas, L., Nieckchen, P., Nielsen, A. H., Nielsen, S. K., Nielsen, P., Nielson, G., Nieto, J., Nightingale, M. P. S., Nishijima, D., Noble, C., Nocente, M., Nordman, H., Norman, M., Nowak, S., Nunes, I., Oberkofler, M., Odstrcil, M., O'Gorman, T., Ohsako, T., Okabayashi, M., Olariu, S., Oleynikov, A., O'Mullane, M., Ongena, J., Orsitto, F., Oswuigwe, O. I., Ottaviani, M., Oyama, N., Pacella, D., Paget, K., Pajuste, E., Palazzo, S., Palã©nic, J., Pamela, J., Pamela, S., Pangione, L., Panin, A., Panja, S., Pankin, A., Pantea, A., Parail, V., Paris, P., Parisot, Th., Park, M., Parkin, A., Parsloe, A., Parsons, B. T., Pasqualotto, R., Pastor, P., Paterson, R., Paul, M. K., Peach, D., Pearce, R. J. H., Pearson, B. J., Pearson, I. J., Pedrick, L. C., Pedrosa, M. A., Pegourie, B., Pereira, R., Pereslavtsev, P., Perevezentsev, A., Perez Von Thun, Ch., Pericoli-Ridolfini, V., Perona, A., Perrot, Y., Peruzzo, S., Peschanyy, S., Petravich, G., Petrizzi, L., Petrov, V., Petrzilka, V., Philipps, V., Piccolo, F., Pietropaolo, A., Pillon, M., Pinches, S. D., Pinna, T., Pintsuk, G., Piovesan, P., Pironti, A., Pisano, F., Pitts, R., Plaum, B., Plyusnin, V., Polasik, M., Poli, F. M., Pomaro, N., Pompilian, O., Poncet, L., Pool, P. J., Popovichev, S., Porcelli, F., Porfiri, M. T., Portafaix, C., Pospieszczyk, A., Possnert, G., Pozniak, K., Pradhan, S., Pragash, R., Prajapati, V., Prestopino, G., Prior, P., Prokopowicz, R., Puiatti, M. E., Purahoo, K., Pustovitov, V., Pã¼tterich, Th., Püttmann-Kneupner, D., Quercia, A., Rachlew, E., Rademaker, R., Rafiq, T., Rainford, M. S. J., Ramogida, G., Rapp, J., Rasmussen, J. J., Rathod, K., Rattã¡, G., Ravera, G., Refy, D., Reichle, R., Reinelt, M., Reiser, D., Reiss, R., Reiter, D., Rendell, D., Reux, C., Rewoldt, G., Ribeiro, T. T., Riccardo, V., Richards, D., Rigollet, F., Rimini, F. G., Rios, L., Riva, M., Roberts, J. E. C., Robins, R. J., Robinson, D. S., Robinson, S. A., Robson, D. W., Roche, H., Rã¶dig, M., Rodionov, N., Rohde, V., Rolfe, A., Romanelli, M., Romano, A., Romero, J., Ronchi, E., Rosanvallon, S., Roux, Ch., Rowe, S., Rubel, M., Rubinacci, G., Ruiz, M., Ruset, C., Russell, M., Ruth, A., Ryc, L., Rydzy, A., Rzadkiewicz, J., Saarelma, S., Sabathier, F., Sabot, R., Sadakov, S., Sadvakassova, A., Sadykov, A., Sagar, P., Saibene, G., Saille, A., Saint-Laurent, F., Salewski, M., Salmi, A., Salzedas, F., Samm, U., Sanchez, P., Sanders, S., Sanders, S. G., Sandford, G., Sandland, K., Sandquist, P., Sands, D. E. G., Santala, M. I. K., Santra, P., Sartori, F., Sartori, R., Sauter, O., Savelyev, A., Savtchkov, A., Scales, S. C., Scarabosio, A., Schaefer, N., Schmidt, V., Schmidt, A., Schmitz, O., Schmuck, S., Schneider, M., Scholz, M., Schã¶pf, K., Schweer, B., Schweinzer, J., Seki, M., Semeraro, L., Semerok, A., Sergienko, G., Sertoli, M., Shannon, M. M. J., Sharapov, S. E., Shaw, S. R., Shevelev, A., Sieglin, B., Sievering, R., Silva, C. A., Simmons, P. A., Simonetto, A., Simpson, D., Sipilã¤, S. K., Sips, A. C. C., Sirã©n, P., Sirinelli, A., Sjã¶strand, H., Skopintsev, D., Slabkowska, K., Smith, P. G., Snipes, J., Snoj, L., Snyder, S., Soare, S., Solano, E. R., Soleto, A., Solomon, W., Soltane, C., Sonato, P., Sopplesa, A., Sorrentino, A., Sousa, J., Sowden, C. B. C., Sozzi, C., Spã¤h, P., Spelzini, T., Spence, J., Spineanu, F., Spuig, P., Stagg, R. D., Stamp, M. F., Stancalie, V., Stangeby, P., Stankiewicz, R., Stan-Sion, C., Starkey, D. E., Stead, M. J., Stejner, M., Stephen, A. V., Stephen, M., Stevens, A. L., Stokes, R. B., Stork, D., Stoyanov, D., Strachan, J., Strand, P., Stransky, M., Strauss, D., Strintzi, D., Studholme, W., Su Na, Y., Subba, F., Summers, H. P., Sun, Y., Surdu-Bob, C., Surrey, E., Sutton, D. J., Svensson, J., Swain, D., Syme, B. D., Symonds, I. D., Szabolics, T., Szepesi, T., Szydlowski, A., Tabares, F., Takalo, V., Takenaga, H., Tala, T., Talbot, A. R., Taliercio, C., Tame, C., Tardocchi, M., Taroni, L., Telesca, G., Terra, A., Terrington, A. O., Testa, D., Theis, J. M., Thomas, J. D., Thomas, P. D., Thomas, P. R., Thompson, V. K., Thomser, C., Thyagaraja, A., Tigwell, P. A., Tiseanu, I., Tivey, R., Todd, J. M., Todd, T. N., Tokar, M. Z., Tosti, S., Trabuc, P., Travere, J. M., Trimble, P., Trkov, A., Trukhina, E., Tsalas, M., Tsitrone, E., Tskhakaya jun, D., Tudisco, O., Tugarinov, S., Turner, M. M., Tyrrell, S. G. J., Umeda, N., Unterberg, B., Urano, H., Urquhart, A. J., Uytdenhouwen, I., Vaccaro, A., Vadgama, A. P., Vagliasindi, G., Valcarcel, D., Valisa, M., Vallory, J., Valovic, M., Van Eester, D., Van Milligen, B., Van Rooij, G. J., Varandas, C. A. F., Vartanian, S., Vasava, K., Vdovin, V., Vega, J., Verdoolaege, G., Verger, J. M., Vermare, L., Verona, C., Versloot, Th., Vervier, M., Vicente, J., Villari, S., Villedieu, E., Villone, F., Vince, J. E., Vine, G. J., Vinyar, I., Viola, B., Vitale, E., Vitelli, R., Vitins, A., Vlad, M., Voitsekhovitch, I., Vrancken, M., Vulliez, K., Waldon, C. W. F., Walker, M., Walsh, M. J., Waterhouse, J., Watkins, M. L., Watson, M. J., Wauters, T., Way, M. W., Webb, C. R., Weiland, J., Weisen, H., Weiszflog, M., Wenninger, R., West, A. T., Weulersse, J. M., Wheatley, M. R., Whiteford, A. D., Whitehead, A. M., Whitehurst, A. G., Widdowson, A. M., Wiegmann, C., Wiesen, S., Wilson, A., Wilson, D., Wilson, D. J., Wilson, H. R., Wischmeier, M., Witts, D. M., Wolf, R. C., Wolowski, J., Woscov, P., Wright, J., G. S., Xu, Yavorskij, V., Yerashok, V., Yoo, M., Yorkshades, J., Young, C., Young, D., Young, I. D., Yuhong, X., Yun, S., Zabeo, L., Zabolotny, W., Zaccarian, L., Zagorski, R., Zaitsev, F. S., Zakharov, L., Zanino, R., Zaroschi, V., Zastrow, K. D., Zatz, I., Zefran, B., Zeidner, W., Zerbini, M., Zhang, T., Zhitlukin, A., Zhu, Y., Zimmermann, O., Zoita, V., Zoletnik, S., Zwingman, W., Romanelli, F, Abel, I, Afanesyev, V, Aftanas, M, Agarici, G, Aggarwal, K, Aho Mantila, L, Ahonen, E, Aints, M, Airila, M, Akers, R, Alarcon, T, Albanese, R, Alexeev, A, Alfier, A, Allan, P, Almaviva, S, Alonso, A, Alper, B, Altmann, H, Alves, D, Ambrosino, G, Amosov, V, Andersson, F, Sunden, E, Andreev, V, Andrew, Y, Angelone, M, Anghel, M, Anghel, A, Angioni, C, Apruzzese, G, Arcis, N, Arena, P, Argouarch, A, Ariola, M, Armitano, A, Arnoux, G, Arshad, S, Artaserse, G, Artaud, J, Ash, A, Asp, E, Asunta, O, Atanasiu, C, Atkins, G, Avotina, L, Axton, M, Ayres, C, Baciero, A, Bailescu, V, Baiocchi, B, Baker, R, Balboa, I, Balden, M, Balorin, C, Balshaw, N, Banks, J, Baranov, Y, Barbier, D, Barlow, I, Barnard, M, Barnsley, R, Barrena, L, Barrera, L, Baruzzo, M, Basiuk, V, Bateman, G, Batistoni, P, Baumgarten, N, Baylor, L, Bazylev, B, Beaumont, P, Beausang, K, Becoulet, M, Bekris, N, Beldishevski, M, Bell, A, Belli, F, Bellinger, M, Bellizio, T, Belo, P, Belonohy, E, Bennett, P, Benterman, N, Berger By, G, Bergsaker, H, Berk, H, Bernardo, J, Bernert, M, Bertrand, B, Beurskens, M, Bieg, B, Bienkowska, B, Biewer, T, Bigi, M, Bilkova, P, Bin, W, Bird, J, Bizarro, J, Bjorkas, C, Blackman, T, Blanchard, P, Blanco, E, Blum, J, Bobkov, V, Boboc, A, Boilson, D, Bolshakova, I, Bolzonella, T, Boncagni, L, Bonheure, G, Bonnin, X, Borba, D, Borthwick, A, Botrugno, A, Boulbe, C, Bouquey, F, Bourdelle, C, Von, B, Bowden, M, Boyce, T, Boyer, H, Bozhenkov, A, Brade, R, Bradshaw, J, Braet, J, Braic, V, Braithwaite, G, Brault, C, Breizman, B, Bremond, S, Brennan, P, Brett, A, Breue, J, Brezinsek, S, Bright, M, Briscoe, F, Brix, M, Brombin, M, Brown, B, Brown, D, Brzozowski, J, Bucalossi, J, Buckley, M, Budd, T, Budny, R, Bunting, P, Buratti, P, Burcea, G, Burckhart, A, Butcher, P, Buttery, R, Cahyna, P, Calabro, G, Callaghan, C, Caminade, J, Camp, P, Campling, D, Caniello, R, Canik, J, Cannas, B, Capel, A, Carannante, G, Card, P, Cardinali, A, Carlstrom, T, Carman, P, Carralero, D, Carraro, L, Carter, T, Carvalho, B, Carvalho, I, Carvalho, P, Casati, A, Castaldo, C, Caughman, J, Cavazzana, R, Cavinato, M, Cecconello, M, Cecil, E, Cecil, F, Cenedese, A, Centioli, C, Cesario, R, Challis, C, Chandler, M, Chang, C, Chankin, A, Chapman, I, Chektybayev, B, Chernyshova, M, Child, D, Chiru, P, Chitarin, G, Chugonov, I, Ciric, D, Clairet, F, Clarke, R, Clay, R, Clever, M, Coad, J, Coates, P, Cocilovo, V, Coda, S, Coelho, R, Coenen, J, Coffey, I, Colas, L, Cole, M, Collins, S, Combs, S, Compan, J, Conboy, J, Conroy, S, Cook, N, Cook, S, Coombs, D, Cooper, S, Corre, Y, Corrigan, G, Cortes, S, Coster, D, Counsell, G, Courtois, X, Cox, M, Craciunescu, T, Cramp, S, Crisanti, F, Croci, G, Croft, O, Crombe, K, Crowley, B, Cruz, N, Cseh, G, Cupido, L, Curuia, M, Cusack, R, Czarnecka, A, Czarski, T, Dalley, S, Daly, E, Dalziel, A, Daniel, R, Darrow, D, David, O, Davies, N, Davies, W, Davies, J, Day, I, Day, C, De, A, De, B, De, L, De, P, De, T, De, V, De Angelis, R, Degli, A, Delabie, E, del Castillo Negrete, D, Delpech, L, Denisov, G, Denyer, A, Denyer, R, Devaux, S, Devynck, P, Di, M, Di, P, Dirken, P, Dittmar, T, Dnestrovskiy, A, Dodt, D, Doerner, R, Doldatov, S, Dominiczak, K, Dooley, P, Dorling, S, Douai, D, Down, A, Doyle, P, Drake, J, Dreischuh, T, Drozdov, V, Dumortier, P, Dunai, D, Duran, I, Durodie, F, Dutta, P, Dux, R, Dylst, K, Eaton, R, Edlington, T, Edwards, A, Edwards, D, Edwards, P, Eich, T, Ekedahl, A, Elevant, T, Ellingboe, B, Elsmore, C, Emmoth, B, Erdei, G, Ericsson, G, Eriksson, L, Eriksson, A, Esposito, B, Esser, H, Estrada, T, Evangelidis, E, Evans, G, Ewart, G, Ewers, D, Falchetto, G, Falie, D, Fanthome, J, Farthing, J, Fasoli, A, Faugeras, B, Fedorczak, N, Felton, R, Fenzi, C, Fernades, A, Fernandes, H, Ferreira, J, Ferron, J, Fessey, J, Figini, L, Figueiredo, J, Figueiredo, A, Finburg, P, Finken, K, Fischer, U, Fitzgerald, N, Flanagan, J, Fleming, C, Forbes, A, Ford, O, Formisano, A, Fraboulet, D, Francis, R, Frassinetti, L, Fresa, R, Friconneau, J, Frigione, D, Fullard, K, Fundamenski, W, Palumbo, M, Gal, K, Gao, X, Garavaglia, S, Garbet, X, Garcia, J, Munoz, M, Gardner, W, Garibaldi, P, Garnier, D, Garzotti, L, Johnson, M, Gaudio, P, Gauthier, E, Gaze, J, Gear, D, Gedney, J, Gee, S, Gelfusa, M, Genangeli, E, Gerasimov, S, Geraud, A, Gerbaud, T, Gherendi, M, Ghirelli, N, Giacalone, J, Giacomelli, L, Gibson, C, Gil, C, Gilligan, S, Gimblett, C, Gin, D, Giovannozzi, E, Giroud, C, Giruzzi, G, Godwin, J, Goff, J, Gohil, P, Gojska, A, Goloborod'Ko, V, Goncalves, B, Goniche, M, Gonzales, S, Goodyear, A, Gorelenkov, N, Gorini, G, Goulding, R, Graham, B, Graham, D, Graham, M, Graves, J, Green, N, Greuner, H, Grigore, E, Griph, F, Grisolia, C, Gros, G, Groth, M, Grunhagen, S, Gryaznevich, M, Guirlet, R, Gunn, J, Gupta, A, Guzdar, P, Hackett, L, Hacquin, S, Haist, B, Hakola, A, Halitovs, M, Hall, S, Hamilton, D, Han, H, Handley, R, Harding, S, Harling, J, Harting, D, Harvey, M, Haupt, T, Hawkes, N, Hawryluk, R, Hay, J, Hayashi, N, Haydon, P, Hayward, I, Hazel, S, Heesterman, P, Heidbrink, W, Heinola, K, Hellesen, C, Hellsten, T, Hemming, O, Hender, T, Henderson, M, Hennion, V, Hidalgo, C, Higashijima, S, Hill, J, Hill, M, Hill, K, Hillairet, J, Hillis, D, Hirai, T, Hitchin, M, Hobirk, J, Hogan, C, Hogben, C, Hogeweij, G, Hollingham, I, Holyaka, R, Homfray, D, Honeyands, G, Hong, S, Hong, J, Horacek, J, Horn, B, Horton, A, Horton, L, Hotchin, S, Hough, M, Houlberg, W, Howell, D, Huber, A, Huddleston, T, Hudson, Z, Hughes, M, Huehnerbein, M, Hume, C, Hunt, A, Hunter, C, Hutchinson, T, Huygen, S, Huysmans, G, Ide, S, Illescas, C, Imbeaux, F, Ivanova, D, Ivanova Stanik, I, Ivings, E, Jachmich, S, Jackson, G, Jacquet, P, Jakubowska, K, James, P, Janky, F, Jaervinen, A, Jednorog, S, Jenkins, I, Jennison, M, Jeskins, C, Kwon, O, Joffrin, E, Johnson, R, Johnson, T, Jolovic, D, Jonauskas, V, Jones, E, Jones, G, Jones, H, Jones, T, Jouvet, M, Jupen, C, Kachtchouk, I, Kaczmarczyk, J, Kallenbach, A, Kaellne, J, Kalupin, D, Kalvin, S, Kamelander, G, Kamendje, R, Kamiya, K, Kappatou, A, Kasparek, W, Kasprowicz, G, Katramados, I, Kaveney, G, Kaye, A, Kear, M, Keeling, D, Kelliher, D, Kempenaars, M, Khilar, P, Khilkevich, E, Kidd, N, Kiisk, M, Kim, K, Kim, H, King, R, Kinna, D, Kiptily, V, Kirnev, G, Kirneva, N, Kirov, K, Kirschner, A, Kisielius, R, Kislov, D, Kiss, G, Kizane, G, Klein, A, Klepper, C, Klimov, N, Klix, A, Knaup, M, Kneuper, K, Kneupner, H, Knight, P, Knipe, S, Kocan, M, Koch, R, Kochl, F, Kocsis, G, Koivuranta, S, Koppitz, T, Korotkov, A, Koskela, T, Koslowski, H, Kotov, V, Kovari, M, Kramer, G, Krasilnikov, A, Krasilnikov, V, Kraus, S, Kreter, A, Krieger, K, Kritz, A, Krivchenkov, Y, Kruezi, U, Krylov, S, Ksiazek, I, Kuhn, S, Kuhnlein, W, Kukushkin, A, Kundu, A, Kurki Suonio, T, Kurowski, A, Kuteev, B, Kuyanov, A, Kyrytsya, V, La, H, Laan, M, Labate, C, Lachichi, A, Laguardia, L, Lam, N, Lang, P, Large, M, Lasa, A, Lassiwe, I, Last, J, Lawson, K, Laxaback, M, Layne, R, Le, G, Leblanc, B, Lee, S, Lee, J, Leggate, H, Lehnen, M, Leigheb, M, Lengar, I, Lennholm, M, Lerche, E, Lescure, C, Li, Y, Li, P, Liang, Y, Likonen, J, Lin, Y, Lindholm, V, Linke, J, Linstead, S, Lipshultz, B, Litaudon, X, Litvak, A, Liu, Y, Loarer, T, Loarte, A, Lobel, R, Lomas, P, Long, F, Lonnroth, J, Looker, D, Lopez, J, Lotte, P, Louche, F, Loughlin, M, Loving, A, Lowry, C, Luce, T, Lucock, R, Lukanitsa, A, Lukin, A, Lungu, A, Lungu, C, Lyssoivan, A, Macheta, P, Mackenzie, A, Macrae, M, Maddaluno, G, Maddison, G, Madsen, J, Magesh, B, Maget, P, Maggi, C, Maier, H, Mailloux, J, Makkonen, T, Makowski, M, Malaquias, A, Manning, C, Mansfield, M, Manso, M, Mantica, P, Marcenko, N, Marchitti, M, Mardenfeld, M, Marechal, J, Marinelli, M, Marinucci, M, Marocco, D, Marren, C, Marsen, S, Martin, D, Martin, G, Martin, Y, Martin Solis, J, Masaki, K, Masiello, A, Maszl, C, Matejcik, S, Matilal, A, Mattei, M, Matthews, G, Mattoo, S, Matveev, D, Maviglia, F, May, C, Mayer, M, Mayoral, M, Mazon, D, Mazzotta, C, Mazzucato, E, Mccarthy, P, Mcclements, K, Mccormick, K, Mccullen, P, Mccune, D, Mcdonald, D, Mcgregor, R, Mckivitt, J, Meakins, A, Medina, F, Meigs, A, Menard, M, Meneses, L, Menmuir, S, Merrigan, I, Mertens, P, Messiaen, A, Meszaros, B, Meyer, H, Miano, G, Michling, R, Miele, M, Miettunen, J, Migliucci, P, Miller, A, Mills, S, Milnes, J, Mindham, T, Miorin, E, Mirizzi, F, Mirones, E, Mironov, M, Mitteau, R, Mlynar, J, Mollard, P, Monakhov, I, Monier Garbet, P, Mooney, R, Moreau, D, Moreau, P, Moreira, L, Morgan, A, Morgan, P, Morlock, C, Morris, A, Mort, G, Murakami, M, Murari, A, Mustata, I, Nabais, F, Nakano, T, Nardon, E, Nash, G, Naulin, V, Nave, M, Nazikian, R, Nedzelski, I, Negus, C, Neilson, J, Nemtsev, G, Neto, A, Neu, R, Neubauer, O, Newbert, G, Newman, M, Nicholls, K, Nicolai, A, Nicolas, L, Nieckchen, P, Nielsen, A, Nielsen, S, Nielsen, P, Nielsen, G, Nieto, J, Nightingale, M, Nishijima, D, Noble, C, Nocente, M, Nordman, H, Norman, M, Nowak, S, Nunes, I, Oberkofler, M, Odstrcil, M, O'Gorman, T, Ohsako, T, Okabayashi, M, Olariu, S, Oleynikov, A, O'Mullane, M, Ongena, J, Orsitto, F, Oswuigwe, O, Ottaviani, M, Oyama, N, Pacella, D, Paget, K, Pajuste, E, Palazzo, S, Palenic, J, Pamela, J, Pamela, S, Pangione, L, Panin, A, Panja, S, Pankin, A, Pantea, A, Parail, V, Paris, P, Parisot, T, Park, M, Parkin, A, Parsloe, A, Parsons, B, Pasqualotto, R, Pastor, P, Paterson, R, Paul, M, Peach, D, Pearce, R, Pearson, B, Pearson, I, Pedrick, L, Pedrosa, M, Pegourie, B, Pereira, R, Pereslavtsev, P, Perevezentsev, A, Von, T, Pericoli Ridolfini, V, Perona, A, Perrot, Y, Peruzzo, S, Peschanyy, S, Petravich, G, Petrizzi, L, Petrov, V, Petrzilka, V, Philipps, V, Piccolo, F, Pietropaolo, A, Pillon, M, Pinches, S, Pinna, T, Pintsuk, G, Piovesan, P, Pironti, A, Pisano, F, Pitts, R, Plaum, B, Plyusnin, V, Polasik, M, Poli, F, Pomaro, N, Pompilian, O, Poncet, L, Pool, P, Popovichev, S, Porcelli, F, Porfiri, M, Portafaix, C, Pospieszczyk, A, Possnert, G, Pozniak, K, Pradhan, S, Pragash, R, Prajapati, V, Prestopino, G, Prior, P, Prokopowicz, R, Puiatti, M, Purahoo, K, Pustovitov, V, Putterich, T, Puttmann Kneupner, D, Quercia, A, Rachlew, E, Rademaker, R, Rafiq, T, Rainford, M, Ramogida, G, Rapp, J, Rasmussen, J, Rathod, K, Ratta, G, Ravera, G, Refy, D, Reichle, R, Reinelt, M, Reiser, D, Reiss, R, Reiter, D, Rendell, D, Reux, C, Rewoldt, G, Ribeiro, T, Riccardo, V, Richards, D, Rigollet, F, Rimini, F, Rios, L, Riva, M, Roberts, J, Robins, R, Robinson, D, Robinson, S, Robson, D, Roche, H, Roedig, M, Rodionov, N, Rohde, V, Rolfe, A, Romanelli, M, Romano, A, Romero, J, Ronchi, E, Rosanvallon, S, Roux, C, Rowe, S, Rubel, M, Rubinacci, G, Ruiz, M, Ruset, C, Russell, M, Ruth, A, Ryc, L, Rydzy, A, Rzadkiewicz, J, Saarelma, S, Sabathier, F, Sabot, R, Sadakov, S, Sadvakassova, A, Sadykov, A, Sagar, P, Saibene, G, Saille, A, Saint Laurent, F, Salewski, M, Salmi, A, Salzedas, F, Samm, U, Sanchez, P, Sanders, S, Sandford, G, Sandland, K, Sandquist, P, Sands, D, Santala, M, Santra, P, Sartori, F, Sartori, R, Sauter, O, Savelyev, A, Savtchkov, A, Scales, S, Scarabosio, A, Schaefer, N, Schmidt, V, Schmidt, A, Schmitz, O, Schmuck, S, Schneider, M, Scholz, M, Schoepf, K, Schweer, B, Schweinzer, J, Seki, M, Semeraro, L, Semerok, A, Sergienko, G, Sertoli, M, Shannon, M, Sharapov, S, Shaw, S, Shevelev, A, Sieglin, B, Sievering, R, Silva, C, Simmons, P, Simonetto, A, Simpson, D, Sipilae, S, Sips, A, Siren, P, Sirinelli, A, Sjoestrand, H, Skopintsev, D, Slabkowska, K, Smith, P, Snipes, J, Snoj, L, Snyder, S, Soare, S, Solano, E, Soleto, A, Solomon, W, Soltane, C, Sonato, P, Sopplesa, A, Sorrentino, A, Sousa, J, Sowden, C, Sozzi, C, Spaeh, P, Spelzini, T, Spence, J, Spineanu, F, Spuig, P, Stagg, R, Stamp, M, Stancalie, V, Stangeby, P, Stankiewicz, R, Stan Sion, C, Starkey, D, Stead, M, Stejner, M, Stephen, A, Stephen, M, Stevens, A, Stokes, R, Stork, D, Stoyanov, D, Strachan, J, Strand, P, Stransky, M, Strauss, D, Strintzi, D, Studholme, W, Na, Y, Subba, F, Summers, H, Sun, Y, Surdu Bob, C, Surrey, E, Sutton, D, Svensson, J, Swain, D, Syme, B, Symonds, I, Szabolics, T, Szepesi, T, Szydlowski, A, Tabares, F, Takalo, V, Takenaga, H, Tala, T, Talbot, A, Taliercio, C, Tame, C, Tardocchi, M, Taroni, L, Telesca, G, Terra, A, Terrington, A, Testa, D, Theis, J, Thomas, J, Thomas, P, Thompson, V, Thomser, C, Thyagaraja, A, Tigwell, P, Tiseanu, I, Tivey, R, Todd, J, Todd, T, Tokar, M, Tosti, S, Trabuc, P, Travere, J, Trimble, P, Trkov, A, Trukhina, E, Tsalas, M, Tsitrone, E, Jun, D, Tudisco, O, Tugarinov, S, Turner, M, Tyrrell, S, Umeda, N, Unterberg, B, Urano, H, Urquhart, A, Uytdenhouwen, I, Vaccaro, A, Vadgama, A, Vagliasindi, G, Valcarcel, D, Valisa, M, Vallory, J, Valovic, M, Van, E, Van, M, Van, R, Varandas, C, Vartanian, S, Vasava, K, Vdovin, V, Vega, J, Verdoolaege, G, Verger, J, Vermare, L, Verona, C, Versloot, T, Vervier, M, Vicente, J, Villari, S, Villedieu, E, Villone, F, Vince, J, Vine, G, Vinyar, I, Viola, B, Vitale, E, Vitelli, R, Vitins, A, Vlad, M, Voitsekhovitch, I, Vrancken, M, Vulliez, K, Waldon, C, Walker, M, Walsh, M, Waterhouse, J, Watkins, M, Watson, M, Wauters, T, Way, M, Webb, C, Weiland, J, Weisen, H, Weiszflog, M, Wenninger, R, West, A, Weulersse, J, Wheatley, M, Whiteford, A, Whitehead, A, Whitehurst, A, Widdowson, A, Wiegmann, C, Wiesen, S, Wilson, A, Wilson, D, Wilson, H, Wischmeier, M, Witts, D, Wolf, R, Wolowski, J, Woscov, P, Wright, J, Xu, G, Yavorskij, V, Yerashok, V, Yoo, M, Yorkshades, J, Young, C, Young, D, Young, I, Yuhong, X, Yun, S, Zabeo, L, Zabolotny, W, Zaccarian, L, Zagorski, R, Zaitsev, F, Zakharov, L, Zanino, R, Zaroschi, V, Zastrow, K, Zatz, I, Zefran, B, Zeidner, W, Zerbini, M, Zhang, T, Zhitlukin, A, Zhu, Y, Zimmermann, O, Zoita, V, Zoletnik, S, Zwingman, W, Control Systems Technology, Science and Technology of Nuclear Fusion, Miano, Giovanni, Coccorese, Vincenzo, Albanese, Raffaele, Rubinacci, Guglielmo, DE TOMMASI, Gianmaria, Faculdade de Engenharia, Romanelli, F., Abel, I., Afanesyev, V., Aftanas, M., Agarici, G., Aggarwal, K. M., Aho Mantila, L., Ahonen, E., Aints, M., Airila, M., Akers, R., Alarcon, T. h., Albanese, R., Alexeev, A., Alfier, A., Allan, P., Almaviva, S., Alonso, A., Alper, B., Altmann, H., Alves, D., Ambrosino, G., Amosov, V., Andersson, F., Sunden E., Andersson, Andreev, V., Andrew, Y., Angelone, M., Anghel, M., Anghel, A., Angioni, C., Apruzzese, G., Arcis, N., Arena, P., Argouarch, A., Ariola, M., Armitano, A., Arnoux, G., Arshad, S., Artaserse, G., Artaud, J. F., Ash, A., Asp, E., Asunta, O., Atanasiu, C. V., Atkins, G., Avotina, L., Axton, M. D., Ayres, C., Baciero, A., Bailescu, V., Baiocchi, B., Baker, R. A., Balboa, I., Balden, M., Balorin, C., Balshaw, N., Banks, J. W., Baranov, Y. F., Barbier, D., Barlow, I. L., Barnard, M. A., Barnsley, R., Barrena, L., Barrera, L., Baruzzo, M., Basiuk, V., Bateman, G., Batistoni, P., Baumgarten, N., Baylor, L., Bazylev, B., Beaumont, P. S., Beausang, K., Becoulet, M., Bekris, N., Beldishevski, M., Bell, A. C., Belli, F., Bellinger, M., Bellizio, T., Belo, P. S. A., Belonohy, E., Bennett, P. E., Benterman, N. A., Berger By, G., Bergsaker, H., Berk, H., Bernardo, J., Bernert, M., Bertrand, B., Beurskens, M. N. A., Bieg, B., Bienkowska, B., Biewer, T. M., Bigi, M., Bilkova, P., Bin, W., Bird, J., Bizarro, J., Bjorkas, C., Blackman, T. R., Blanchard, P., Blanco, E., Blum, J., Bobkov, V., Boboc, A., Boilson, D., Bolshakova, I., Bolzonella, T., Boncagni, L., Bonheure, G., Bonnin, X., Borba, D., Borthwick, A., Botrugno, A., Boulbe, C., Bouquey, F., Bourdelle, C., Von Bovert, K., Bowden, M., Boyce, T., Boyer, H. J., Bozhenkov, A., Brade, R. J., Bradshaw, J. M. A., Braet, J., Braic, V., Braithwaite, G. C., Brault, C., Breizman, B., Bremond, S., Brennan, P. D., Brett, A., Breue, J., Brezinsek, S., Bright, M. D. J., Briscoe, F., Brix, M., Brombin, M., Brown, B. C., Brown, D. P. D., Brzozowski, J., Bucalossi, J., Buckley, M. A., Budd, T., Budny, R. V., Bunting, P., Buratti, P., Burcea, G., Burckhart, A., Butcher, P. R., Buttery, R. J., Cahyna, P., Calabro, G., Callaghan, C. P., Caminade, J. P., Camp, P. G., Campling, D. C., Caniello, R., Canik, J., Cannas, B., Capel, A. J., Carannante, G., Card, P. J., Cardinali, A., Carlstrom, T., Carman, P., Carralero, D., Carraro, L., Carter, T., Carvalho, B. B., Carvalho, I., Carvalho, P., Casati, A., Castaldo, C., Caughman, J., Cavazzana, R., Cavinato, M., Cecconello, M., Cecil, E., Cecil, F. E., Cenedese, A., Centioli, C., Cesario, R., Challis, C. D., Chandler, M., Chang, C., Chankin, A., Chapman, I. T., Chektybayev, B., Chernyshova, M., Child, D. J., Chiru, P., Chitarin, G., Chugonov, I., Ciric, D., Clairet, F., Clarke, R. H., Clay, R., Clever, M., Coad, J. P., Coates, P. A., Cocilovo, V., Coda, S., Coelho, R., Coenen, J., Coffey, I., Colas, L., Cole, M., Collins, S., Combs, S., Compan, J., Conboy, J. E., Conroy, S., Cook, N., Cook, S. P., Coombs, D., Cooper, S. R., Corre, Y., Corrigan, G., Cortes, S., Coster, D., Counsell, G. F., Courtois, X., Cox, M., Craciunescu, T., Cramp, S., Crisanti, F., Croci, G., Croft, O., Crombe, K., Crowley, B. J., Cruz, N., Cseh, G., Cupido, L., Curuia, M., Cusack, R. A., Czarnecka, A., Czarski, T., Dalley, S., Daly, E. T., Dalziel, A., Daniel, R., Darrow, D., David, O., Davies, N., Davies, W., Davies, J. J., Day, I. E., Day, C., De Angelis, R., de Arcas, G., de Baar, M. R., de la Cal, E., de la Luna, E., de Pablos, J. L., De Tommasi, G., de Vries, P. C., Degli Agostini, F., Delabie, E., del Castillo Negrete, D., Delpech, L., Denisov, G., Denyer, A. J., Denyer, R. F., Devaux, S., Devynck, P., Di Matteo, L., Di Pace, L., Dirken, P. J., Dittmar, T., Dnestrovskiy, A., Dodt, D., Doerner, R., Doldatov, S., Dominiczak, K., Dooley, P., Dorling, S. E., Douai, D., Down, A. P., Doyle, P. T., Drake, J. R., Dreischuh, T., Drozdov, V., Dumortier, P., Dunai, D., Duran, I., Durodie, F., Dutta, P., Dux, R., Dylst, K., Eaton, R., Edlington, T., Edwards, A. M., Edwards, D. T., Edwards, P. K., Eich, T. h., Ekedahl, A., Elevant, T., Ellingboe, B., Elsmore, C. G., Emmoth, B., Erdei, G., Ericsson, G., Eriksson, L. G., Eriksson, A., Esposito, B., Esser, H. G., Estrada, T., Evangelidis, E. A., Evans, G. E., Ewart, G. D., Ewers, D. T., Falchetto, G., Falie, D., Fanthome, J. G. A., Farthing, J. W., Fasoli, A., Faugeras, B., Fedorczak, N., Felton, R. C., Fenzi, C., Fernades, A., Fernandes, H., Ferreira, J. A., Ferreira, J., Ferron, J., Fessey, J. A., Figini, L., Figueiredo, J., Figueiredo, A., Finburg, P., Finken, K. H., Fischer, U., Fitzgerald, N., Flanagan, J., Fleming, C., Forbes, A. D., Ford, O., Formisano, A., Fraboulet, D., Francis, R. J., Frassinetti, L., Fresa, R., Friconneau, J. P., Frigione, D., Fullard, K., Fundamenski, W., Palumbo M., Furno, Gal, K., Gao, X., Garavaglia, S., Garbet, X., Garcia, J., Munoz M., Garcia, Gardner, W., Garibaldi, P., Garnier, D., Garzotti, L., Johnson M., Gatu, Gaudio, P., Gauthier, E., Gaze, J. W., Gear, D. F., Gedney, J., Gee, S. J., Gelfusa, M., Genangeli, E., Gerasimov, S., Geraud, A., Gerbaud, T., Gherendi, M., Ghirelli, N., Giacalone, J. C., Giacomelli, L., Gibson, C. S., Gil, C., Gilligan, S. J., Gimblett, C. G., Gin, D., Giovannozzi, E., Giroud, C., Giruzzi, G., Godwin, J., Goff, J. K., Gohil, P., Gojska, A., Goloborod'Ko, V., Goncalves, B., Goniche, M., Gonzales, S., de Vicente S. M., Gonzalez, Goodyear, A., Gorelenkov, N., Gorini, G., Goulding, R., Graham, B., Graham, D., Graham, M. E., Graves, J., Green, N. R., Greuner, H., Grigore, E., Griph, F. S., Grisolia, C., Gros, G., Groth, M., Grunhagen, S., Gryaznevich, M. P., Guirlet, R., Gunn, J., Gupta, A., Guzdar, P., Hackett, L. J., Hacquin, S., Haist, B., Hakola, A., Halitovs, M., Hall, S. J., Cook S. P., Hallworth, Hamilton, D. T., Han, H., Handley, R. C., Harding, S., Harling, J. D. W., Harting, D., Harvey, M. J., Haupt, T. D. V., Hawkes, N. C., Hawryluk, R., Hay, J. H., Hayashi, N., Haydon, P. W., Hayward, I. R., Hazel, S., Heesterman, P. J. L., Heidbrink, W., Heinola, K., Hellesen, C., Hellsten, T., Hemming, O. N., Hender, T. C., Henderson, M., Hennion, V., Hidalgo, C., Higashijima, S., Hill, J. W., Hill, M., Hill, K., Hillairet, J., Hillis, D., Hirai, T., Hitchin, M., Hobirk, J., Hogan, C., Hogben, C. H. A., Hogeweij, G. M. D., Hollingham, I. C., Holyaka, R., Homfray, D. A., Honeyands, G., Hong, S. H., Hong, J. H., Horacek, J., Horn, B. A., Horton, A. R., Horton, L. D., Hotchin, S. P., Hough, M. R., Houlberg, W., Howell, D. F., Huber, A., Huddleston, T. M., Hudson, Z., Hughes, M., Huehnerbein, M., Hume, C. C., Hunt, A. J., Hunter, C. L., Hutchinson, T. S., Huygen, S., Huysmans, G., Ide, S., Illescas, C., Imbeaux, F., Ivanova, D., Ivanova Stanik, I., Ivings, E., Jachmich, S., Jackson, G., Jacquet, P., Jakubowska, K., James, P. V., Janky, F., Jaervinen, A., Jednorog, S., Jenkins, I., Jennison, M. A. C., Jeskins, C., Kwon O., Jin, Joffrin, E., Johnson, M. F., Johnson, R., Johnson, T., Jolovic, D., Jonauskas, V., Jones, E. M., Jones, G., Jones, H. D., Jones, T. T. C., Jouvet, M., Jupen, C., Kachtchouk, I., Kaczmarczyk, J., Kallenbach, A., Kaellne, J., Kalupin, D., Kalvin, S., Kamelander, G., Kamendje, R., Kamiya, K., Kappatou, A., Kasparek, W., Kasprowicz, G., Katramados, I., Kaveney, G., Kaye, A. S., Kear, M. J., Keeling, D. L., Kelliher, D., Kempenaars, M., Khilar, P., Khilkevich, E., Kidd, N. G., Kiisk, M., Kim, K. M., Kim, H., King, R. F., Kinna, D. J., Kiptily, V., Kirnev, G., Kirneva, N., Kirov, K., Kirschner, A., Kisielius, R., Kislov, D., Kiss, G., Kizane, G., Klein, A., Klepper, C., Klimov, N., Klix, A., Knaup, M., Kneuper, K., Kneupner, H., Knight, P. J., Knipe, S. J., Kocan, M., Koch, R., Kochl, F., Kocsis, G., Koivuranta, S., Koppitz, T., Korotkov, A., Koskela, T., Koslowski, H. R., Kotov, V., Kovari, M. D., Kramer, G., Krasilnikov, A., Krasilnikov, V., Kraus, S., Kreter, A., Krieger, K., Kritz, A., Krivchenkov, Y., Kruezi, U., Krylov, S., Ksiazek, I., Kuhn, S., Kuhnlein, W., Kukushkin, A., Kundu, A., Kurki Suonio, T., Kurowski, A., Kuteev, B., Kuyanov, A., Kyrytsya, V., La Haye, R., Laan, M., Labate, C., Lachichi, A., Laguardia, L., Lam, N., Lang, P., Large, M. T., Lasa, A., Lassiwe, I., Last, J. R., Lawson, K. D., Laxaback, M., Layne, R. A., Le Guern, F., Leblanc, B., Lee, S., Lee, J., Leggate, H. J., Lehnen, M., Leigheb, M., Lengar, I., Lennholm, M., Lerche, E., Lescure, C. N., Li, Y., Li Puma, A., Liang, Y., Likonen, J., Lin, Y., Lindholm, V., Linke, J., Linstead, S. A., Lipshultz, B., Litaudon, X., Litvak, A. G., Liu, Y., Loarer, T., Loarte, A., Lobel, R. C., Lomas, P. J., Long, F. D., Lonnroth, J., Looker, D. J., Lopez, J., Lotte, P. h., Louche, F., Loughlin, M. J., Loving, A. B., Lowry, C., Luce, T., Lucock, R. M. A., Lukanitsa, A., Lukin, A., Lungu, A. M., Lungu, C. P., Lyssoivan, A., Macheta, P., Mackenzie, A. S., Macrae, M., Maddaluno, G., Maddison, G. P., Madsen, J., Magesh, B., Maget, P., Maggi, C. F., Maier, H., Mailloux, J., Makkonen, T., Makowski, M., Malaquias, A., Manning, C. J., Mansfield, M., Manso, M. E., Mantica, P., Marcenko, N., Marchitti, M. A., Mardenfeld, M., Marechal, J. L., Marinelli, M., Marinucci, M., Marocco, D., Marren, C. A., Marsen, S., Martin, D., Martin, D. L., Martin, G., Martin, Y., Martin Solis, J. R., Masaki, K., Masiello, A., Maszl, C., Matejcik, S., Matilal, A., Mattei, Massimo, Matthews, G. F., Mattoo, S., Matveev, D., Maviglia, F., May, C. R., Mayer, M., Mayoral, M. L., Mazon, D., Mazzotta, C., Mazzucato, E., Mccarthy, P., Mcclements, K. G., Mccormick, K., Mccullen, P. A., Mccune, D., Mcdonald, D. C., Mcgregor, R., Mckivitt, J. P., Meakins, A., Medina, F., Meigs, A. G., Menard, M., Meneses, L., Menmuir, S., Merrigan, I. R., Mertens, P. h., Messiaen, A., Meszaros, B., Meyer, H., Miano, G., Michling, R., Miele, M., Miettunen, J., Migliucci, P., Miller, A. G., Mills, S. F., Milnes, J. J., Kim K., Min, Mindham, T., Miorin, E., Mirizzi, F., Mirones, E., Mironov, M., Mitteau, R., Mlynar, J., Mollard, P., Monakhov, I., Monier Garbet, P., Mooney, R., Moreau, D., Moreau, P. h., Moreira, L., Morgan, A., Morgan, P. D., Morlock, C., Morris, A. W., Mort, G. L., Murakami, M., Murari, A., Mustata, I., Nabais, F., Nakano, T., Nardon, E., Nash, G., Naulin, V., Nave, M. F. F., Nazikian, R., Nedzelski, I., Negus, C. R., Neilson, J. D., Nemtsev, G., Neto, A., Neu, R., Neubauer, O., Newbert, G. J., Newman, M., Nicholls, K. J., Nicolai, A., Nicolas, L., Nieckchen, P., Nielsen, A. H., Nielsen, S. K., Nielsen, P., Nielsen, G., Nieto, J., Nightingale, M. P. S., Nishijima, D., Noble, C., Nocente, M., Nordman, H., Norman, M., Nowak, S., Nunes, I., Oberkofler, M., Odstrcil, M., O'Gorman, T., Ohsako, T., Okabayashi, M., Olariu, S., Oleynikov, A., O'Mullane, M., Ongena, J., Orsitto, F., Oswuigwe, O. I., Ottaviani, M., Oyama, N., Pacella, D., Paget, K., Pajuste, E., Palazzo, S., Palenic, J., Pamela, J., Pamela, S., Pangione, L., Panin, A., Panja, S., Pankin, A., Pantea, A., Parail, V., Paris, P., Parisot, T. h., Park, M., Parkin, A., Parsloe, A., Parsons, B. T., Pasqualotto, R., Pastor, P., Paterson, R., Paul, M. K., Peach, D., Pearce, R. J. H., Pearson, B. J., Pearson, I. J., Pedrick, L. C., Pedrosa, M. A., Pegourie, B., Pereira, R., Pereslavtsev, P., Perevezentsev, A., Perez, von Thun C. h., Pericoli Ridolfini, V., Perona, A., Perrot, Y., Peruzzo, S., Peschanyy, S., Petravich, G., Petrizzi, L., Petrov, V., Petrzilka, V., Philipps, V., Piccolo, F., Pietropaolo, A., Pillon, M., Pinches, S. D., Pinna, T., Pintsuk, G., Piovesan, P., Pironti, A., Pisano, F., Pitts, R., Plaum, B., Plyusnin, V., Polasik, M., Poli, F. M., Pomaro, N., Pompilian, O., Poncet, L., Pool, P. J., Popovichev, S., Porcelli, F., Porfiri, M. T., Portafaix, C., Pospieszczyk, A., Possnert, G., Pozniak, K., Pradhan, S., Pragash, R., Prajapati, V., Prestopino, G., Prior, P., Prokopowicz, R., Puiatti, M. E., Purahoo, K., Pustovitov, V., Putterich, T. h., Puttmann Kneupner, D., Quercia, A., Rachlew, E., Rademaker, R., Rafiq, T., Rainford, M. S. J., Ramogida, G., Rapp, J., Rasmussen, J. J., Rathod, K., Ratta, G., Ravera, G., Refy, D., Reichle, R., Reinelt, M., Reiser, D., Reiss, R., Reiter, D., Rendell, D., Reux, C., Rewoldt, G., Ribeiro, T. T., Riccardo, V., Richards, D., Rigollet, F., Rimini, F. G., Rios, L., Riva, M., Roberts, J. E. C., Robins, R. J., Robinson, D. S., Robinson, S. A., Robson, D. W., Roche, H., Roedig, M., Rodionov, N., Rohde, V., Rolfe, A., Romanelli, M., Romano, A., Romero, J., Ronchi, E., Rosanvallon, S., Roux, C. h., Rowe, S., Rubel, M., Rubinacci, G., Ruiz, M., Ruset, C., Russell, M., Ruth, A., Ryc, L., Rydzy, A., Rzadkiewicz, J., Saarelma, S., Sabathier, F., Sabot, R., Sadakov, S., Sadvakassova, A., Sadykov, A., Sagar, P., Saibene, G., Saille, A., Saint Laurent, F., Salewski, M., Salmi, A., Salzedas, F., Samm, U., Sanchez, P., Sanders, S., Sanders, S. G., Sandford, G., Sandland, K., Sandquist, P., Sands, D. E. G., Santala, M. I. K., Santra, P., Sartori, F., Sartori, R., Sauter, O., Savelyev, A., Savtchkov, A., Scales, S. C., Scarabosio, A., Schaefer, N., Schmidt, V., Schmidt, A., Schmitz, O., Schmuck, S., Schneider, M., Scholz, M., Schoepf, K., Schweer, B., Schweinzer, J., Seki, M., Semeraro, L., Semerok, A., Sergienko, G., Sertoli, M., Shannon, M. M. J., Sharapov, S. E., Shaw, S. R., Shevelev, A., Sieglin, B., Sievering, R., Silva, C. A., Simmons, P. A., Simonetto, A., Simpson, D., Sipilae, S. K., Sips, A. C. C., Siren, P., Sirinelli, A., Sjoestrand, H., Skopintsev, D., Slabkowska, K., Smith, P. G., Snipes, J., Snoj, L., Snyder, S., Soare, S., Solano, E. R., Soleto, A., Solomon, W., Soltane, C., Sonato, P., Sopplesa, A., Sorrentino, A., Sousa, J., Sowden, C. B. C., Sozzi, C., Spaeh, P., Spelzini, T., Spence, J., Spineanu, F., Spuig, P., Stagg, R. D., Stamp, M. F., Stancalie, V., Stangeby, P., Stankiewicz, R., Stan Sion, C., Starkey, D. E., Stead, M. J., Stejner, M., Stephen, A. V., Stephen, M., Stevens, A. L., Stokes, R. B., Stork, D., Stoyanov, D., Strachan, J., Strand, P., Stransky, M., Strauss, D., Strintzi, D., Studholme, W., Na Y., Su, Subba, F., Summers, H. P., Sun, Y., Surdu Bob, C., Surrey, E., Sutton, D. J., Svensson, J., Swain, D., Syme, B. D., Symonds, I. D., Szabolics, T., Szepesi, T., Szydlowski, A., Tabares, F., Takalo, V., Takenaga, H., Tala, T., Talbot, A. R., Taliercio, C., Tame, C., Tardocchi, M., Taroni, L., Telesca, G., Terra, A., Terrington, A. O., Testa, D., Theis, J. M., Thomas, J. D., Thomas, P. D., Thomas, P. R., Thompson, V. K., Thomser, C., Thyagaraja, A., Tigwell, P. A., Tiseanu, I., Tivey, R., Todd, J. M., Todd, T. N., Tokar, M. Z., Tosti, S., Trabuc, P., Travere, J. M., Trimble, P., Trkov, A., Trukhina, E., Tsalas, M., Tsitrone, E., Jun D., Tskhakaya, Tudisco, O., Tugarinov, S., Turner, M. M., Tyrrell, S. G. J., Umeda, N., Unterberg, B., Urano, H., Urquhart, A. J., Uytdenhouwen, I., Vaccaro, A., Vadgama, A. P., Vagliasindi, G., Valcarcel, D., Valisa, M., Vallory, J., Valovic, M., Van Eester, D., van Milligen, B., van Rooij, G. J., Varandas, C. A. F., Vartanian, S., Vasava, K., Vdovin, V., Vega, J., Verdoolaege, G., Verger, J. M., Vermare, L., Verona, Claudio, Versloot, T. h., Vervier, M., Vicente, J., Villari, S., Villedieu, E., Villone, F., Vince, J. E., Vine, G. J., Vinyar, I., Viola, B., Vitale, E., Vitelli, R., Vitins, A., Vlad, M., Voitsekhovitch, I., Vrancken, M., Vulliez, K., Waldon, C. W. F., Walker, M., Walsh, M. J., Waterhouse, J., Watkins, M. L., Watson, M. J., Wauters, T., Way, M. W., Webb, C. R., Weiland, J., Weisen, H., Weiszflog, M., Wenninger, R., West, A. T., Weulersse, J. M., Wheatley, M. R., Whiteford, A. D., Whitehead, A. M., Whitehurst, A. G., Widdowson, A. M., Wiegmann, C., Wiesen, S., Wilson, A., Wilson, D., Wilson, D. J., Wilson, H. R., Wischmeier, M., Witts, D. M., Wolf, R. C., Wolowski, J., Woscov, P., Wright, J., Xu, G. S., Yavorskij, V., Yerashok, V., Yoo, M., Yorkshades, J., Young, C., Young, D., Young, I. D., Yuhong, X., Yun, S., Zabeo, L., Zabolotny, W., Zaccarian, L., Zagorski, R., Zaitsev, F. S., Zakharov, L., Zanino, R., Zaroschi, V., Zastrow, K. D., Zatz, I., Zefran, B., Zeidner, W., Zerbini, M., Zhang, T., Zhitlukin, A., Zhu, Y., Zimmermann, O., Zoita, V., Zoletnik, S., Zwingman, W., Abhangi, M., Abreu, P., Afzal, M., Alegre, D., Alessi, E., Aleynikov, P., Alkseev, A., Alsworth, I., Ambrosino, R., Andersson Sundén, E., Appel, L., Arnichand, H., Austin, Y., Bachmann, C., Aião, D., Baker, A., Bament, R., Barnes, D., Baron Wiechec, A., Bassan, M., Bastow, R., Batista, A., Bauer, R., Bauvir, B., Beal, J., Becoulet, A., Bednarczyk, P., Bell, K., Belo, J. K., Belo, P., Belonohy, É., Bergsåker, H., Berry, M., Bertalot, L., Eurskens, M. N. A., Bielecki, J., Biewer, T., Bílková, P., Binda, F., Bizarro, J. P. S., Björkas, C., Blackman, K., Blatchford, P., Bodnár, G., Bogar, O., Bonham, R., Boom, J., Booth, J., Borodin, D., Boulting, P., Bovert, K. V., Bower, C., Broeckx, ., Brown, M., Bruno, E., Buch, J., Bucko, K., Budny, R., Ufferand, H., Bulman, M., Bulmer, N., Buscarino, A., Butler, N. K., Bykov, I., Yrne, J., Byszuk, A., Cackett, A., Cain, G., Calabrò, G., Cane, J., Aputano, M., Casson, F. J., Astaldo, C., Cazzaniga, A., Handler, M., Chandra, D., Chang, C. S., Chapman, S. C., Chouli, B., Hung, N., Ciraolo, G., Citrin, J., Clark, E., Clatworthy, D., Coccorese, V., Cocilovo, ., Coenen, J. W., Ooper, D., Couchman, A. S., Cox, M. P., Cox, P., Ramp, S., Cristescu, I., Crombé, K., Crowe, R., Cull, K., Curran, D., Uruia, M., Davies, R., Davis, W., de la una, E., De Magistris, M., de Vries, 19 P. C., Deakin, K., Deane, J., Decker, J., Ejarnac, R., den Harder, N., Dendy, R. O., Denner, P., Di Maio, F., Donné, ., Dormido Canto, S., Doswon, S., Drewelow, P., Rozdowicz, K., Dumont, R., Dunne, M., Durodié, F., Duval, B., Zysiuk, N., Edappala, P. V., El Jorf, R., Riksson, J., Esteve, D., Evans, J., Fagan, D., Arthing, J. W., Fattorini, L., Faustin, J., Fawlk, N., Federici, G., Ernandes, H., Fil, A., Firdaouss, M., Fittill, L., Itzgerald, M., Flammini, D., Flinders, K., Formisano, Alessandro, Forsythe, L., Fortuna, L., Fortune, M., Frasca, M., Rassinetti, L., Freisinger, M., Fuchs, V., Fyvie, J., Gadomska, M., Gál, K., Galperti, C., Galvão, R., Aravaglia, S., Garcia Carrasco, A., García Munoz, M., Gardner, M., Gervasini, G., Ghate, M., Giegerich, ., Girardo, J. B., Gleason Gonzalez, C., Gójska, A., Oloborod’Ko, V., Gomes, R., Gonçalves, B., Gonzalez, S., Goodsell, B., Goussarov, A., Raham, . E., Grazier, N., Grist, D., Grundy, C. N., Ryaznevich, M., Guard, D., Gubb, D., Guillemaut, C., Guo, Y., Utoh, H. H, Hagar, A., All, S. J., Hallworth Cook, S. P., Hammond, K., Hart, J., Hartmann, N., Hawkins, J., Azel, S., Helou, W., Henriques, R., Hepple, ., Hermon, G., Highcock, E. G., Hillesheim, J., Hjalmarsson, A., Hogben, . H. A., Horácek, J., Howarth, P. J., Uber, A., Hurzlmeier, H., Huynh, P., Igitkhanov, J., Iglesias, D., Imríšek, M., Vanova, D., Asjacobsen, A. S. Jacobsen, James, J., Järvinen, A., Aulmes, F., Jenkins, C., Ješko, K., Joita, L., Joyce, L., Jupén, C., Hoshino, K. K, Kaniewski, J., Kantor, A., Karhunen, J., Azakov, ., Keep, J., Kennedy, C., Kenny, D., Kim, H. T., Kim, H. S., King, C., Ing, D., King, 20 R. F., Kobuchi, T., Öchl, F., Kocsis, ., Kogut, D., Mköppen, M. Köppen, Tkoskela, T. Koskela, Hrkoslowski, H. R. Koslowski, Vkotov, V. Kotov, Ekowalska, E. Kowalska Strzeciwilk, Rasilnikov, V., Krivska, A., Won, O. J., Lane, C., Lang, P. T., Lapins, J., Lawson, A., Awson, K. D., Lazaros, A., Lazzaro, E., Leichtle, D., Leichuer, P., Leipold, F., Ennholm, M., Lerche, ., Leyland, M., Leysen, W., Linsmeier, C. h., Lipschultz, B., Iu, G., Lo Schiavo, V. P., Lohr, ., Lönnroth, J., López, J., López, J. M., Ouche, F., Lowbridge, S., Lupelli, I., Acheta, ., Maj, A., Akkonen, T., Makwana, R., Mansffield, F., Mantsinen, M., Manzanares, A., Arandet, Y., Marchetto, C., Marchuk, O., Markovic, T., Marot, L., Arsen, S., Marshal, R., Martin, A., Martín de Aguilera, A., Martín Solís, J. R., Maslov, M., Maslova, V., Atejcik, S., Mattei, Massimiliano, Matveev, M., Mayer49 M. L. Mayoral, M. Mayer49 M. L. Mayoral, Cadams, R., Mccarthy, P. J., Mcdonald, D., Mckean, R., Mckehon, J., Ckinley, R., Meadows, I., Meadows, R. C., Medland, M., Medley, S., Meigh, S., Errigan, I. R., Meshchaninov, S., Middleton Gear, D., Igliucci, P., Militello Asp, E., Minucci, S., Miyoshi, Y., Mlynár, J., Moradi, S., Ordijck, S., Moreno, R., Morgan, R., Morley, L., Morris, J., Moser, L., Moulton, D., Urari, A., Muraro, A., Asakura, N. N, Neethiraj, N., Emtsev, G., Nespoli, F., Rneu, R. Neu, Nicolai, D., Nicolas, T., Nightingale, . P. S., Nilsson, E., Nodwell, D., O’Meara, B., Bryk, B., Odupitan, T., Ogawa, M. T., O’Gorman, T., O’Mullane, M., Oswuigwe, B. I., Ace, N., Page, A., Paget, A., Pagett, D., Papp, P., Aris, ., Parish, S. C. W., Perelli Cippo, E., Ch Perez von hun, 21 C. h. Perez von hun, Perez Von Thun, C., Peschanyi, S., Peterka, M., Petersson, P., Etržilka, V., Pfefferle, D., Pires dos Reis, A., Itts, R., Plusczyk, ., Porosnicu, C., Porton, M., Ossnert, G., Potzel, S., Powell, T., Pozzi, J., Prakash, R., Price, D., Price, R., Rokopowicz, R., Proudfoot, R., Puglia, P., Pulley, D., Pütterich, T. h., Rack, M., Aeder, J., Rainford, . S. J., Ranjan, S., Rasmussen, J., Rattá, G., Rayner, C., Rebai, M., Reece, D., Eed, A., Réfy, D., Regan, B., Regana, J., Reich, M., Reid, P., Reinke, M. L., Reinke, M., Eux, C., Robinson, T., Roddick, P., Odionov, R., Romanelli, S., Rowe, D., Rowley, A., Ruchko, ., Safi, E., Saint aurent, F., Sandiford, D., Santa, P., Aunders, R., Scannell, R., Schlummer, T., Schneider4 M. Scholz, M. Schneider4 M. Scholz, Chöpf, K., Serikov, A., Shabbir, A., Shannon, M., Shaw, I., Haw, S. R., Shepherd, A., Shumack, A., Sibbald, M., Silva, C., Sinha, A., Sipilä, S. K., Irén, P., Sjöstrand, H., Skiba, M., Skilton, R., Slade, B., Smith, N., Smith, T. J., Soldatov, ., Sparkes, A., Stables, G., Tamatelatos, I., Stankunas, G., Stano, M., Tephen, . V., Stevens, B. D., Ström, P., Stubbs, G., Summers, . P., Sykes, N., Szepesi, G., Suzuki, T. T, Tabarés, F., Akalo, V., Tál, B., Tamain, P., Taylor, K. A., Teplova, N., Erra, A., Teuchner, B., Tholerus, S., Thomas, F., Thomas, P., Thompson, A., Thompson, C. A., Homson, L., Thorne, L., Tipton, N., Tojo, H., Tomeš, M., Tonner, P., Towndrow, M., Ripsky, M., Tskhakaya Jun, D., Turner, I., Turnyanskiy, M., Tvalashvili, G., l. bidin, Z., Ulyatt, D., Vadgama, 2. 2. a. P., an enterghem, W., Varoutis, S., Erhoeven, R., Verona, C., Veshchev, E., Vézinet, D., Vlad, ., Voitsekhovitch, ., Vondrácek, P., Pires de Sa, W. W, Walsh, M., Warren, R. J., Aterhouse, J., Watkins, N. W., Watts, C., Webster, A., Weckmann, A., Elte, S., Wendel, ., Whetham3 AM Whitehead, S. Whetham3 A. M. Whitehead, Whitehead, B. D., Whittington, P., Iesen, S., Wilkes, D., Wilkinson, J., Williams, M., Wilson, A. R., Withenshaw, G., Ojciech, D., Wojenski, A., Wood, D., Wood, S., Woodley, C., Woznicka, U., Wu, J., Yao, L., Yapp, D., Yoo, M. G., Orkshades, J., Zacks, J., Eidner, ., Ziólkowski, A., and Zychor, I.
- Subjects
Nuclear and High Energy Physics ,Materials science ,REGIME ,Nuclear engineering ,chemistry.chemical_element ,Condensed Matter Physic ,Effective radiated power ,Tungsten ,Condensed Matter Physics ,Pedestal ,PLASMA-FACING COMPONENTS ,TOKAMAK PLASMAS ,Jet (fluid) ,TUNGSTEN ,Divertor ,perfomance ,Plasma ,PERFORMANCE ,Settore FIS/07 - Fisica Applicata(Beni Culturali, Ambientali, Biol.e Medicin) ,chemistry ,Beta (plasma physics) ,DIVERTOR ,Beryllium ,Atomic physics - Abstract
Following the completion in May 2011 of the shutdown for the installation of the beryllium wall and the tungsten divertor, the first set of JET campaigns have addressed the investigation of the retention properties and the development of operational scenarios with the new plasma-facing materials. The large reduction in the carbon content (more than a factor ten) led to a much lower Zeff (1.2-1.4) during L- and H-mode plasmas, and radiation during the burn-through phase of the plasma initiation with the consequence that breakdown failures are almost absent. Gas balance experiments have shown that the fuel retention rate with the new wall is substantially reduced with respect to the C wall. The re-establishment of the baseline H-mode and hybrid scenarios compatible with the new wall has required an optimization of the control of metallic impurity sources and heat loads. Stable type-I ELMy H-mode regimes with H98,y2 close to 1 and βN ∼ 1.6 have been achieved using gas injection. ELM frequency is a key factor for the control of the metallic impurity accumulation. Pedestal temperatures tend to be lower with the new wall, leading to reduced confinement, but nitrogen seeding restores high pedestal temperatures and confinement. Compared with the carbon wall, major disruptions with the new wall show a lower radiated power and a slower current quench. The higher heat loads on Be wall plasma-facing components due to lower radiation made the routine use of massive gas injection for disruption mitigation essential. © 2013 IAEA, Vienna.
- Published
- 2013
- Full Text
- View/download PDF
3. The occurrence of staircases in ITG turbulence with kinetic electrons and the zonal flow drive through self-interaction.
- Author
-
Weikl, A., Peeters, A. G., Rath, F., Seiferling, F., Buchholz, R., Grosshauser, S. R., and Strintzi, D.
- Subjects
ELECTRONS ,LARMOR radius ,PLASMA turbulence ,SHEAR (Mechanics) ,COMPUTER simulation - Abstract
Large scale structures in the E × B shearing rate, known as staircases, are shown to form in nonlinear gyro-kinetic turbulence simulations with kinetic electrons. However, in many cases, a small scale structure in the shearing rate is observed that appears to prevent the formation of staircases. The small scale structures are interpreted to be linked to the self-interaction of turbulent modes connected with the double periodic boundary conditions on the torus. The self-interaction is a newly discovered mechanism for zonal flow generation and is shown to scale proportional to the normalized Larmor radius. The mechanism is also affected by magnetic shear, being weaker at larger values. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
4. A key to improved ion core confinement in the JET tokamak : ion stiffness mitigation due to combined plasma rotation and low magnetic Shear
- Author
-
Mantica, P., Challis, C., Peeters, A.G., Strintzi, D., Tala, T., Tsalas, M., deVries, P.C., Baiocchi, B., Baruzzo, M., Bizarro, J., Buratti, P., Citrin, J., Colyer, G., Crisanti, F., Garbet, X., Giroud, C., Hawkes, N., Hobirk, J., Imbeaux, F., Joffrin, E., Johnson, T., Lerche, E., Mailloux, J., Naulin, Volker, Salmi, A., Sozzi, C., Staebler, G., Van Eester, D., Versloot, T., Weiland, J., and Science and Technology of Nuclear Fusion
- Subjects
Physics ,Tokamak ,General Physics and Astronomy ,Magnetic confinement fusion ,Stiffness ,Plasma ,Mechanics ,turbulent transport ,ion heat transport ,turbulence stabilisation ,Fusion power ,Fusionsenergiforskning ,law.invention ,Ion ,Nonlinear system ,Fusion energy ,Fusionsenergi ,Shear (geology) ,law ,Physics::Plasma Physics ,medicine ,Atomic physics ,medicine.symptom - Abstract
New transport experiments on JET indicate that ion stiffness mitigation in the core of a rotating plasma, as described by Mantica et al. Phys. Rev. Lett. 102 175002 (2009)] results from the combined effect of high rotational shear and low magnetic shear. The observations have important implications for the understanding of improved ion core confinement in advanced tokamak scenarios. Simulations using quasilinear fluid and gyrofluid models show features of stiffness mitigation, while nonlinear gyrokinetic simulations do not. The JET experiments indicate that advanced tokamak scenarios in future devices will require sufficient rotational shear and the capability of q profile manipulation. © 2011 American Physical Society
- Published
- 2011
- Full Text
- View/download PDF
5. NBI Modulation Experiments to Study Momentum Transport and Magnetic Field Induced Ripple Torque on JET
- Author
-
Tala T., Salmi A., Mantica P., Angioni C., Corrigan G., de Vries P. C., Giroud C., Ferreira J., Lönnroth J., Naulin V., Peeters A. G., Solomon W., Strintzi D., Tsalas M., Versloot T. W., Weiland J., Zastrow K.-D., and JET-EFDA contributors
- Subjects
____ - Abstract
____
- Published
- 2011
6. Toroidal momentum transport
- Author
-
Peeters, A.G., Angioni, C., Bortolon, A., Camenen, Y., Casson, F.J., Duval, B., Fiederspiel, L., Hornsby, W.A., Kluy, N., Mantica, P., Snodin, A.P., Szepesi, G., Strintzi, D., Tala, Tuomas, Tardini, G., de Vries, P., Weiland, J., Idomura, Y., and Parra, F.I.
- Subjects
Physics::Plasma Physics - Abstract
Toroidal momentum transport mechanisms are reviewed and put in a broader perspective. The generation of a finite momentum flux is closely related with the breaking of symmetry along the field. The symmetry argument allows for the systematic identification of possible transport mechanisms. Those that appear to lowest order in the normalized Larmor radius (the diagonal part, Coriolis pinch, E×B shearing, particle flux, and up-down asymmetric equilibriums) are reasonably well understood. At higher order, thought to be of importance in the plasma edge, the theory is still under development.
- Published
- 2010
7. A Key to Improved Ion Core Confinement in JET Tokamak:Ion Stiffness Mitigation due to Combined Plasma Rotation and Low Magnetic Shear
- Author
-
Mantica, P., Baiocchi, B., Challis, C., Johnson, T., Salmi, Antti, Strintzi, D., Tala, Tuomas, Angioni, C., Citrin, J., Colyer, G., Figueiredo, A.C.A., Frassinetti, L., Joffrin, E., Lerche, E., Peeters, A.G., Tsalas, M., Van Eester, D., de Vries, P.C., Weiland, J., Baruzzo, M., Beurskens, M.N.A., Bizarro, J.P.S., Buratti, P., Crisanti, F., Garbet, X., Giroud, C., Hawkes, N., Hobirk, J., Imbeaux, F., Mailloux, J., Naulin, V., Sozzi, C., Staebler, G., and Versloot, T.W.
- Published
- 2010
8. JET Rotation Experiments towards the Capability to Predict the Toroidal Rotation Profile
- Author
-
Tala T., Lin Y., Mantica P., Nave M.F.F., Sun Y., Versloot T.W., de Vries P.C., Angioni C., Asunta O., Corrigan G., Giroud C., Ferreira J., Hellsten T., Johnson T., Koslowski H., Lerche E., Liang Y., Lönnroth J., Naulin V., Peeters A.G., Rice J.E., Salmi A., Solomon W., Strintzi D., Tardini G., Tsalas M., van Eester D., Weiland J., Weisen H., Zastrow K.-D., and JET-EFDA contributors
- Subjects
____ - Abstract
____
- Published
- 2010
9. JET Rotation Experiments towards the Capability to Predict the Toroidal Rotation Profile
- Author
-
Tala, Tuomas, Lin, Y., Mantica, P., Salmi, Antti, Nave, M.F.F., Sun, Y., Versloot, T.W., de Vries, P.C., Angioni, C., Asunta, O., Corrigan, G., Giroud, C., Ferreira, J., Hellsten, T., Johnson, T., Koslowski, H.R., Lerche, E., Liang, Y., Lönnroth, J., Naulin, V., Peeters, A.G., Rice, J.E., Solomon, W., Strintzi, D., Tardini, G., Tsalas, M., Van Eester, D., Weiland, J., Weisen, H., and Zastrow, K.D.
- Subjects
Physics::Plasma Physics - Abstract
The existence of an inward momentum pinch in JET plasmas was reported in the last IAEA meeting. Since then, several parametric scans to study the size of the inward momentum pinch demonstrate very robustly that the pinch number Rνpinch/χφ in H-mode plasmas is between 3-5 at r/a=0.4-0.8. Only in plasmas with R/Ln > 3, larger Rνpinch/χφ > 5 are found while other parametric dependencies are weaker. The Prandtl number is not found to depend very strongly on any of the parameters scanned, the values being typically between 1.5 and 2 at mid-radius. In intrinsic rotation studies, toroidal magnetic field ripple was found to affect both the edge rotation by lowering it typically close to zero or to small counter-rotation values and also core rotation where it is counter-rotating. An experiment to study Mode Conversion Flow Drive was performed using He3 ICRH scheme. Large central counter-rotation up to νφ = - 30 km/s was observed at He3 concentration levels of 10-17%, the rotation being proportional to ICRH power. A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field. The inferred torque has a global profile and originates from non-resonant components. Two types of edge rotation sinks have been analysed using recent JET data. Firstly, ELMs have been found to consistently cause a larger drop in momentum in comparison with the energy loss. Secondly, a difference in the magnitude of momentum and energy losses created by multiple charge-exchange reactions between neutrals and ions is observed, and with a significantly larger reduction in momentum than in energy content. While it seems probable that rotation profiles will be peaked in ITER thanks to the robust pinch term, its absolute value is still very challenging to predict with the present knowledge of sources and sinks and also due to the uncertainties in the rotation around the plasma edge.
- Published
- 2010
10. Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus
- Author
-
Mantica P., Tala T., Ferreira J. S., Peeters A. G., Salmi A., Strintzi D., Weiland J., Brix M., Giroud C., Corrigan G., Naulin V., Tardini G., Zastrow K.-D., and JET-EFDA Contributors
- Subjects
Physics ,Convection ,Toroid ,plasma simulation ,Tokamak devices ,plasma kinetic theory ,perturbative transport ,Joint European Torus ,pinch effect ,Mechanics ,Condensed Matter Physics ,Thermal diffusivity ,plasma toroidal confinement ,Neutral beam injection ,plasma transport processes ,Momentum diffusion ,momentum transport ,plasma beam injection heating ,Tokamak turbulent transport ,Physics::Plasma Physics ,Pinch ,Atomic physics ,Magnetohydrodynamics ,plasma magnetohydrodynamics - Abstract
Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53(4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power or by modulating in antiphase tangential and normal beams to produce a torque perturbation in the absence of a power perturbation. The resulting periodic perturbation in the toroidal rotation velocity was modeled using time-dependent transport simulations in order to extract empirical profiles of momentum diffusivity and pinch. Details of the experimental technique, data analysis, and modeling are provided. The momentum diffusivity in the core region (0.2 < ρ < 0.8) was found to be close to the ion heat diffusivity (χϕ/χi ∼ 0.7–1.7) and a significant inward momentum convection term, up to 20 m/s, was found, leading to an effective momentum diffusivity significantly lower than the ion heat diffusivity (χϕeff/χieff ∼ 0.4). These results have significant implications on the prediction of toroidal rotation velocities in future tokamaks and are qualitatively consistent with recent developments in momentum transport theory. Detailed quantitative comparisons with the theoretical predictions of the linear gyrokinetic code GKW [A. G. Peeters et al., Comput. Phys. Commun. 180, 2650 (2009)] and of the quasilinear fluid Weiland model [J. Weiland, Collective Modes in Inhomogeneous Plasmas (IOP, Bristol, 2000)] are presented for two analyzed discharges.
- Published
- 2010
- Full Text
- View/download PDF
11. Internal transport barrier dynamics with plasma rotation in JET
- Author
-
De Vries, P. C., Joffrin, E., Brix, M., Challis, C. D., Crombé, K., Esposito, B., Hawkes, N. C., Giroud, C., Hobirk, J., Lönnroth, J., Mantica, P., Strintzi, D., Tala, T., Voitsekhovitch, I., JET EFDA Contributors, and JET EFDA Contributors
- Subjects
Nuclear and High Energy Physics ,Materials science ,Toroidal and poloidal ,Tokamak ,DIII-D ,Turbulence ,Mechanics ,Condensed Matter Physics ,law.invention ,Nuclear physics ,Shear (geology) ,law ,Physics::Plasma Physics ,____ ,Torque ,Nuclear fusion ,Positive feedback - Abstract
At JET the dynamics of internal transport barriers (ITBs) has been explored by trying to decouple the effects of heating on the one hand and torque on the other with the ultimate objective of identifying the minimum torque required for the formation of transport barriers. The experiments shed light on the physics behind the initial trigger for ITBs, which often shows to be linked to the shape of the q profile and magnetic shear, while the further development was influenced by the strength of the rotational shear. In discharges with a small amount of rotational shear ITBs were triggered, which suggest that the overall rotational shear is not the dominant factor in the triggering process. However, the subsequent growth of the barrier was limited if the rotational shear was too low at the time of triggering. This growth phase may be highly non-linear, with several possible positive feedback loops, such as the increases in the toroidal and poloidal component of the rotational shear caused by the ITB itself.
- Published
- 2009
- Full Text
- View/download PDF
12. Experimental Evidence on Inward Momentum Pinch on JET and Comparison with Theory and Modelling
- Author
-
Tala T., Ferreira J., Mantica P., Peeters A.G., Tardini G., Zastrow K.-D., Brix M., Corrigan G., Giroud C., Jenkins I., Naulin V., Strintzi D., Versloot T., de Vries P.C., and JET-EFDA contributors
- Subjects
___ - Abstract
____
- Published
- 2008
13. Experimental Study of the Ion Critical Gradient Length and Stiffness Level and the Impact of Rotational Shear in the JET tokamak
- Author
-
Mantica P., Strintzi D., Tala T., Giroud C., Johnson T., Leggate H., Lerche E., Loarer T., Peeters A.G., Salmi A., Sharapov S., Van Eester D., de Vries P.C., Zabeo L., Zastrow K.-D., and JET-EFDA contributors
- Subjects
____ - Abstract
____
- Published
- 2008
14. Experimental Study of the Ion Critical Gradient Length and Stiffness Level and the Impact of Rotational Shear in JET
- Author
-
Mantica, P., Ryter, F., Strintzi, D., and Tala, Tuomas
- Published
- 2008
15. Experimental evidence on inward momentum pinch on JET and comparison with theory and modelling
- Author
-
Tala, T., Ferreira, J., Mantica, P., Peeters, A.G., Tardini, G., de Vries, P.C., Zastrow, K.-D., Brix, M., Corrigan, G., Giroud, C., Jenkins, I., Naulin, Volker, Strintzi, D., and Versloot, T.
- Subjects
Energiteknologier på vej - Published
- 2008
16. Enhanced Rieger-type periodicities' detection in X-ray solar flares and statistical validation of Rossby waves' existence
- Author
-
Dimitropoulou, M. Moussas, X. Strintzi, D.
- Abstract
The known Rieger periodicity (ranging in literature from 150 up to 160 d) is obvious in numerous solar indices. Many subharmonic periodicities have also been observed (128-, 102-, 78- and 51-d) in flare, sunspot, radio bursts, neutrino flux and flow data, coined as Rieger-type periodicities (RTPs). Several attempts are focused to the discovery of their source, as well as the explanation of some intrinsic attributes that they present, such as their connection to extremely active flares, their temporal intermittency as well as their tendency to occur near solar maxima. In this paper, we link the X-ray flare observations made on Geosynchronous Operational Environmental Satellites (GOES) to the already existing theoretical Lou model, suggesting that the mechanism behind the RTPs is the Rossby-type waves. The enhanced data analysis methods used in this article (Scargle-Lomb periodogram and Weighted Wavelet Z-Transform) provide the proper resolution needed to argue that RTPs are present also in less energetic flares, contrary to what has been inferred from observations so far. © 2008 RAS.
- Published
- 2008
17. The toroidal momentum pinch velocity
- Author
-
Peeters, A. G., Angioni, C., and Strintzi, D.
- Subjects
Plasma Physics (physics.plasm-ph) ,Physics::Plasma Physics ,FOS: Physical sciences ,Physics - Plasma Physics - Abstract
In this letter a pinch velocity of toroidal momentum is shown to exist for the first time. Using the gyro-kinetic equations in the frame moving with the equilibrium toroidal velocity, it is shown that the physics effect can be elegantly formulated through the ``Coriolis'' drift. A fluid model is used to highlight the main coupling mechanisms between the density and temperature perturbations on the one hand and the perturbed parallel flow on the other. Gyro-kinetic calculations are used to accurately asses the magnitude of the pinch. The pinch velocity leads to a radial gradient of the toroidal velocity profile even in the absence of a torque on the plasma. It is shown to be sizeable in the plasmas of the International Thermonuclear Experimental Reactor (ITER) leading to a moderately peaked rotation profile. Finally, the pinch also affects the interpretation of current experiments., 4 Pages, 2 Figures. Submitted to Phys. Rev. Letters on the 17th of Nov. 2006
- Published
- 2007
18. Ion temperature gradient turbulence close to the finite heat flux threshold.
- Author
-
Weikl, A., Peeters, A. G., Rath, F., Grosshauser, S. R., Buchholz, R., Hornsby, W. A., Seiferling, F., and Strintzi, D.
- Subjects
HEAT flux ,COLLISIONLESS plasmas ,ION temperature ,TURBULENCE ,COLLISIONS (Nuclear physics) - Abstract
The dependence of the heat flux on the temperature gradient length in collisionless ion temperature gradient turbulence has recently been revisited. It has been found that the heat flux is discontinuous at a finite heat flux threshold larger than the (Dimits) interpolated threshold. In this paper, the influence of collisions on the heat flux close to the threshold is investigated. It is found that up to relatively high collision frequencies, relevant to the modern day experiments, a discontinuous behaviour of the heat flux as a function of the gradient length persists. Collisions, however, do lead to a reduction in the gradient length at which the discontinuity is observed. Below the finite heat flux threshold, a state of low turbulence with a vanishing small heat flux persists, which can drive the zonal flow against the collisional dissipation. This state is characterised by the fully developed staircases in the radial ExB shearing profile. Increasing the collision frequency at a fixed gradient length leads to the loss of the fully developed staircase structure with the ExB shearing profile having the form of a sawtooth that allows for avalanche formation and a finite heat flux. At very high collision frequencies or gradient lengths well above the threshold the staircase structure is lost. The simulations indicate that the long wave length zonal flow saturates through a mechanism that directly involves the turbulence intensity. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
19. Field theory of nonlinear gyrofluid models
- Author
-
Strintzi, D.
- Published
- 2005
20. Overview of ASDEX Upgrade resultsâ€'development of integrated operating scenarios for ITER
- Author
-
Guenter, S., Angioni, C., Apostoliceanu, M., Atanasiu, C., Balden, M., Becker, G., Becker, W., Behler, K., Behringer, K., Bergmann, A., Bilato, R., Bizyukov, I., Bobkov, V., Bolzonella, T., Borba, D., Borrass, K., Brambilla, M., Braun, F., Buhler, A., Carlson, A., Chankin, A., Chen, J., Chen, Y., Cirant, S., Conway, G., Coster, D., Dannert, T., Dimova, K., Drube, R., Dux, R., Eich, T., Engelhardt, K., Fahrbach, H. U., Fantz, U., Fattorini, L., Foley, M., Franzen, P., Fuchs, J. C., Gafert, J., Gal, K., Gantenbein, G., GARCA MUOZ, M., Gehre, O., Geier, A., Giannone, L., Gruber, O., Haas, G., Hartmann, D., Heger, B., Heinemann, B., Herrmann, A., Hobirk, J., Hohencker, H., Horton, L., Huart, M., Igochine, V., Jacchia, A., Jakobi, M., Jenko, F., Kallenbach, A., Klvin, S., Kardaun, O., Kaufmann, M., Keller, A., Kendl, A., Kick, M., Kim, J. W., Kirov, K., Klose, S., Kochergov, R., Kocsis, G., Kollotzek, H., Konz, C., Kraus, W., Krieger, K., KURKI SUONIO, T., Kurzan, B., Lackner, K., Lang, P. T., Lauber, P., Laux, M., Leuterer, F., Likonen, J., Lohs, A., Lorenz, A., Lorenzini, R., Lyssoivan, A., Maggi, C., Maier, H., Mank, K., Manini, A., Manso, M. E., Mantica, P., Maraschek, M., Martin, Piero, Mast, K. F., Mayer, M., Mccarthy, P., Meyer, H., Meisel, D., Meister, H., Menmuir, S., Meo, F., Merkel, P., Merkel, R., Merkl, D., Mertens, V., Monaco, F., Mck, A., Mller, H. W., Mnich, M., Murmann, H., Y. S., Na, Narayanan, R., Neu, G., Neu, R., Neuhauser, J., Nishijima, D., Nishimura, Y., Noterdaeme, J. M., Nunes, I., PACCO DCHS, M., Pautasso, G., Peeters, A. G., Pereverzev, G., Pinches, S., Poli, E., POSTHUMUS WOLFRUM, E., Ptterich, T., Pugno, R., Quigley, E., Radivojevic, I., Raupp, G., Reich, M., Riedl, R., Ribeiro, T., Rohde, V., Roth, J., Ryter, F., Saarelma, S., Sandmann, W., Santos, J., Schall, G., Schilling, H. B., Schirmer, J., Schneider, W., Schramm, G., Schweinzer, J., Schweizer, S., Scott, B., Seidel, U., Serra, F., Sihler, C., Silva, A., Sips, A., Speth, E., Stbler, A., Steuer, K. H., Stober, J., Streibl, B., Strintzi, D., Strumberger, E., Suttrop, W., Tardini, G., Tichmann, C., Treutterer, W., Troppmann, M., Tsalas, M., Urano, H., and Varela, P.
- Published
- 2005
21. Nonlocal Nonlinear Electrostatic Gyrofluid Equations: A four-moment model
- Author
-
Strintzi, D., Scott, B. D., and Brizard, A. J.
- Subjects
Plasma Physics (physics.plasm-ph) ,Physics::Plasma Physics ,Fluid Dynamics (physics.flu-dyn) ,FOS: Physical sciences ,Physics - Fluid Dynamics ,Physics - Plasma Physics - Abstract
Extending a previous single-temperature model, an electrostatic gyrofluid model that includes anisotropic temperatures (parallel and perpendicular) and can treat general nonlinear situations is constructed. The model is based on a Lagrangian formulation of gyrofluid dynamics, which leads to an exact energy conservation law. Diamagnetic cancelations are inserted manually in such a way that energy conservation is preserved. Comparison with previous models shows a very good agreement for zero-Larmor-radius terms in the gyrofluid equations of motion., 22 pages, 0 figures, submited to Physics of Plasmas
- Published
- 2004
22. Simulations of finite beta turbulence in Tokamaks and Stellarators
- Author
-
Jenko, F., Scott, B., Dorland, W., Kendl, A., and Strintzi, D.
- Subjects
Physics::Plasma Physics - Abstract
One of the central open questions in our attempt to understand microturbulence in fusion plas-mas concerns the role of finite β effects. Nonlinear codes trying to investigate this issue must go beyond the commonly used adiabatic electron approximation - a task which turns out to be a serious computational challenge. This step is necessary because the passing electrons are the prime contributor to the parallel currents which in turn produce the magnetic field fluctuations. Results at both ion and electron space-time scales from gyrokinetic and gyrofluid models are presented which shed light on the character of finite β turbulence in tokamaks and stellarators.
- Published
- 2003
23. Comparison of gradient and flux driven gyro-kinetic turbulent transport.
- Author
-
Rath, F., Peeters, A. G., Buchholz, R., Grosshauser, S. R., Migliano, P., Weikl, A., and Strintzi, D.
- Subjects
FLUX (Energy) ,THERMISTORS ,MAGNETOHYDRODYNAMICS ,LARMOR radius ,ION temperature - Abstract
Flux and gradient driven ion temperature gradient turbulence in tokamak geometry and for Cyclone base case parameters are compared in the local limit using the same underlying gyrokinetic turbulence model. The gradient driven turbulence described using the flux tube model with periodic boundary conditions has a finite ion heat flux Q
i ≈ 10 n0 T0 ρ2* vth , where n0 (T0 ) is the background density (temperature), ρ* = q/R is the normalized Larmor radius, R is the major radius of the device, and vth is the ion thermal velocity at the nonlinear threshold of the temperature gradient length for turbulence generation. Consequently, the gradient driven local transport model is unable to accurately describe heat fluxes below Qi < 10 n0 T0 q2*vth , since no stationary fully developed turbulent state can be obtained. The turbulence in the flux driven case shows intermittent behaviour and avalanches for Qi < 10 n0 T0 ρ2* vth . Isolated avalanches disappear for Qi > 10 n0 T0 ρ2* vth , and at higher heat fluxes, the statistics of the turbulence is the same for the flux and gradient driven case. The nonlinear upshift of the temperature gradient length threshold for turbulence generation (known as the Dimits shift) is larger in the case of flux driven turbulence. This higher nonlinear upshift is attributed to the generation of structures in the radial temperature profile, known as staircases [Dif-Pradalier, Phys. Rev. E 82,0 2540 1 (20 10 )]. Avalanches are initiated at specific locations and have roughly the same radial extent of 50 -70 ion Larmor radii. The staircases are obtained at low heating rates, and become unstable and break up at higher heating rates. At the heat fluxes for which staircase formation is observed, no stationary gradient driven simulations can be obtained. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
24. Influence of centrifugal effects on particle and momentum transport in National Spherical Torus Experiment.
- Author
-
Buchholz, R., Grosshauser, S., Guttenfelder, W., Hornsby, W. A., Migliano, P., Peeters, A. G., and Strintzi, D.
- Subjects
CENTRIFUGAL force ,PARTICLES (Nuclear physics) ,MOMENTUM (Mechanics) ,PHYSICS experiments ,TOKAMAKS ,LINEAR systems - Abstract
This paper studies the effect of rotation on microinstabilities under experimentally relevant conditions in the spherical tokamak National Spherical Torus Experiment (NSTX). The focus is specifically on the centrifugal force effects on the impurity and momentum transport in the core (r/a = 0:7) of an H-mode plasma. Due to relatively high beta, the linear simulations predict the presence of both microtearing mode (MTM) and hybrid ion temperature gradient-kinetic ballooning mode (ITG-KBM) electromagnetic instabilities. Rotation effects on both MTM and ITG-KBM growth rates and mode frequencies are found to be small for the experimental values. However, they do influence the quasi-linear particle and momentum fluxes predicted by ITG-KBM (MTM contributes only to electron heat flux). The gradient of the intrinsic carbon impurity in the sourcefree core region is predicted to be locally hollow, strengthened by centrifugal effects. This result is consistent with experimental measurements and contradicts neoclassical theory that typically provides a reasonable explanation of the impurity profiles in NSTX. The diffusive and Coriolis pinch contributions to momentum transport are found to be relatively weak. Surprisingly, the strongest contribution derives from a centrifugal effect proportional to the product of rotation and rotation shear, which predicts an inward momentum flux roughly three times bigger than the Coriolis pinch, suggesting it should be considered when interpreting previous experimental pinch measurements. [ABSTRACT FROM AUTHOR]
- Published
- 2015
- Full Text
- View/download PDF
25. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma.
- Author
-
Isliker, H., Pisokas, Th., Strintzi, D., and Vlahos, L.
- Subjects
PLASMA confinement ,ELECTRON temperature ,CONTROLLED fusion ,HEAT flux ,TURBULENCE - Abstract
A new self-organized criticality (SOC) model is introduced in the form of a cellular automaton (CA) for ion temperature gradient (ITG) mode driven turbulence in fusion plasmas. Main characteristics of the model are that it is constructed in terms of the actual physical variable, the ion temperature, and that the temporal evolution of the CA, which necessarily is in the form of rules, mimics actual physical processes as they are considered to be active in the system, i.e., a heating process and a local diffusive process that sets on if a threshold in the normalized ITG R/L
T is exceeded. The model reaches the SOC state and yields ion temperature profiles of exponential shape, which exhibit very high stiffness, in that they basically are independent of the loading pattern applied. This implies that there is anomalous heat transport present in the system, despite the fact that diffusion at the local level is imposed to be of a normal kind. The distributions of the heat fluxes in the system and of the heat out-fluxes are of power-law shape. The basic properties of the model are in good qualitative agreement with experimental results. [ABSTRACT FROM AUTHOR]- Published
- 2010
- Full Text
- View/download PDF
26. Anomalous parallel momentum transport due to E×B flow shear in a tokamak plasma.
- Author
-
Casson, F. J., Peeters, A. G., Camenen, Y., Hornsby, W. A., Snodin, A. P., Strintzi, D., and Szepesi, G.
- Subjects
TOKAMAKS ,PLASMA gases ,PLASMA dynamics ,PLASMA waves ,RHEOLOGY - Abstract
Nondiffusive anomalous momentum transport in toroidal plasmas occurs through symmetry breaking mechanisms. In this paper the contribution of sheared E×B flows to parallel momentum transport [R. R. Dominguez and G. M. Staebler, Phys Fluids B 5, 3876 (1993)] is investigated with nonlinear gyrokinetic simulations in toroidal geometry. The background perpendicular shear is treated independently from the parallel velocity shear to isolate a nondiffusive, nonpinch contribution to the parallel momentum flux. It is found that the size of the term depends strongly on the magnetic shear, with the sign reversing for negative magnetic shear. Perpendicular shear flows are responsible for both symmetry breaking and suppression of turbulence, resulting in a shearing rate at which there is a maximum contribution to the momentum transport. The E×B momentum transport is shown to be quenched by increasing flow shear more strongly than the standard linear quench rule for turbulent heat diffusivity. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
27. Intrinsic rotation driven by the electrostatic turbulence in up-down asymmetric toroidal plasmas.
- Author
-
Camenen, Y., Peeters, A. G., Angioni, C., Casson, F. J., Hornsby, W. A., Snodin, A. P., and Strintzi, D.
- Subjects
PLASMA turbulence ,MAGNETIC fields ,PLASMA dynamics ,PLASMA gases ,PLASMA waves ,MAGNETOHYDRODYNAMICS - Abstract
The transport of parallel momentum by small scale fluctuations is intrinsically linked to symmetry breaking in the direction of the magnetic field. In tokamaks, an up-down asymmetry in the equilibrium proves to be an efficient parallel symmetry breaking mechanism leading to the generation of a net radial flux of parallel momentum by the electrostatic turbulence [Y. Camenen et al., Phys. Rev. Lett. 102, 125001 (2009)]. This flux is neither proportional to the toroidal rotation nor to its gradient and arises from an incomplete cancellation of the local contributions to the parallel momentum flux under the flux surface average. The flux of parallel momentum then depends on the asymmetry of the curvature drift and on the extension of the fluctuations around the low field side midplane. In this paper, the mechanisms underlying the generation of the flux of parallel momentum are highlighted and the main dependences on plasma parameters investigated using linear gyrokinetic simulations. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
28. The influence of the self-consistent mode structure on the Coriolis pinch effect.
- Author
-
Peeters, A. G., Angioni, C., Camenen, Y., Casson, F. J., Hornsby, W. A., Snodin, A. P., and Strintzi, D.
- Subjects
CORIOLIS force ,PLASMA gases ,PLASMA waves ,ELECTROMAGNETIC fields ,PLASMA dynamics - Abstract
This paper discusses the effect of the mode structure on the Coriolis pinch effect [A. G. Peeters, C. Angioni, and D. Strintzi, Phys. Rev. Lett. 98, 265003 (2007)]. It is shown that the Coriolis drift effect can be compensated for by a finite parallel wave vector, resulting in a reduced momentum pinch velocity. Gyrokinetic simulations in full toroidal geometry reveal that parallel dynamics effectively removes the Coriolis pinch for the case of adiabatic electrons, while the compensation due to the parallel dynamics is incomplete for the case of kinetic electrons, resulting in a finite pinch velocity. The finite flux in the case of kinetic electrons is interpreted to be related to the electron trapping, which prevents a strong asymmetry in the electrostatic potential with respect to the low field side position. The physics picture developed here leads to the discovery and explanation of two unexpected effects: First the pinch velocity scales with the trapped particle fraction (root of the inverse aspect ratio), and second there is no strong collisionality dependence. The latter is related to the role of the trapped electrons, which retain some symmetry in the eigenmode, but play no role in the perturbed parallel velocity. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
29. Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak.
- Author
-
Peeters, A. G., Strintzi, D., Camenen, Y., Angioni, C., Casson, F. J., Hornsby, W. A., and Snodin, A. P.
- Subjects
- *
CORIOLIS force , *TOROIDAL harmonics , *TOKAMAKS , *CENTRIFUGAL force , *MOMENTUM transfer - Abstract
The paper derives the gyro-kinetic equation in the comoving frame of a toroidally rotating plasma, including both the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)] as well as the centrifugal force. The relation with the laboratory frame is discussed. A low field side gyro-fluid model is derived from the gyro-kinetic equation and applied to the description of parallel momentum transport. The model includes the effects of the Coriolis and centrifugal force as well as the parallel dynamics. The latter physics effect allows for a consistent description of both the Coriolis drift effect as well as the ExB shear effect [R. R. Dominguez and G. M. Staebler, Phys. Fluids B 5, 3876 (1993)] on the momentum transport. Strong plasma rotation as well as parallel dynamics reduce the Coriolis (inward) pinch of momentum and can lead to a sign reversal generating an outward pinch velocity. Also, the ExB shear effect is, in a similar manner, reduced by the parallel dynamics and stronger rotation. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
30. Comment on “Turbulent equipartition theory of toroidal momentum pinch” [Phys. Plasmas 15, 055902 (2008)].
- Author
-
Peeters, A. G., Angioni, C., and Strintzi, D.
- Subjects
CORIOLIS force ,SPEED ,DENSITY gradient centrifugation ,ATOMS ,MOMENTUM (Mechanics) - Abstract
The comment addresses questions raised on the derivation of the momentum pinch velocity due to the Coriolis drift effect [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. These concern the definition of the gradient, and the scaling with the density gradient length. It will be shown that the turbulent equipartition mechanism is included within the derivation using the Coriolis drift, with the density gradient scaling being the consequence of drift terms not considered in [T. S. Hahm et al., Phys. Plasmas 15, 055902 (2008)]. Finally the accuracy of the analytic models is assessed through a comparison with the full gyrokinetic solution. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
31. Impact of the background toroidal rotation on particle and heat turbulent transport in tokamak plasmas.
- Author
-
Camenen, Y., Peeters, A. G., Angioni, C., Casson, F. J., Hornsby, W. A., Snodin, A. P., and Strintzi, D.
- Subjects
CORIOLIS force ,TOKAMAKS ,ROTATIONAL motion ,QUANTUM perturbations ,HEAT flux ,FLUID mechanics - Abstract
Recent developments in the gyrokinetic theory have shown that, in a toroidal device, the Coriolis drift associated with the background plasma rotation significantly affects the small scale instabilities [A. G. Peeters et al., Phys. Rev. Lett. 98, 265003 (2007)]. The later study, which focuses on the effect of the Coriolis drift on toroidal momentum transport is extended in the present paper to heat and particle transport. It is shown numerically using the gyrokinetic flux-tube code GKW [A. G. Peeters and D. Strintzi, Phys. Plasmas 11, 3748 (2004)], and supported analytically, that the Coriolis drift and the parallel dynamics play a similar role in the coupling of density, temperature, and velocity perturbations. The effect on particle and heat fluxes increases with the toroidal rotation (directly) and with the toroidal rotation gradient (through the parallel mode structure), depends on the direction of propagation of the perturbation, increases with the impurity charge number and with the impurity mass to charge number ratio. The case of very high toroidal rotation, relevant to spherical tokamaks, is investigated by including the effect of the centrifugal force in a fluid model. The main effect of the centrifugal force is to decrease the local density gradient at the low field side midplane and to add an extra contribution to the fluxes. The conditions for which the inertial terms significantly affect the heat and particle fluxes are evidenced. [ABSTRACT FROM AUTHOR]
- Published
- 2009
- Full Text
- View/download PDF
32. Enhanced Rieger-type periodicities' detection in X-ray solar flares and statistical validation of Rossby waves' existence.
- Author
-
Dimitropoulou, M., Moussas, X., and Strintzi, D.
- Subjects
X-rays ,SOLAR flares ,ROSSBY waves ,SOLAR cycle ,SOLAR radio bursts ,SOLAR neutrinos ,ASTRONOMY - Abstract
The known Rieger periodicity (ranging in literature from 150 up to 160 d) is obvious in numerous solar indices. Many subharmonic periodicities have also been observed (128-, 102-, 78- and 51-d) in flare, sunspot, radio bursts, neutrino flux and flow data, coined as Rieger-type periodicities (RTPs). Several attempts are focused to the discovery of their source, as well as the explanation of some intrinsic attributes that they present, such as their connection to extremely active flares, their temporal intermittency as well as their tendency to occur near solar maxima. In this paper, we link the X-ray flare observations made on Geosynchronous Operational Environmental Satellites (GOES) to the already existing theoretical Lou model, suggesting that the mechanism behind the RTPs is the Rossby-type waves. The enhanced data analysis methods used in this article (Scargle–Lomb periodogram and Weighted Wavelet Z-Transform) provide the proper resolution needed to argue that RTPs are present also in less energetic flares, contrary to what has been inferred from observations so far. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
33. The toroidal momentum diffusivity in a tokamak plasma: A comparison of fluid and kinetic calculations.
- Author
-
Strintzi, D., Peeters, A. G., and Weiland, J.
- Subjects
- *
TOROIDAL harmonics , *TOROIDAL magnetic circuits , *TOKAMAKS , *FLUIDS , *PLASMA gases - Abstract
Fluid and gyrokinetic calculations of the toroidal momentum diffusivity in a tokamak are compared. The four-moment gyrofluid model predicts the Prandtl number connected with the ion temperature gradient mode reasonably well provided the drift term is kept in the momentum balance. Without the drift term in the momentum balance, some previous gyrofluid models predicted small values of the Prandtl number in the range of experimental observations. It is shown that the drift term enters in the fluid equations through the gyroviscosity. Gyrokinetic calculations of the ion temperature gradient mode with kinetic electrons, and for experimentally relevant parameters yield a Prandtl number in the range 0.7–1.2. [ABSTRACT FROM AUTHOR]
- Published
- 2008
- Full Text
- View/download PDF
34. The Fokker‐Planck equation, and its application in plasma physics*.
- Author
-
Peeters, A.G. and Strintzi, D.
- Published
- 2008
- Full Text
- View/download PDF
35. On the relation between secondary and modulational instabilities.
- Author
-
Strintzi, D. and Jenko, F.
- Subjects
- *
PLASMA instabilities , *PLASMA gases , *PLASMA turbulence , *ELECTROMAGNETIC fields , *MAGNETOHYDRODYNAMICS - Abstract
The nonlinear saturation of microinstabilities in toroidal magnetoplasmas is sometimes discussed in the framework of secondary instability theory. At the same time, it has been proposed that the nonlinear generation of zonal flows—which are often responsible for turbulence control—can be explained in terms of modulational instabilities. The question of how these two approaches are connected to each other is addressed. [ABSTRACT FROM AUTHOR]
- Published
- 2007
- Full Text
- View/download PDF
36. Nonlocal nonlinear electrostatic gyrofluid equations: A four-moment model.
- Author
-
Strintzi, D., Scott, B. D., and Brizard, A. J.
- Subjects
- *
ELECTROSTATICS , *CONSERVATION of natural resources , *RENEWABLE energy sources , *FLUIDS , *MECHANICS (Physics) , *PHYSICS - Abstract
Extending a previous single-temperature model, an electrostatic gyrofluid model that includes anisotropic temperatures (T∥≠T⊥) and can treat general nonlinear situations is constructed. The model is based on a Lagrangian formulation of gyrofluid dynamics, which leads to an exact energy conservation law. Diamagnetic cancellations are inserted manually in such a way that energy conservation is preserved. Comparison with previous models shows a very good agreement for zero-Larmor-radius terms in the gyrofluid equations of motion. [ABSTRACT FROM AUTHOR]
- Published
- 2005
- Full Text
- View/download PDF
37. Nonlocal nonlinear electrostatic gyrofluid equations.
- Author
-
Strintzi, D. and Scott, B.
- Subjects
- *
FLUID dynamics , *ELECTROSTATICS , *FLUID mechanics , *DYNAMICS , *ELECTROHYDRODYNAMICS , *HYDRODYNAMICS - Abstract
Building on Lagrangian field theory methods of fluid dynamics, we construct a set of equations for an electrostatic gyrofluid model which can treat arbitrarily nonlinear situations. Noether’s theorem is used to find the exact energy theorem satisfied by the equations. The exchange of energy between the E×B fluid drift and thermal/kinetic parts of the dynamics is recovered rigorously. Diamagnetic cancellations are inserted manually. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
38. The effect of a uniform radial electric field on the toroidal ion temperature gradient mode.
- Author
-
Peeters, A. G. and Strintzi, D.
- Subjects
- *
ELECTRIC fields , *FIELD theory (Physics) , *TOKAMAKS , *IONS , *PLASMA gases , *TEMPERATURE , *PHYSICS - Abstract
It has been shown [Maccio, Phys. Plasmas 8, 895 (2001)] that a uniform radial electric field can stabilize the toroidal ion temperature gradient mode in tokamak plasmas. In this paper, using the ballooning transform, the mechanism leading to stabilization is further clarified. However, the stabilizing effect depends on the choice of the background distribution function. It is shown that if the electric field is connected with a toroidal plasma rotation the stabilizing effect becomes ineffective. Consequently, in many current experiments this effect should not play a role. © 2004 American Institute of Physics. [ABSTRACT FROM AUTHOR]
- Published
- 2004
- Full Text
- View/download PDF
39. Erratum: 'Influence of the centrifugal force and parallel dynamics on the toroidal momentum transport due to small scale turbulence in a tokamak' [Phys. Plasmas 16, 042310 (2009)].
- Author
-
Peeters, A. G., Strintzi, D., Camenen, Y., Angioni, C., Casson, F. J., Hornsby, W. A., and Snodin, A. P.
- Subjects
- *
PUBLISHED errata , *CENTRIFUGAL force , *PARALLEL algorithms , *TOROIDAL magnetic circuits , *MOMENTUM transfer , *PLASMA turbulence , *TOKAMAKS - Published
- 2012
- Full Text
- View/download PDF
40. A self-organized criticality model for ion temperature gradient mode driven turbulence in confined plasma
- Author
-
Strintzi, D [National Technical University of Athens, Association Euratom--Hellenic Republic, GR-15773 Athens (Greece)]
- Published
- 2010
- Full Text
- View/download PDF
41. Anomalous parallel momentum transport due to ExB flow shear in a tokamak plasma
- Author
-
Strintzi, D [National Technical University of Athens, GR-157 73 Athens (Greece)]
- Published
- 2009
- Full Text
- View/download PDF
42. Intrinsic rotation driven by the electrostatic turbulence in up-down asymmetric toroidal plasmas
- Author
-
Strintzi, D [EURATOM Association, National Technical University of Athens, GR-15773 Athens (Greece)]
- Published
- 2009
- Full Text
- View/download PDF
43. The influence of the self-consistent mode structure on the Coriolis pinch effect
- Author
-
Strintzi, D [National Technical University of Athens, GR-157 73 Athens (Greece)]
- Published
- 2009
- Full Text
- View/download PDF
44. Transport of Parallel Momentum Induced by Current-Symmetry Breaking in Toroidal Plasmas
- Author
-
Strintzi, D [National Technical University of Athens, EURATOM Association, GR-15773 Athens (Greece)]
- Published
- 2009
- Full Text
- View/download PDF
45. Comment on 'Turbulent equipartition theory of toroidal momentum pinch' [Phys. Plasmas 15, 055902 (2008)]
- Author
-
Strintzi, D [Department of Electrical and Computer Engineering, Association Euratom-Hellenic Republic, National Technical University of Athens, GR-157 73 Athens (Greece)]
- Published
- 2009
- Full Text
- View/download PDF
46. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak
- Author
-
Strintzi, D [National Technical University of Athens, Euratom Association, GR-15773 Athens (Greece)]
- Published
- 2009
- Full Text
- View/download PDF
47. Impact of the background toroidal rotation on particle and heat turbulent transport in tokamak plasmas
- Author
-
Strintzi, D [National Technical University of Athens, EURATOM Association, GR-15773 Athens (Greece)]
- Published
- 2009
- Full Text
- View/download PDF
48. Toroidal Momentum Pinch Velocity due to the Coriolis Drift Effect on Small Scale Instabilities in a Toroidal Plasma
- Author
-
Strintzi, D [National Technical University of Athens, Euratom Association, GR-15773 Athens (Greece)]
- Published
- 2007
- Full Text
- View/download PDF
49. Experimental study of the ion critical-gradient length and stiffness level and the impact of rotation in the JET tokamak.
- Author
-
Mantica P, Strintzi D, Tala T, Giroud C, Johnson T, Leggate H, Lerche E, Loarer T, Peeters AG, Salmi A, Sharapov S, Van Eester D, de Vries PC, Zabeo L, and Zastrow KD
- Abstract
Experiments were carried out in the JET tokamak to determine the critical ion temperature inverse gradient length (R/LTi=R|nablaTi|/Ti) for the onset of ion temperature gradient modes and the stiffness of Ti profiles with respect to deviations from the critical value. Threshold and stiffness have been compared with linear and nonlinear predictions of the gyrokinetic code GS2. Plasmas with higher values of toroidal rotation show a significant increase in R/LTi, which is found to be mainly due to a decrease of the stiffness level. This finding has implications on the extrapolation to future machines of present day results on the role of rotation on confinement.
- Published
- 2009
- Full Text
- View/download PDF
50. Transport of parallel momentum induced by current-symmetry breaking in toroidal plasmas.
- Author
-
Camenen Y, Peeters AG, Angioni C, Casson FJ, Hornsby WA, Snodin AP, and Strintzi D
- Abstract
The symmetry of a physical system strongly impacts on its properties. In toroidal plasmas, the symmetry along a magnetic field line usually constrains the radial flux of parallel momentum to zero in the absence of background flows. By breaking the up-down symmetry of the toroidal currents, this constraint can be relaxed. The parallel asymmetry in the magnetic configuration then leads to an incomplete cancellation of the turbulent momentum flux across a flux surface. The magnitude of the subsequent toroidal rotation increases with the up-down asymmetry and its sign depends on the direction of the toroidal magnetic field and plasma current. Such a mechanism offers new insights in the interpretation and control of the intrinsic toroidal rotation in present day experiments.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.