155 results on '"Stoker, C"'
Search Results
2. Results from the Mars Pathfinder Camera
- Author
-
Smith, P. H., Bell, J. F., Bridges, N. T., Britt, D. T., Gaddis, L., Greeley, R., Keller, H. U., Herkenhoff, K. E., Jaumann, R., Johnson, J. R., Kirk, R. L., Lemmon, M., Maki, J. N., Malin, M. C., Murchie, S. L., Oberst, J., Parker, T. J., Reid, R. J., Sablotny, R., Soderblom, L. A., Stoker, C., Sullivan, R., Thomas, N., Tomasko, M. G., Ward, W., and Wegryn, E.
- Published
- 1997
3. Astrobiology Survey of a Lava Cave at Lava Beds National Monument by a Rover Carrying a Remote Sensing Instrument Payload
- Author
-
Wong, Uland, Stoker, C, Cohen, Tamar E, Colapret, T, Noe, E, Skok, J. R, Roush, T, and Blank, J. G
- Subjects
Lunar And Planetary Science And Exploration - Abstract
We report here on a survey of a lava tube cave by a rover that is instrumented for astrobiology missions. The NASA Ames testbed rover, CaveR, was deployed in Valentine Cave in Lava Beds National Monument (N. CA, USA) during August of 2018. The rover carried an instrument package consisting of Near Infrared and Visible Spectrometer System (NIRVSS) a point spectrometer operating in 1590-3400 nm range, sensitive to H2O and -OH bearing minerals, pyroxenes, and carbonates (Roush, et al 2018); the bore sighted Drill Operations Camera (DOC), a monochrome imager illuminated by LEDs at 410, 540, 640, 740, 905 and 940 nm; a Realsense ™ depth sensor system for 3D model generation; and a high resolution DSLR stereo camera. The payload was mounted on a tiltable instrument platform attached to the left side of the rover. The rover was driven manually in the cave by field operators, following instructions from a remote science operations team, and simulating a mission concept with science-guided autonomy. A simulated mission took place for 3 days with a team of 3 scientists selecting targets and interpreting data from the payload. To begin the mission, the rover drove along one wall of the cave imaging continuously with the Realsense in 20 m cave segments, three total. At the start of each day, the images from a 20m segment and a panorama stitched from them were provided to the science team to examine. The science team used these data to prioritize specific points along the cave wall for the collection of NIRVSS, DOC, and DSLR data. The objective of the data collection was to identify and study putative biological and mineralogical features in the cave. The data were delivered in xGDS, a customized mapping, planning, and data base management software developed at NASA Ames (Lee, et al 2013). Once the targets for further observations were selected, a plan for collecting the observations (positions in the cave and pointing for each requested observation) was constructed using xGDS and delivered to a rover team to execute the science data collection plan. Acquired data were delivered back to the science team for analysis. Preliminary results from the experiment illustrate the utility of the system (rover plus payload) to study the cave geology and mineralogy and its potential for identifying biomineral features.
- Published
- 2019
4. Hematology and Blood Biochemistry of Young Healthy Broad-Snouted Caimans (Caiman latirostris)
- Author
-
Zayas, M. A., Rodríguez, H. A., Galoppo, G. H., Stoker, C., Durando, M., Luque, E. H., and Muñoz-de-Toro, M.
- Published
- 2011
5. H₂O at the Phoenix Landing Site
- Author
-
Smith, P. H., Tamppari, L. K., Arvidson, R. E., Bass, D., Blaney, D., Boynton, W. V., Carswell, A., Catling, D. C., Clark, B. C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, H. P., Hecht, M. H., Hipkin, V., Hoffman, J., Hviid, S. F., Keller, H. U., Kounaves, S. P., Lange, C. F., Lemmon, M. T., Madsen, M. B., Markiewicz, W. J., Marshall, J., McKay, C. P., Mellon, M. T., Ming, D. W., Morris, R. V., Pike, W. T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J. A., and Zent, A. P.
- Published
- 2009
- Full Text
- View/download PDF
6. Searching for Life on Early Mars: Lessons from the Pilbara
- Author
-
Clarke, J. D. A and Stoker, C. R
- Subjects
Exobiology - Abstract
Stromatolites in the Pilbara region of Western Australia constitute the earliest outcrop-scale evidence of life on Earth (Figure 1). The stromatolites in the 3.4 Ga Strelley Pool Formation (SPF) provide an important analog for searching for fossil evidence of early life on Mars, as Noachian aged sediments on Mars were formed under similar environmental conditions. Stromatolites represent possibly the best evidence that could be collected by a rover because they form recognizable macroscopic structures and are often associated with chemical and microscopic evidence.
- Published
- 2016
7. Voyager 2 at Neptune: Imaging Science Results
- Author
-
Smith, B. A., Soderblom, L. A., Banfield, D., Barnet, C., Basilevksy, A. T., Beebe, R. F., Bollinger, K., Boyce, J. M., Brahic, A., Briggs, G. A., Brown, R. H., Chyba, C., Collins, S. A., Colvin, T., Cook, A. F., Crisp, D., Croft, S. K., Cruikshank, D., Cuzzi, J. N., Danielson, G. E., Davies, M. E., De Jong, E., Dones, L., Godfrey, D., Goguen, J., Grenier, I., Haemmerle, V. R., Hammel, H., Hansen, C. J., Helfenstein, C. P., Howell, C., Hunt, G. E., Ingersoll, A. P., Johnson, T. V., Kargel, J., Kirk, R., Kuehn, D. I., Limaye, S., Masursky, H., McEwen, A., Morrison, D., Owen, T., Owen, W., Pollack, J. B., Porco, C. C., Rages, K., Rogers, P., Rudy, D., Sagan, C., Schwartz, J., Shoemaker, E. M., Showalter, M., Sicardy, B., Simonelli, D., Spencer, J., Sromovsky, L. A., Stoker, C., Strom, R. G., Suomi, V. E., Synott, S. P., Terrile, R. J., Thomas, P., Thompson, W. R., Verbiscer, A., and Veverka, J.
- Published
- 1989
8. Voyager 2 in the Uranian System: Imaging Science Results
- Author
-
Smith, B. A., Soderblom, L. A., Beebe, R., Bliss, D., Boyce, J. M., Brahic, A., Briggs, G. A., Brown, R. H., Collins, S. A., Cook, A. F., Croft, S. K., Cuzzi, J. N., Danielson, G. E., Davies, M. E., Dowling, T. E., Godfrey, D., Hansen, C. J., Harris, C., Hunt, G. E., Ingersoll, A. P., Johnson, T. V., Krauss, R. J., Masursky, H., Morrison, D., Owen, T., Plescia, J. B., Pollack, J. B., Porco, C. C., Rages, K., Sagan, C., Shoemaker, E. M., Sromovsky, L. A., Stoker, C., Strom, R. G., Suomi, V. E., Synnott, S. P., Terrile, R. J., Thomas, P., Thompson, W. R., and Veverka, J.
- Published
- 1986
9. The Icebreaker Mission to Search for Life on Mars
- Author
-
Stoker, C, Mckay, C, Brinckerhoff, W, Davila, A, Parro, V, and Quinn, R
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The search for evidence of life on Mars is the ultimate motivation for its scientific exploration. The results from the Phoenix mission indicate that the high N. latitude ice-rich regolith at low elevations is likely to be a recently habitable place on Mars [Stoker et al., 2010]. The near-surface ice likely provided adequate water activity during periods of high obliquity, 3 to 10 Myr ago. Carbon dioxide and nitrogen are present in the atmosphere, and nitrates may be present in the soil. Together with iron in basaltic rocks and perchlorate in the soil they provide carbon and energy sources, and oxidative power to drive metabolism. Furthermore, the presence of organics is possible, as thermally reactive perchlorate would have prevented their detection by Viking and Phoenix. The Mars Icebreaker Life mission [McKay et al., 2013] focuses on the following science goals: (1) Search for biomolecular evidence of life; (2) Search for organic matter from either exogeneous or endogeneous sources using methods that are not effected by the presence of perchlorate; (3) Characterize oxidative species that produced reactivity of soils seen by Viking; and 4) Assess the habitability of the ice bearing soils. The Icebreaker Life payload (Figure 1) includes a 1-m rotary percussive drill that brings cuttings samples to the surface where they are delivered to three instruments (Fig. 1), the Signs of Life Detector (SOLID) [Parro et al., 2011] for biomolecular analysis, Laser Desorption Mass Spectrometer (LDMS) [??? 2015]) for broad spectrum organic analysis, and Wet Chemistry Laboratory (WCL) [Hecht et al., 2009] for detecting soluble species of nutrients and reactive oxidants. The Icebreaker payload fits on the Phoenix spacecraft and can land at the well-characterized Phoe-nix landing site in 2020 in a Discovery-class mission.
- Published
- 2015
10. Crater Morphology in the Phoenix Landing Ellipse: Insights Into Net Erosion and Ice Table Depth
- Author
-
Noe Dobrea, E. Z, Stoker, C. R, McKay, C. P, Davila, A. F, and Krco, M
- Subjects
Space Sciences (General) ,Lunar And Planetary Science And Exploration - Abstract
Icebreaker [1] is a Discovery class mission being developed for future flight opportunities. Under this mission concept, the Icebreaker payload is carried on a stationary lander, and lands in the same landing ellipse as Phoenix. Samples are acquired from the subsurface using a drilling system that penetrates into materials which may include loose or cemented soil, icy soil, pure ice, rocks, or mixtures of these. To avoid the complexity of mating additional strings, the drill is single-string, limiting it to a total length of 1 m.
- Published
- 2015
11. The Signs of Life Detector (SOLID): An Instrument to Detect Molecular Biosignatures on Mars
- Author
-
Parro, V, Stoker, C, Davila, A. F, Quinn, R, and Gomez-Elvira, Javier
- Subjects
Life Sciences (General) - Abstract
The case for life on Mars grows stronger. Investigations at Gale Crater by Curiosity have revealed fine-grained sedimentary rocks inferred to represent an ancient lake environment suited to support life. In addition, Curiosity tentatively found a heterogeneous distribution of organic carbon within these sediments, consistent with the detection of native organic C in Mars meteorites. Furthermore, modern potentially habitable environments have been recognized on Mars including the N. Polar region visited by Phoenix, gully features suggesting modern water flows, and RSLs that occur seasonally suggest liquid processes. The time is ripe for missions to Mars incorporating a search for biochemical evidence of life.
- Published
- 2014
12. Red Dragon: Low-cost Access to the Surface of Mars using Commercial Capabilities
- Author
-
Karcz, John, Davis, S. M, Aftosmis, M. J, Allen, G. A, Bakhtian, N. M, Dyakonov, A. A, Edquist, K. T, Glass, B. J, Gonzales, A. A, Heldmann, J. L, Lemke, L. G, Marinova, M. M, McKay, C. P, Stoker, C. R, Wooster, P. D, and Zarchi, K. A
- Subjects
Astronomy - Abstract
We will discuss the feasibility of using a minimally-modified variant of a SpaceX Dragon capsule as a low-cost, large-capacity, near-term, Mars lander for scientific and human-precursor missions. We have been evaluating such a Red Dragon platform as an option for a Discovery Program mission concept. A Red Dragon lander has the potential to be low cost primarily because it would be derived from a routinely-flying spacecraft. Dragon is being developed to ferry cargo and crew to and from the International Space Station (ISS). The cargo variant is currently undergoing test flights, which will be followed by standard ISS cargo missions and, eventually, crewed flights. The human variant, unlike other Earth-return vehicles, appears to also have most of the capabilities necessary to land on Mars. In particular, it has a set of high-thrust, throttleable, storable bi-propellant Super- Draco engines integrated directly into the capsule which are intended for launch abort and powered landings on Earth. These thrusters suggest the possibility of a parachute-free, fully-propulsive deceleration at Mars from supersonic speeds to the surface. Concepts for large, human-relevant landers (see, e.g., [1]) also often employ supersonic retro-propulsion; Red Dragon's entry, descent, and landing approach would scale to those landers. Further, SpaceX's Falcon Heavy launch vehicle, currently under development and expected to have its first flight in 2013, will be capable of sending Dragon on a trajectory to Mars. We will discuss our motivation for exploring a Red Dragon lander, the primary technical questions which determine its feasibility, and the current results of our analysis. In particular, we will examine entry, descent, and landing (EDL) in detail. We will describe the modifications to Dragon necessary for interplanetary cruise, EDL, and operations on the Martian surface.
- Published
- 2012
13. Characterizing of a Mid-Latitude Ice-Rich Landing Site on Mars to Enable in Situ Habitability Studies
- Author
-
Heldmann, J, Schurmeier, L. R, Wilhelm, M, Stoker, C, McKay, C, Davila, A, Marinova, M, Karcz, J, and Smith, H
- Subjects
Lunar And Planetary Science And Exploration - Abstract
We suggest an ice-rich landing site at 188.5E 46.16N within Amazonis Planitia as a candidate location to support a Mars lander mission equipped to study past habitability and regions capable of preserving the physical and chemical signs of life and organic matter. Studies of the ice-rich subsurface on Mars are critical for several reasons. The subsurface environment provides protection from radiation to shield organic and biologic compounds from destruction. The ice-rich substrate is also ideal for preserving organic and biologic molecules and provides a source of H2O for biologic activity. Examination of martian ground ice can test several hypotheses such as: 1) whether ground ice supports habitable conditions, 2) that ground ice can preserve and accumulate organic compounds, and 3) that ice contains biomolecules evident of past or present biological activity on Mars. This Amazonis site, located near the successful Viking Lander 2, shows indirect evidence of subsurface ice (ubiquitous defined polygonal ground, gamma ray spectrometer hydrogen signature, and numerical modeling of ice stability) and direct evidence of exposed subsurface ice. This site also provides surface conditions favorable to a safe landing including no boulders, low rock density, minimal rough topography, and few craters.
- Published
- 2012
14. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface
- Author
-
Foing, B. H, Stoker, C, and Ehrenfreund, P
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.
- Published
- 2011
- Full Text
- View/download PDF
15. Properties of Subsurface Soil Cores from Four Geologic Provinces Surrounding Mars Desert Research Station, Utah: Characterizing Analog Martian Soil in a Human Exploration Scenario
- Author
-
Stoker, C. R, Clarke, J. D. A, Direito, S, and Foing, B
- Subjects
Geophysics - Abstract
The DOMEX program is a NASA-MMAMA funded project featuring simulations of human crews on Mars focused on science activities that involve collecting samples from the subsurface using both manual and robotic equipment methods and analyzing them in the field and post mission. A crew simulating a human mission to Mars performed activities focused on subsurface science for 2 weeks in November 2009 at Mars Desert Research Station near Hanksville, Utah --an important chemical and morphological Mars analog site. Activities performed included 1) survey of the area to identify geologic provinces, 2) obtaining soil and rock samples from each province and characterizing their mineralogy, chemistry, and biology; 3) site selection and reconnaissance for a future drilling mission; 4) deployment and testing of Mars Underground Mole, a percussive robotic soil sampling device; and 5) recording and analyzing how crew time was used to accomplish these tasks. This paper summarizes results from analysis of soil cores
- Published
- 2011
16. Analysis of Mars Analogue Soil Samples Using Solid-Phase Microextraction, Organic Solvent Extraction and Gas Chromatography/Mass Spectrometry
- Author
-
Orzechowska, G. E, Kidd, R. D, Foing, B. H, Kanik, I, Stoker, C, and Ehrenfreund, P
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Polycyclic aromatic hydrocarbons (PAHs) are robust and abundant molecules in extraterrestrial environments. They are found ubiquitously in the interstellar medium and have been identified in extracts of meteorites collected on Earth. PAHs are important target molecules for planetary exploration missions that investigate the organic inventory of planets, moons and small bodies. This study is part of an interdisciplinary preparation phase to search for organic molecules and life on Mars. We have investigated PAH compounds in desert soils to determine their composition, distribution and stability. Soil samples (Mars analogue soils) were collected at desert areas of Utah in the vicinity of the Mars Desert Research Station (MDRS), in the Arequipa region in Peru and from the Jutland region of Denmark. The aim of this study was to optimize the solid-phase microextraction (SPME) method for fast screening and determination of PAHs in soil samples. This method minimizes sample handling and preserves the chemical integrity of the sample. Complementary liquid extraction was used to obtain information on five- and six-ring PAH compounds. The measured concentrations of PAHs are, in general, very low, ranging from 1 to 60 ng g(sup -1). The texture of soils is mostly sandy loam with few samples being 100% silt. Collected soils are moderately basic with pH values of 8-9 except for the Salten Skov soil, which is slightly acidic. Although the diverse and variable microbial populations of the samples at the sample sites might have affected the levels and variety of PAHs detected, SPME appears to be a rapid, viable field sampling technique with implications for use on planetary missions.
- Published
- 2011
- Full Text
- View/download PDF
17. Drilling on the Moon and Mars: Developing the Science Approach for Subsurface Exploration with Human Crews
- Author
-
Stoker, C. R, Zavaleta, J, Bell, M, Direto, S, Foing, B, Blake, D, and Kim, S
- Subjects
Lunar And Planetary Science And Exploration - Abstract
DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.
- Published
- 2010
18. Field Simulation of a Drilling Mission to Mars to Search for Subsurface Life
- Author
-
Stoker, C. R, Lemke, L. G, Cannon, H, Glass, B, Dunagan, S, Zavaleta, J, Miller, D, and Gomez-Elvira, J
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The discovery of near surface ground ice by the Mars Odyssey mission and the abundant evidence for recent Gulley features observed by the Mars Global Surveyor mission support longstanding theoretical arguments for subsurface liquid water on Mars. Thus, implementing the Mars program goal to search for life points to drilling on Mars to reach liquid water, collecting samples and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. Searching for life in the subsurface of Mars will require drilling, sample extraction and handling, and new technologies to find and identify biomarker compounds and search for living organisms. In spite of its obvious advantages, robotic drilling for Mars exploration is in its technological infancy and has yet to be demonstrated in even a terrestrial field environment.
- Published
- 2005
19. RIO Tinto Faulted Volcanosedimentary Deposits as Analog Habitats for Extant Subsurface Biospheres on Mars: A Synthesis of the MARTE Drilling Project Geobiology Results
- Author
-
Fernandez-Remolar, D. C, Prieto-Ballesteros, O, Rodriquez, N, Davila, F, Stevens, T, Amils, R, Gomez-Elvira, J, and Stoker, C
- Subjects
Geophysics - Abstract
Geochemistry and mineralogy on Mars surface characterized by the MER Opportunity Rover suggest that early Mars hosted acidic environments in the Meridiani Planum region [1, 2]. Such extreme paleoenvironments have been suggested to be a regional expression of the global Mars geological cycle that induced acidic conditions by sulfur complexation and iron buffering of aqueous solutions [3]. Under these assumptions, underground reservoirs of acidic brines and, thereby, putative acidic cryptobiospheres, may be expected. The MARTE project [4, 5] has performed a drilling campaign to search for acidic and anaerobic biospheres in R o Tinto basement [6] that may be analogs of these hypothetical communities occurring in cryptic habitats of Mars. This Rio Tinto geological region is characterized by the occurrence of huge metallic deposits of iron sulfides [7]. Late intensive diagenesis of rocks driven by a compressive regimen [8] largely reduced the porosity of rocks and induced a cortical thickening through thrusting and inverse faulting and folding. Such structures play an essential role in transporting and storing water underground as any other aquifers do in the Earth. Once the underground water reservoirs of the Ro Tinto basement contact the hydrothermal pyrite deposits, acidic brines are produced by the release of sulfates and iron through the oxidation of sulfides [9].
- Published
- 2005
20. Searching for Life Underground: An Analysis of Remote Sensing Observations of a Drill Core from Rio Tinto, Spain for Mineralogical Indications of Biological Activity
- Author
-
Battler, M and Stoker, C
- Subjects
Geophysics - Abstract
Water is unstable on the surface of Mars, and therefore the Martian surface is not likely to support life. It is possible, however, that liquid water exists beneath the surface of Mars, and thus life might also be found in the subsurface. Subsurface life would most likely be microbial, anaerobic, and chemoautotrophic; these types of biospheres on Earth are rare, and not well understood. Finding water and life are high priorities for Mars exploration, and therefore it is important that we learn to explore the subsurface robotically, by drilling. The Mars Analog Rio Tinto Experiment (MARTE), has searched successfully for a subsurface biosphere at Rio Tinto, Spain [1,2,3,4]. The Rio Tinto study site was selected to search for a subsurface biosphere because the extremely low pH and high concentrations of elements such as iron and copper in the Tinto River suggest the presence of a chemoautotrophic biosphere in the subsurface beneath the river. The Rio Tinto has been recognized as an important mineralogical analog to the Sinus Meridiani site on Mars [5].
- Published
- 2005
21. Characterization of a Subsurface Biosphere in a Massive Sulfide Deposits at Rio Tinto, Spain: Implications for Extant Life on Mars
- Author
-
Stoker, C. R, Stevens, T, Amils, R, Gomez-Elvira, J, Rodriquez, N, Gomez, F, Gonzalez-Toril, E, Aguilera, A, Fernandez-Remolar, D, and Dunagan, S
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The recent discovery of abundant sulfate minerals, particularly Jarosite by the Opportunity Rover at Sinus Merdiani on Mars has been interpreted as evidence for an acidic lake or sea on ancient Mars [1,2], since the mineral Jarosite is soluble in liquid water at pH above 4. The most likely mechanism to produce sufficient protons to acidify a large body of liquid water is near surface oxidation of pyrite rich deposits [3]. The acidic waters of the Rio Tinto, and the associated deposits of Hematite, Goethite, and Jarosite have been recognized as an important chemical analog to the Sinus Merdiani site on Mars [4]. The Rio Tinto is a river in southern Spain that flows 100 km from its source in the Iberian pyrite belt, one of the Earth s largest Volcanically Hosted Massive Sulfide (VHMS) provinces, into the Atlantic ocean. The river originates in artesian springs emanating from ground water that is acidified by the interaction with subsurface pyrite ore deposits. The Mars Analog Rio Tinto Experiment (MARTE) has been investigating the hypothesis that a subsurface biosphere exists at Rio Tinto living within the VHMS deposit living on chemical energy derived from sulfur and iron minerals. Reduced iron and sulfur might provide electron donors for microbial metabolism while in situ oxidized iron or oxidants entrained in recharge water might provide electron acceptors.
- Published
- 2005
22. A Subsurface Soil Composition and Physical Properties Experiment to Address Mars Regolith Stratigraphy
- Author
-
Richter, L, Sims, M, Economou, T, Stoker, C, Wright, I, and Tokano, T
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Previous in-situ measurements of soil-like materials on the surface of Mars, in particular during the on-going Mars Exploration Rover missions, have shown complex relationships between composition, exposure to the surface environment, texture, and local rocks. In particular, a diversity in both compositional and physical properties could be established that is interpreted to be diagnostic of the complex geologic history of the martian surface layer. Physical and chemical properties vary laterally and vertically, providing insight into the composition of rocks from which soils derive, and environmental conditions that led to soil formation. They are central to understanding whether habitable environments existed on Mars in the distant past. An instrument the Mole for Soil Compositional Studies and Sampling (MOCSS) - is proposed to allow repeated access to subsurface regolith on Mars to depths of up to 1.5 meters for in-situ measurements of elemental composition and of physical and thermophysical properties, as well as for subsurface sample acquisition. MOCSS is based on the compact PLUTO (PLanetary Underground TOol) Mole system developed for the Beagle 2 lander and incorporates a small X-ray fluorescence spectrometer within the Mole which is a new development. Overall MOCSS mass is approximately 1.4 kilograms. Taken together, the MOCSS science data support to decipher the geologic history at the landing site as compositional and textural stratigraphy if they exist - can be detected at a number of places if the MOCSS were accommodated on a rover such as MSL. Based on uncovered stratigraphy, the regional sequence of depositional and erosional styles can be constrained which has an impact on understanding the ancient history of the Martian near-surface layer, considering estimates of Mars soil production rates of 0.5... 1.0 meters per billion years on the one hand and Mole subsurface access capability of approximately 1.5 meters. An overview of the MOCSS, XRS instrument accomodation and the impact that these instruments have on Mars science is discussed.
- Published
- 2004
23. Drilling to Extract Liquid Water on Mars: Feasible and Worth the Investment
- Author
-
Stoker, C
- Subjects
Lunar And Planetary Science And Exploration - Abstract
A critical application for the success of the Exploration Mission is developing cost effective means to extract resources from the Moon and Mars needed to support human exploration. Water is the most important resource in this regard, providing a critical life support consumable, the starting product of energy rich propellants, energy storage media (e.g. fuel cells), and a reagent used in virtually all manufacturing processes. Water is adsorbed and chemically bound in Mars soils, ice is present near the Martian surface at high latitudes, and water vapor is a minor atmospheric constituent, but extracting meaningful quantities requires large complex mechanical systems, massive feedstock handling, and large energy inputs. Liquid water aquifers are almost certain to be found at a depth of several kilometers on Mars based on our understanding of the average subsurface thermal gradient, and geological evidence from recent Mars missions suggests liquid water may be present much closer to the surface at some locations. The discovery of hundreds of recent water-carved gullies on Mars indicates liquid water can be found at depths of 200-500 meters in many locations. Drilling to obtain liquid water via pumping is therefore feasible and could lower the cost and improve the return of Mars exploration more than any other ISRU technology on the horizon. On the Moon, water ice may be found in quantity in permanently shadowed regions near the poles.
- Published
- 2004
24. Subsurface Sampling and Sensing Using Burrowing Moles
- Author
-
Stoker, C. R, Richter, L, and Smith, W. H
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Finding evidence for life on Mars will likely require accessing the subsurface since the Martian surface is both hostile to life and to preservation of biosignatures due to the cold dry conditions, the strong W environment, and the presence of strong oxidants. Systems are needed to probe beneath the sun and oxidant baked surface of Mars and return samples to the surface for analysis or to bring the instrument sensing underground. Recognizing this need, the European Space Agency incorporated a small subsurface penetrometer or Mole onto the Beagle 2 Mars lander. Had the 2003 landing been successful, the Mole would have collected samples from 1-1.5 m depth and delivered them to an organic analysis instrument on the surface. The de- vice called the Planetary Underground Tool (PLUTO), also measured soil mechanical and thermophysical properties. Constrained by the small mass and volume allowance of the Beagle lander, the PLUTO mole was a slender cylinder only 2 cm diameter and 28 cm long equipped with a small sampling device designed to collect samples and bring them to the surface for analysis by other instrument. The mass of the entire system including deployment mechanism and tether was 1/2 kg. sensor package underground to make in situ measurements. The Mars Underground Mole (MUM) is a larger Mole based on the PLUTO design but incorporating light collection optics that interface to a fiber optic cable in the tether that transmits light to a combined stimulated emission Raman Spectrometer and Short Wave Infrared (SWIR) reflectance Spectrometer with sensitivity from 0.7 to 2.5 micrometers. This instrument is called the Dual Spectral Sensor and uses a Digital Array Scanning Interferometer as the sensor technology, a type of fourier transform interferometer that uses fixed element prisms and thus is highly rugged compared to a Michaelson interferometer. Due to the size limitations of an on-Mole instrument compartment, and the availability of a tether, the sensor head, light sources, and control electronics for the instrument are on the surface. The DSS sensor is capable of sensing a wide range of minerals relevant to Mars Astrobiology objectives including hydrated minerals, clays, carbonates, sulfates, and ice. Additionally, Raman spectroscopy is effective for detecting organics. The MUM is designed to achieve a maximum depth of penetration of 5 m in Mars regolith and can be repeatedly deployed and retrieved. The ability to perform repeated sampling, combined with the low mass and power requirements, means that Moles could be incorporated into a rover mission as well as used on a stationary platform. The Mole mechanism is a pointed slender cylinder that advances into soil by way of an internal sliding hammer mechanism. Part of the energy released by the spring-loaded hammer with each shock is transferred to the Mole casing and from there to the soil, resulting in penetration by displacing and compressing the surrounding soil. A backwards-directed impulse as a re- action to each forward shock is transferred via a suppressor mass against a second weaker spring allowing forward motion without requiring reactive forces provided by the lander. The Mole tip can be opened to collect soil samples. The Mole casing is tethered to a supporting mechanism that supplies power. Components supporting the Mole on the surface include a launch tube, tether reel and winch for pulling in tether, in addition to the tether itself.
- Published
- 2004
25. Robotic Subsurface Analyzer and Sample Handler for Resource Reconnaissance and Preliminary Site Assessment for ISRU Activities at the Lunar Cold Traps
- Author
-
Gorevan, S. P, Wilson, J, Bartlett, P, Powderly, J, Lawrence, D, Elphic, R, Mungas, G, McCullough, E, Stoker, C, and Cannon, H
- Subjects
Cybernetics, Artificial Intelligence And Robotics - Abstract
Since the 1960s, claims have been made that water ice deposits should exist in permanently shadowed craters near both lunar poles. Recent interpretations of data from the Lunar Prospector-Neutron Spectrometer (LP- NS) confirm that significant concentrations of hydrogen exist, probably in the form of water ice, in the permanently shadowed polar cold traps. Yet, due to the large spatial resolution (45-60 Ian) of the LP-NS measurements relative to these shadowed craters (approx.5-25 km), these data offer little certainty regarding the precise location, form or distribution of these deposits. Even less is known about how such deposits of water ice might effect lunar regolith physical properties relevant to mining, excavation, water extraction and construction. These uncertainties will need to be addressed in order to validate fundamental lunar In Situ Resource Utilization (ISRU) precepts by 2011. Given the importance of the in situ utilization of water and other resources to the future of space exploration a need arises for the advanced deployment of a robotic and reconfigurable system for physical properties and resource reconnaissance. Based on a collection of high-TRL. designs, the Subsurface Analyzer and Sample Handler (SASH) addresses these needs, particularly determining the location and form of water ice and the physical properties of regolith. SASH would be capable of: (1) subsurface access via drilling, on the order of 3-10 meters into both competent targets (ice, rock) and regolith, (2) down-hole analysis through drill string embedded instrumentation and sensors (Neutron Spectrometer and Microscopic Imager), enabling water ice identification and physical properties measurements; (3) core and unconsolidated sample acquisition from rock and regolith; (4) sample handling and processing, with minimized contamination, sample containerization and delivery to a modular instrument payload. This system would be designed with three mission enabling goals, including: (1) a self-contained, low power, low mass, "black box'' configuration for operations from a lander, various classes of rovers or a surface-based platform with human assistance or robotic anchoring mechanisms; (2) reconfigurable and scalable sample handling for delivery to various types of instrumentation, depending on mission requirements; and (3) the use of advanced automation control and diagnostic techniques that will afford local human deployed, remote teleoperation and fully autonomous intelligent operations. Though a great deal of technology has been advanced toward these objectives, the SASH system faces significant design challenges, including the low gravity environment, various levels of autonomy in operations, radiation exposure, dust contamination, and temperature extremes and deltas. Significant input from the scientific and engineering communities, as well as a significant environmental testing program, will be required to guide the design process.
- Published
- 2004
26. Searching for an Acidic Aquifer in the Rio Tinto Basin: First Geobiology Results of MARTE Project
- Author
-
Fernandez-Remolar, D. C, Prieto-Ballesteros, O, and Stoker, C
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Among the conceivable modern habitats to be explored for searching life on Mars are those potentially developed underground. Subsurface habitats are currently environments that, under certain physicochemical circumstances, have high thermal and hydrochemical stability [1, 2]. In planets like Mars lacking an atmospheric shield, such systems are obviously protected against radiation, which strongly alters the structure of biological macromolecules. Low porosity but fractured aquifers currently emplaced inside ancient volcano/sedimentary and hydrothermal systems act as excellent habitats [3] due to its thermal and geochemical properties. In these aquifers the temperature is controlled by a thermal balance between conduction and advection processes, which are driven by the rock composition, geological structure, water turnover of aquifers and heat generation from geothermal processes or chemical reactions [4]. Moreover, microbial communities based on chemolithotrophy can obtain energy by the oxidation of metallic ores that are currently associated to these environments. Such a community core may sustain a trophic web composed of non-autotrophic forms like heterotrophic bacteria, fungi and protozoa.
- Published
- 2004
27. The Mars Underground Mole (MUM): A Subsurface Penetration Device with Infrared Reflectance and Raman Spectroscopic Sensing Capability
- Author
-
Stoker, C. R, Richter, L, Smith, W. H, Lemke, L. G, Hammer, P, Dalton, J. B, Glass, B, and Zent, A
- Subjects
Lunar And Planetary Science And Exploration - Abstract
Searching for evidence of life on Mars will probably require access to the subsurface. The Martian surface is bathed in ultraviolet radiation which decomposes organic compounds, destroying possible evidence for life. Also, experiments performed by the Viking Landers imply the presence of several strongly oxidizing compounds at the Martian surface that may also play a role in destroying organic compounds near the surface. While liquid water is unstable on the Martian surface, and ice is unstable at the surface at low latitudes, recent results from the Mars Odyssey Gamma Ray Spectrometer experiment indicate that water ice is widely distributed near the surface under a thin cover of dry soil. Organic compounds created by an ancient Martian biosphere might be preserved in such ice-rich layers. Furthermore, accessing the subsurface provides a way to identify unique stratigraphy such as small-scale layering associated with lacustrine sediments. Subsurface access might also provide new insights into the Mars climate record that may be preserved in the Polar Layered Deposits. Recognizing the importance of accessing the subsurface of Mars to the future scientific exploration of the planet, the Mars Surveyor 2007 Science Definition Team called for drilling beneath the surface soils. Subsurface measurements are also cited as high priority in by MEPAG. Recognizing the importance of accessing the Martian subsurface to search for life, the European Space Agency has incorporated a small automated burrowing device called a subsurface penetrometer or Mole onto the Beagle 2 lander planned for 2003 launch. This device, called the Planetary Underground Tool (PLUTO), is a pointed slender cylinder 2 cm wide and 28 cm long equipped with a small sampling device at the pointed end that collects samples and brings them to the surface for analysis. Drawing on the PLUTO design, we are developing a larger Mole carrying sensors for identifying mineralogy, organic compounds, and water.
- Published
- 2003
28. Mound Spring Complexes in Central Australia: An Analog for Martian Groundwater Fed Outflow Channels?
- Author
-
Clarke, J. D. A and Stoker, C
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The arid inland of Australia contains a diversity of landscapes and landscape processes, often of great antiquity, extending back to the Mesozoic and Paleozoic. The potential of this landscape as a source of Mars analogs has, however, been little explored. The few examples studied so far include radiation-tolerant microbes in thermal springs and hematite-silica hydrothermal alteration near Arkaroola in the Finders Ranges, and aeolian landforms at Gurra Gurra water hole the north east of Arkaroola. Further Australian Mars analog studies were provided by the studies of Bourke and Zimbelman of the paleoflood record of the Todd and Hale Rivers in central Australia. To facilitate study of such analogues, Mars Society Australia has embarked on a project to construct a Mars Analog Research Station near Arkaroola. The international scientific community will soon have the opportunity to participate in Mars analog studies in central Australia utilizing this facility. An area of considerable Mars analog potential is the mound spring complexes that occur at the margins of the Great Artesian Basin (GAB) which underlies 22% of the Australian continent and covers 1.7 million km2. The mound springs are formed when ground water flows to a topographic low, and subsurface strata dips up causing a hydrological head at the surface. Minerals precipitated at the spring discharge zone form low mesas or "mounds", the height of which are controlled by the hydrological head. This paper describes the Dalhousie Mound Spring Complex (DMC) in the northern part of South Australia (Figure 1), and its potential as a Mars analog. Hydrogeology: The DMC consists of a cluster of more than 60 active springs formed by natural discharge from the GAB). Total measured discharge from the GAB is 1.74 GL per day, estimated unfocussed natural leakage through the aquaclude is thought be approximately equal to this figure. Some 54 ML per day are currently discharged by the DMC, 3% of the measured total. The discharged artesian waters are of low to moderate salinity (700 - 9400 ppm), near neutral pH (6.8-7.3) and warm (20-46 C). The elevated temperatures are due to passage of the groundwater through deeply buried (up to 3 km) aquifers in an region of high heat flow, rather than magmatic heating. The waters also contain high levels of dissolved iron and H2S and less than 1 ppm dissolved oxygen. The water is carried in the Late Jurassic Algebuckina Sandstone beneath the aquaclude of the Bulldog Shale. It is brought near the surface by the mid-Cenozoic Dalhousie anticline and the ground water flow focused along a series of faults that breach the anticline's crest.
- Published
- 2003
29. A Proposal for an Integrated Geophysical Strategy to 'Follow the Water' on Mars
- Author
-
Clifford, S. M, George, J. A, Stoker, C. R, Briggs, G, and Beaty, D. W
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The search for subsurface water has become a primary focus of Mars exploration. Its abundance and distribution (both as ground ice and groundwater) have important implications for understanding the geologic, hydrologic, and climatic evolution of the planet; the potential origin and continued survival of life; and the accessibility of a critical in situ resource for sustaining future human explorers. For these reasons, a principal goal of the Mars science, astrobiology, and the HEDS programs is to determine the 3-D distribution and state of subsurface H2O, at a resolution sufficient to permit reaching any desired volatile target by drilling. The three targets most often discussed are: groundwater, massive deposits of near-surface ground ice (associated with the ponded discharge of the outflow channels or the relic of a former ocean), and ice-saturated frozen ground. Based on the present best estimates of mean annual surface temperature, crustal thermal conductivity, geothermal heat flow, and groundwater freezing temperature, the mean thickness of frozen ground on Mars is expected to vary from approx. = 2.5 - 5 km at the equator to approx. = 6.5 - 13 km at the poles. However, natural variations in both crustal heat flow and thermal conductivity are likely to result in significant local departures from these predicted values. The recent discovery of "young" fluvial-like features, emanating from the slopes of local scarps, raises the possibility that liquid water may also exist episodically at shallow (approx. = 100 - 500 m) depth; however, the true nature and absolute age of these features remains highly uncertain. Although the belief that Mars is water-rich is supported by a wide variety geologic evidence, our ignorance about the heterogeneous nature and thermal evolution of the planet's crust effectively precludes geomorphic or theoretical attempts to quantitatively assess the current geographic and subsurface vertical distribution of ground ice and groundwater . For this reason, any exploration activity (such as drilling) whose success is contingent on the presence of subsurface water, must be preceded by a comprehensive high-resolution geophysical survey capable of assessing whether local reservoirs of water and ice actually exist. Terrestrial experience has demonstrated that the accurate identification of such targets is likely to require the application of multiple geophysical techniques. In this abstract we propose an integrated strategy for the geophysical exploration of Mars that we believe represents the fastest, most cost-effect, and technically capable approach to identifying the state and distribution of subsurface water. Additional information is contained in the original extended abstract.
- Published
- 2001
30. The Strategy for Polar Exploration: Planes, Trains, and Automobiles
- Author
-
Stoker, C and Lemke, L
- Subjects
Lunar And Planetary Science And Exploration - Abstract
The polar regions are both interesting and challenging to explore. The record of climate history and the behavior of Martian volatiles over time are thought to be contained in the polar terrains. Furthermore, the polar regions are probably the best environment to search for evidence of living organisms on Mars because they have both the presence of water ice and summertime temperatures at the surface that exceed the freezing point of water. In addition, melting at the base of the polar caps is predicted to occur which could result in a deep aquifer beneath the polar caps. Such an aquifer is potentially another habitat for life. Clearly, assessing the question of volaties, climate, and life in the polar regions would benefit from landed missions that can sample and interact with the surface. Mobility on the surface is also important for polar exploration due to the apparent wide diversity of terrains that occur on both local and regional scales. Additional information is contained in the original extended abstract.
- Published
- 2000
31. MARS Electromagnetic Sounding Experiment (MARSES): Comparative Field Exploration on Devon Island and Other Regions
- Author
-
Ozorovich, Y. R, Linkin, V. M, Smythe, W. D, Stoker, C, Lee, P, Zoubkov, B, and Babkin, F
- Subjects
Lunar And Planetary Science And Exploration - Abstract
MARSES is the sounding instrument developed for searching subsurface water, water-ice or permafrost layers. Preliminary results for field investigation has been gained during Devon Island expedition which surface structure is close to Martian conditions.
- Published
- 2000
32. Visualizing Mars Using Virtual Reality: A State of the Art Mapping Technique Used on Mars Pathfinder
- Author
-
Stoker, C, Zbinden, E, Blackmon, T, and Nguyen, L
- Subjects
Earth Resources And Remote Sensing - Abstract
We describe an interactive terrain visualization system which rapidly generates and interactively displays photorealistic three-dimensional (3-D) models produced from stereo images. This product, first demonstrated in Mars Pathfinder, is interactive, 3-D, and can be viewed in an immersive display which qualifies it for the name Virtual Reality (VR). The use of this technology on Mars Pathfinder was the first use of VR for geologic analysis. A primary benefit of using VR to display geologic information is that it provides an improved perception of depth and spatial layout of the remote site. The VR aspect of the display allows an operator to move freely in the environment, unconstrained by the physical limitations of the perspective from which the data were acquired. Virtual Reality offers a way to archive and retrieve information in a way that is intuitively obvious. Combining VR models with stereo display systems can give the user a sense of presence at the remote location. The capability, to interactively perform measurements from within the VR model offers unprecedented ease in performing operations that are normally time consuming and difficult using other techniques. Thus, Virtual Reality can be a powerful a cartographic tool. Additional information is contained in the original extended abstract.
- Published
- 1999
33. 1999 Marsokhod Field Experiment: A Simulation of a Mars Rover Science Mission
- Author
-
Stoker, C, Cabrol, N, Roush, T, Gulick, V, Hovde, G, and Moersch, J
- Subjects
Lunar And Planetary Science And Exploration - Abstract
A field experiment to simulate a rover mission to Mars was performed in February 1999. This experiment, the latest in a series of rover field experiments, was designed to demonstrate and validate technologies and investigation strategies for high-science, high-technology performance, and cost-effective planetary rover operations. Objectives: The experiment objectives were to: (1) train scientists in a mission configuration relevant to Surveyor program rover missions at a terrestrial analog field site simulating the criteria of high-priority candidate landing-sites on Mars; (2) develop optimal exploration strategies; (3) evaluate the effectiveness of imaging and spectroscopy in addressing science objectives; (4) assess the value and limitation of descent imaging in supporting rover operations; and (5) evaluate the ability of a science team to correctly interpret the geology of the field site using rover observations. A field site in the California Mojave Desert was chosen for its relevance to the criteria for landing site selection for the Mars Surveyor program. These criteria are: (1) evidence of past water activity; (2) presence of a mechanism to concentrate life; (3) presence of thermal energy sources; (4) evidence of rapid burial; and (5) excavation mechanisms that could expose traces of life.
- Published
- 1999
34. Overview of the Mars Pathfinder Mission: Launch Through Landing, Surface Operations, Data Sets, and Science Results
- Author
-
Wilson, G, Ward, W, Wanke, H, Vaughan, R. M, Tomasko, M. G, Thomas, N, Sullivan, R, Stoker, C, Spencer, D. A, Soderblom, L. A, Smith, P. H, Singer, R, Seiff, A, Schofield, J. T, Rivellini, T. P, Rieder, R, Parker, T. J, Murphy, J. R, Murchie, S. L, Moore, H. J, McSween, H. Y. Jr, Matijevic, J, Manning, R. M, Malin, M. C, Maki, J. N, Magalhaes, J. A, Madsen, M. B, Lemmon, M, Larsen, S, Knudsen, J. M, Kirk, R. L, Keller, H. U, Kallemeyn, P. H, Johnson, J. R, Jaumann, R, Hviid, S. F, Herkenhoff, K. E, Haldemann, A. F. C, Harris, J. A, Hargraves, R. B, Haberle, R. M, Greeley, R, Folkner, W. M, Economou, T, Crisp, J, Crisp, D, Cook, R. A, Brucker, J, Britt, D. T, Bridges, N. T, Bell, J. F. III, Barnes, J. R, and Anderson, R. C
- Abstract
Mars pathfinder successfully landed at Ares Vallis on July 4, 1997 and returned 2.3 Gbits of information during 3 months of surface operations of a lander, rover, three science instruments, engineering sensors and technology experiments.
- Published
- 1998
35. Rovers for Mars Polar Exploration
- Author
-
Stoker, C
- Subjects
Lunar And Planetary Exploration - Abstract
Mobility is a generic capability needed for Mars exploration. Requirements for mobility range from those needed to get observations of individual rocks all the way to those for getting high-resolution observations of regional areas. The Pathfinder mission and field experiments simulating rover missions provide guidance as to rover capabilities that can reasonably be expected in the next decade. Success of rover missions in achieving science goals depends on having adequate support imaging to enable traverses to targets of high science interest. Rover field experiments to date have used aerial photographs to provide support imaging. Pathfinder Sojourner operated in the field of view of the IMP camera. Plans for the future involve the use of descent imagers. However, the descent imager planned for the 2001 mission achieves resolution adequate to plan rover traverses only in the near vicinity of the lander (within a few hundred meters). Aircraft could provide aerial support imaging with a resolution of 10 cm over the entire area accessible to a rover. Aircraft could also provide the mobility needed to explore regional scale areas
- Published
- 1998
36. Topography of the South Polar Cap and Layered Deposits of Mars: Viking Stereo Grametry at Regional and Local Scales
- Author
-
Schenk, P, Moore, J, and Stoker, C
- Subjects
Lunar And Planetary Exploration - Abstract
Layered deposits and residual polar caps on Mars may record the deposition of ice and sediment modulated by periodic climate change. Topographic information relating to layer thicknesses, erosional processes, and formation of dark spirals within these deposits has been sparce or unreliable until the arrival of MOLA in orbit in September 1997. To assist in evaluating these terrains prior to launch and to assess formation and erosion processes in the polar deposits, we have assembled Viking stereo mosaics of the region and have produced the first reliable DEM models of the south polar deposits using automated stereogrammetry tools. Here we report our preliminary topographic results, pending final image pointing updates. The maximum total thickness of the layered deposits in the south polar region is 2.5 km. The thick layered deposits consist of a series of megaterraces. Each terrace is several tens of kilometers wide and is flat or slopes very gently toward the pole. These terraces step downward from a central plateau near the south pole. Terraces are bounded by relatively steep scarps 100-500 meters high that face toward the equator. These scarps correspond to the pattern of dark spirals observed within the residual cap in southern summer, and are interpreted as ice or frost-free surfaces warmed by solar insolation. Several tongue-shaped troughs, with rounded cirquelike heads, are observed near the margins of the deposit. These troughs are 300-600 meters in deep and may be similar to troughs observed in the northern polar deposit.
- Published
- 1998
37. Chronic Constipation in Long Stay Elderly Patients: A Comparison of Lactulose and a Senna-fibre Combination.
- Author
-
Passmore, A P, Wilson-Davies, K, Stoker, C, and Scott, M E.
- Published
- 1993
38. Science strategy for human exploration of Mars
- Author
-
Stoker, C. R, Mckay, C. P, Haberle, R. M, and Andersen, D. T
- Subjects
Astronautics (General) - Abstract
The Martian potential for supporting life is considered in this discussion of scientific exploration objectives related to exobiology, climatology, and geology. Two significant areas of research are identified - the habitability of Mars and the general relationship between planetary parameters and life - and an exploration strategy is developed. Four phases of human exploration are determined including: (1) precursor missions for evaluating the Martian environment; (2) emplacement missions for studying specific landing sites; (3) consolidation missions for the development of permanent exploratory-mission bases; and (4) a final utilization phase in which global Martian exploration is conducted. The logistical considerations related to each phase are discussed with specific references to types of vehicles and technology required.
- Published
- 1992
- Full Text
- View/download PDF
39. The possibility of life on Mars during a water-rich past
- Author
-
Mckay, C. P, Mancinelli, R. L, Stoker, C. R, and Wharton, R. A., Jr
- Subjects
Space Biology - Abstract
Geomorphological evidence for past liquid water on Mars implies an early, warmer, epoch. In this review we compare this early warm environment to the first Gyr of Earth's history, the time within which we know life originated. We consider the key question about early Mars from the biological standpoint. How long was liquid water present? The range of answers encompasses the time interval for the origin of life on Earth. We use studies of early life on Earth as a guide, albeit a limited one, to the possible forms of evidence for past life on Mars. Presumptive evidence for microbial life on early Earth are stromatolites, layered deposits produced by microorganisms binding and trapping sediment. A search for fossils might be fruitful at sites on Mars that contained standing bodies of water over long periods of time. The ice-covered lakes of the dry valleys of Antarctica may provide analogs to the ultimate lakes on Mars as the surface pressure fell with a concomitant decrease in surface temperatures.
- Published
- 1992
40. Meridional Martian water abundance profiles during the 1988-1989 season
- Author
-
Rizk, B, Wells, W. K, Hunten, D. M, Stoker, C. R, Freedman, R. S, Roush, T, Pollack, J. B, and Haberle, R. M
- Subjects
Lunar And Planetary Exploration - Abstract
The Martian southern hemisphere atmospheric water vapor column abundance measurements reported agree with Viking Orbiter atmospheric water detectors during early southern spring and southern autumnal equinox; profiles obtained in southern mid- and late summer, however, indicate the presence of twice as much water both in the southern hemisphere and planetwide. This discrepancy is accounted for by the high optical depths created by two global dust storms during the Viking year, while the present observations were obtained in the case of the relatively dust-free atmosphere of the 1988-1989 opposition.
- Published
- 1991
- Full Text
- View/download PDF
41. Physical and chemical properties of the Martian soil: Review of resources
- Author
-
Stoker, C. R, Gooding, James L, Banin, A, Clark, Benton C, and Roush, Ted
- Subjects
Lunar And Planetary Exploration - Abstract
The chemical and physical properties of Martian surface materials are reviewed from the perspective of using these resources to support human settlement. The resource potential of Martian sediments and soils can only be inferred from limited analyses performed by the Viking Landers (VL), from information derived from remote sensing, and from analysis of the SNC meteorites thought to be from Mars. Bulk elemental compositions by the VL inorganic chemical (x ray fluorescence) analysis experiments have been interpreted as evidence for clay minerals (possibly smectites) or mineraloids (palagonite) admixed with sulfate and chloride salts. The materials contained minerals bearing Fe, Ti, Al, Mg and Si. Martian surface materials may be used in many ways. Martian soil, with appropriate preconditioning, can probably be used as a plant growth medium, supplying mechanical support, nutrient elements, and water at optimal conditions to the plants. Loose Martian soils could be used to cover structures and provide radiation shielding for surface habitats. Martian soil could be wetted and formed into abode bricks used for construction. Duricrete bricks, with strength comparable to concrete, can probably be formed using compressed muds made from martian soil.
- Published
- 1991
42. Microbial metabolism of Tholin
- Author
-
Stoker, C. R, Mancinelli, R. L, Boston, P. J, Segal, W, and Khare, B. N
- Subjects
Life Sciences (General) - Abstract
Tholin, a class of complex organic heteropolymers hypothesized to possess wide solar system distribution, is shown to furnish the carbon and energy requirements of a wide variety of common soil bacteria which encompasses aerobic, anaerobic, and facultatively anaerobic bacteria. Some of these bacteria are able to derive not merely their carbon but also their nitrogen requirements from tholin. The palatability of tholins to modern microbes is speculated to have implications for the early evolution of microbial life on earth; tholins may have formed the base of the food chain for an early heterotrophic biosphere, prior to the evolution of autotrophy on the early earth.
- Published
- 1990
- Full Text
- View/download PDF
43. Evaluation Of A Call Programme For Cervical Cytology Screening In Women Aged 50-60
- Author
-
Robertson, A. J., Reid, G. S., Stoker, C. A., Bissett, C., Waugh, N., Fenton, I., Rowan, J., and Halkerston, R.
- Published
- 1989
44. Jasmonate signalling drives time-of-day differences in susceptibility of Arabidopsis to the fungal pathogen Botrytis cinerea
- Author
-
Ingle, R.A., Stoker, C., Stone, W., Adams, N., Smith, R.W., Grant, M., Carré, I., Roden, L.C., and Denby, K.J.
- Subjects
Systeem en Synthetische Biologie ,disease resistance ,Arabidopsis thaliana ,plant-pathogen interaction ,fungi ,food and beverages ,defence response ,jasmonate ,Botrytis cinerea ,circadian clock ,Systems and Synthetic Biology ,defence gene expression ,VLAG - Abstract
The circadian clock, an internal timekeeping mechanism, allows plants to anticipate regular changes in the environment, such as light and dark, and biotic challenges such as pathogens and herbivores. Here, we demonstrate that the plant circadian clock influences susceptibility to the necrotrophic fungal pathogen, Botrytis cinerea. Arabidopsis plants show differential susceptibility to B. cinerea depending on the time of day of inoculation. Decreased susceptibility after inoculation at dawn compared to night persists under constant light conditions and is disrupted in dysfunctional clock mutants, demonstrating the role of the plant clock in driving time-of-day susceptibility to B. cinerea. The decreased susceptibility to B. cinerea following inoculation at subjective dawn was associated with faster transcriptional reprogramming of the defence response with gating of infection-responsive genes apparent. Direct target genes of core clock regulators were enriched among the transcription factors that responded more rapidly to infection at subjective dawn than subjective night, suggesting an influence of the clock on the defence-signalling network. In addition, jasmonate signalling plays a crucial role in the rhythmic susceptibility of Arabidopsis to B. cinerea with the enhanced susceptibility to this pathogen at subjective night lost in a jaz6 mutant.
- Published
- 2015
45. Field astrobiology research instruments and methods in moon-mars analogue site
- Author
-
Foing, B.H., Stoker, C., Zavaleta, J., Ehrenfreund, P., Sarrazin, P., Blake, D., Page, J., Pletser, V., Hendrikse, J., Oliveira Lebre Direito, M.S., Kotler, M., Martins, Z., Orzechowska, G., Thiel, C.S., Clarke, J., Gross, J., Wendt, L., Borst, A., Peters, S., Wilhelm, M.-B., Davies, G.R., EuroGeoMars 2009 Team, ILEWG, Petrology, Student Lab and Education, Molecular Cell Physiology, and AIMMS
- Abstract
We describe the field demonstration of astrobiology instruments and research methods conducted in and from the Mars Desert Research Station (MDRS) in Utah during the EuroGeoMars campaign 2009 coordinated by ILEWG, ESA/ESTEC and NASA Ames, with the contribution of academic partners. We discuss the entire experimental approach from determining the geological context using remote sensing, in situ measurements, sorties with sample collection and characterization, analysis in the field laboratory, to the post sample analysis using advanced laboratory facilities. We present the rationale for terrestrial field campaigns to strengthen astrobiology research and the link between in situ and orbital remote sensing data. These campaigns are supporting the preparation for future missions such as Mars Science Laboratory, ExoMars or Mars Sample Return. We describe the EuroGeoMars 2009 campaign conducted by MDRS crew 76 and 77, focused on the investigation of surface processes in their geological context. Special emphasis was placed on sample collection and pre-screening using in-situ portable instruments. Science investigations included geological and geochemical measurements as well as detection and diagnostic of water, oxidants, organic matter, minerals, volatiles and biota. EuroGeoMars 2009 was an example of a Moon-Mars field research campaign dedicated to the demonstration of astrobiology instruments and a specific methodology of comprehensive measurements from selected sampling sites. We discuss in sequence: the campaign objectives and trade-off based on science, technical or operational constraints. This includes remote sensing data and maps, and geological context; the monitoring of environmental parameters; the geophysical context and mineralogy studies; geology and geomorphology investigations; geochemistry characterization and subsurface studies. We describe sample handling (extraction and collection) methods, and the sample analysis of soils and rocks performed in the MDRS laboratory using close inspection, initial petrological characterization, microscopy, Visible-NIR spectrometry, Raman spectrometry, X-ray diffraction/X-ray fluorescence spectrometry, soil analysis, electrochemical and biological measurements. The results from post-mission analysis of returned samples using advanced facilities in collaborator institutes are described in companion papers in this issue. We present examples of in-situ analysis, and describe an example investigation on the exploration and analysis of endolithic microbial mats (from reconnaissance, in-situ imaging, sampling, local analysis to post-mission sample analysis). © 2011 Cambridge University Press.
- Published
- 2011
46. Astrobiology field research in Moon/Mars Analogue
- Author
-
Foing, B.H., Stoker, C., Ehrenfreund, P., Petrology, and Student Lab and Education
- Abstract
Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on 'Astrobiology field research in Moon/Mars analogue environments' relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented. © 2011 Cambridge University Press.
- Published
- 2011
47. MARS HABITABILITY PROJECT AT M.D.R.S.SENSORY EXPERIENCE AND CREATIVE PERFORMANCEFOR MANNED PLANETARY EXPLORATION
- Author
-
Schlacht, I. L., Ono, A., Bates, S., Peldszus, R., Masali, Melchiorre, Roetting, M., Ligabue, Franca, Foing, B., Westenberg, A., and Stoker, C.
- Subjects
Creativity ,Human Factors ,Long Duration Missions ,Quality Of Life ,Habitability ,Psychology ,Sensory Experience - Published
- 2010
48. H20 at the Phoenix Landing Site
- Author
-
Smith, P.H., Tamppari, L.K., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W.V., Carswell, A., Catling, D.C., Clark, B.C., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, Haraldur Pall, Hecht, M.H., Hipkin, V., Hoffman, J., Hviid, S.F., Keller, H.U., Kounaves, S.P., Lange, C.F., Lemmon, M.T., Madsen, M.B., Markiewicz, W.J., Marshall, J., McKay, C.P., Mellon, M.T., Ming, D.W., Morris, R.W., Pike, W.T., Renno, N., Staufer, U., Stoker, C., Taylor, P., Whiteway, J.A., and Zent, A.P.
- Published
- 2009
49. Introduction to special section on the Phoenix Mission: Landing Site Characterization Experiments, Mission Overviews, and Expected Science
- Author
-
Smith, P.H., Tamppari, L., Arvidson, R.E., Bass, D., Blaney, D., Boynton, W., Carswell, A., Catling, D., Clark, B., Duck, T., DeJong, E., Fisher, D., Goetz, W., Gunnlaugsson, Haraldur Pall, Hecht, M., Hipkin, V., Hoffman, J., Hviid, S., Keller, H., Kounaves, S., Lange, C.F., Lemmon, M., Madsen, M., Malin, M., Markiewicz, W., Marshall, J., McKay, C., Mellon, M., Michelangeli, D., Ming, D., Morris, R., Renno, N., Pike, W.T., Staufer, U., Stoker, C., Taylor, P., Whiteway, J., Young, S., and Zent, A.
- Published
- 2008
50. Postnatal development and histofunctional differentiation of the oviduct in the broad-snouted caiman (Caiman latirostris).
- Author
-
Galoppo, G.H., Stoker, C., Canesini, G., Schierano-Marotti, G., Durando, M., Luque, E.H., and Muñoz-de-Toro, M.
- Subjects
- *
BROAD-nosed caiman , *CROCODILIANS , *ENDOCRINE disruptors , *POSTNATAL development in animals , *ESTROGEN receptors , *PROGESTERONE receptors , *PHYSIOLOGY - Abstract
Caiman latirostris is a South American crocodilian species characterized as a sentinel of the presence of endocrine-disrupting compounds (EDCs). Evaluating developmental events in hormone-dependent organs, such as the oviduct, is crucial to understand physiological postnatal development, to identify putative periods of exposure sensitive to EDCs, and/or to identify biomarkers useful to evaluate the effects of EDC exposure. In this study, we describe the histomorphological features of C. latirostris oviducts by establishing the ontogeny of changes at cellular, tissue and molecular levels from the neonatal to the pre-pubertal juvenile stages. Since the histological diagnosis of the adenogenic oviduct lies on a group of features, here we defined a histofunctional score system and a cut-off value to distinguish between preadenogenic and adenogenic oviducts. Our results showed that the maturation of the C. latirostris oviduct is completed postnatally and characterized by changes that mimic the pattern of histological modifications described for the mammalian uterus. Ontogenic changes in the oviductal epithelium parallel changes at subepithelial level, and include collagen remodeling and characteristic spatial-temporal patterns of α-actin and desmin. The expression pattern of estrogen receptor alpha and progesterone receptor evidenced that, even at early postnatal developmental stages, the oviduct of C. latirostris is a target organ of endogenous and environmental hormones. Besides, oviductal adenogenesis seems to be an estrogen-dependent process. Results presented here provide not only insights into the histophysiological aspect of caiman female reproductive ducts but also new tools to better characterize caimans as sentinels of endocrine disruption. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.