20 results on '"Senokos, Evgeny"'
Search Results
2. Controlled electrochemical functionalization of CNT fibers: Structure-chemistry relations and application in current collector-free all-solid supercapacitors
- Author
-
Senokos, Evgeny, Rana, Moumita, Santos, Cleis, Marcilla, Rebeca, and Vilatela, Juan J.
- Published
- 2019
- Full Text
- View/download PDF
3. Sustainable design of high-performance multifunctional carbon electrodes by one-step laser carbonization for supercapacitors and dopamine sensors.
- Author
-
Moon, Sanghwa, Senokos, Evgeny, Trouillet, Vanessa, Loeffler, Felix F., and Strauss, Volker
- Published
- 2024
- Full Text
- View/download PDF
4. Microporous Sulfur–Carbon Materials with Extended Sodium Storage Window.
- Author
-
Eren, Enis Oğuzhan, Esen, Cansu, Scoppola, Ernesto, Song, Zihan, Senokos, Evgeny, Zschiesche, Hannes, Cruz, Daniel, Lauermann, Iver, Tarakina, Nadezda V., Kumru, Barış, Antonietti, Markus, and Giusto, Paolo
- Subjects
CARBON-based materials ,SMALL-angle X-ray scattering ,ELECTRODE performance ,CLEAN energy ,ENERGY density ,MICROPOROSITY - Abstract
Developing high‐performance carbonaceous anode materials for sodium‐ion batteries (SIBs) is still a grand quest for a more sustainable future of energy storage. Introducing sulfur within a carbon framework is one of the most promising attempts toward the development of highly efficient anode materials. Herein, a microporous sulfur‐rich carbon anode obtained from a liquid sulfur‐containing oligomer is introduced. The sodium storage mechanism shifts from surface‐controlled to diffusion‐controlled at higher synthesis temperatures. The different storage mechanisms and electrode performances are found to be independent of the bare electrode material's interplanar spacing. Therefore, these differences are attributed to an increased microporosity and a thiophene‐rich chemical environment. The combination of these properties enables extending the plateau region to higher potential and achieving reversible overpotential sodium storage. Moreover, in‐operando small‐angle X‐ray scattering (SAXS) reveals reversible electron density variations within the pore structure, in good agreement with the pore‐filling sodium storage mechanism occurring in hard carbons (HCs). Eventually, the depicted framework will enable the design of high‐performance anode materials for sodium‐ion batteries with competitive energy density. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
5. Manganese dioxide decoration of macroscopic carbon nanotube fibers: From high-performance liquid-based to all-solid-state supercapacitors
- Author
-
Pendashteh, Afshin, Senokos, Evgeny, Palma, Jesus, Anderson, Marc, Vilatela, Juan J., and Marcilla, Rebeca
- Published
- 2017
- Full Text
- View/download PDF
6. Triazine-Based Graphitic Carbon Nitride Thin Film as a Homogeneous Interphase for Lithium Storage.
- Author
-
Song, Zihan, Hou, Jing, Raguin, Emeline, Pedersen, Angus, Eren, Enis Oǧuzhan, Senokos, Evgeny, Tarakina, Nadezda V., Giusto, Paolo, and Antonietti, Markus
- Published
- 2024
- Full Text
- View/download PDF
7. Robust Single‐Walled Carbon Nanotube‐Infiltrated Carbon Fiber Electrodes for Structural Supercapacitors: from Reductive Dissolution to High Performance Devices.
- Author
-
Senokos, Evgeny, Anthony, David B., Rubio, Noelia, Ribadeneyra, Maria Crespo, Greenhalgh, Emile S., and Shaffer, Milo S. P.
- Subjects
- *
CARBON fibers , *CARBON electrodes , *ENERGY storage , *SUPERCAPACITORS , *ENERGY density , *ELECTRIC conductivity - Abstract
Multifunctional electrodes for structural supercapacitors are prepared by vacuum infiltration of single‐walled carbon nanotubes (SWCNTs) into woven carbon fibers (CFs); the use of reductive charging chemistry to form nanotubide solutions ensured a high degree of individualization. The route is highly versatile, as shown by comparing four different commercial nanotube feedstocks. In film form, the pure nanotubide networks ("buckypapers") are highly conductive (up to 2000 S cm−1) with high surface area (>1000 m2 g−1) and great electrochemical performance (capacitance of 101 F g−1, energy density of 27.5 Wh kg−1 and power density of 135 kW kg−1). Uniformly integrating these SWCNT networks throughout the CF fabrics significantly increased electrical conductivity (up to 318 S cm−1), surface area (up to 196 m2 g−1), and in‐plane shear properties, all simultaneously. The CNT‐infiltrated CFs electrodes exhibited intrinsically high specific energy (2.6–4.2 Wh kg−1) and power (6.0–8.7 kW kg−1) densities in pure 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM TFSI) electrolyte. Multifunctional structural supercapacitors based on CNT‐coated CFs offer a substantial increase in capacitive performance while maintaining the tensile mechanical properties of the as‐received CF‐based composite. This non‐damaging approach to modify CFs with highly graphitic, high surface area nanocarbons provides a new route to structural energy storage systems. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
8. Conformal carbon nitride thin film inter-active interphase heterojunction with sustainable carbon enhancing sodium storage performance.
- Author
-
Eren, Enis Oğuzhan, Senokos, Evgeny, Song, Zihan, Yılmaz, Elif Begüm, Shekova, Irina, Badamdorj, Bolortuya, Lauermann, Iver, Tarakina, Nadezda V., Al-Naji, Majd, Antonietti, Markus, and Giusto, Paolo
- Abstract
Sustainable, high-performance carbonaceous anode materials are highly required to bring sodium-ion batteries to a more competitive level. Here, we exploit our expertise to control the deposition of a nm-sized conformal coating of carbon nitride with tunable thickness to improve the electrochemical performance of anode material derived from sodium lignosulfonate. In this way, we significantly enhanced the electrochemical performances of the electrode, such as the first cycle efficiency, rate-capability, and specific capacity. In particular, with a 10 nm homogeneous carbon nitride coating, the specific capacity is extended by more than 30% with respect to the bare carbon material with an extended plateau capacity, which we attribute to a heterojunction effect at the materials' interface. Eventually, the design of (inter)active electrochemical interfaces will be a key step to improve the performance of carbonaceous anodes with a negligible increase in the material weight. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF
9. Chapter 10 - Materials science of multifunctional supercapacitors based on nanocarbon networks
- Author
-
Senokos, Evgeny, Marcilla, Rebeca, and Vilatela, Juan J.
- Published
- 2019
- Full Text
- View/download PDF
10. Nature-Derived Sulfur Carbons for Highly-Efficient Room Temperature Sodium-Sulfur Energy Storage.
- Author
-
Senokos, Evgeny
- Published
- 2024
- Full Text
- View/download PDF
11. Development of multifunctional flexible and structural supercapacitors based on carbon nanotube fibers
- Author
-
Senokos, Evgeny, Vilatela García, Juan José, and Marcilla García, Rebeca
- Subjects
Materiales - Abstract
Hay un gran interés en el estudio de nuevos materiales funcionales que puedan almacenar energía y posean aumentadas propiedades mecánicas simultáneamente. Entre estos se incluyen los electrodos para supercondensadores flexibles y estructurales de alta potencia, los cuales tienen aplicación en diversos campos como el aeroespacial, vehículos eléctricos/híbridos y electrónica portátil. La fibra macroscópica de nanotubos de carbono es considerada como un potencial candidato multifuncional para el desarrollo de electrodos flexible y con una alta tenacidad para supercondensadores. En esta tesis se investigan en detalle varias características de las fibras de nanotubos de carbono (CNTs), incluyendo su estructura, textura y sus propiedades mecánicas y electroquímicas. El estudio revela que la compleja estructura jerárquica de las fibras se caracteriza por una red de CNT altamente porosa con un área superficial de 256 m2 g-1 y una amplia distribución del tamaño de poro desde meso- a macro-escala. Esto da lugar a una combinación única de propiedades mecánicas, con una tenacidad de hasta 61 J g-1, y de propiedades electroquímicas. Además, la baja dimensionalidad de las fibras de CNT hace que se observe el fenómeno de capacitancia cuántica cuando se determinan sus propiedades electroquímicas en semicelda. Conviene mencionar que la capacitancia cuántica intrínseca de las fibras se refleja en el comportamiento electroquímico de los dispositivos completos. Además, las propiedades del material se pueden ajustar de manera controlada por medio de un proceso de funcionalización con ozono en fase gaseosa, el cual modifica las propiedades electroquímicas de las fibras mediante cambios en el carácter hidrofílico, la estructura electrónica y la pseudocapacitancia asociada a los grupos funcionales redox activos que se originan en la superficie de los CNTs. Además de las propiedades fisicoquímicas y electroquímicas de las fibras de CNTs, esta tesis también describe el desarrollo de supercondensadores multifuncionales de doble capa (EDLCs) usando electrodos basados en fibras de CNTs y electrolitos poliméricos. Para este propósito se prepararon membranas de electrolito polimérico compuestas de un líquido iónico 1-butil-1-metilpirrolidinium bis(trifluorometanosulfonil)imida (Pyr14TFSI) y un termoplástico, el poli(vinilideno fluoruro-co-hexafluoropropileno) (PVDF-co-HFP). Estos electrolitos poliméricos fueron caracterizados en base a su conductividad iónica y sus propiedades mecánicas y térmicas. El proceso de ensamblaje de los supercondensadores flexibles se basa en el uso de una membrana polimérica prefabricada que se intercala entre dos electrodos de fibra de CNT. Las fibras actúan como colector de corriente y material activo, y la membrana como separador y electrolito. Mediante este método de fabricación se ensamblaron dispositivos de hasta 100 cm2 con una buena reproducibilidad. Estos dispositivos muestran una capacitancia específica, densidad energética y densidad de potencia de 28 F g-1, 11.4 Wh kg-1 y 46 kW kg-1 respectivamente. Además, presentan una alta estabilidad bajo deformaciones por flexión. Finalmente, se fabricó un prototipo de supercondensador compuesto por 4 celdas conectadas en serie que se ajustaba a las especificaciones requeridas por la empresa que financió parte de esta tesis doctoral. Adicionalmente, mediante la fabricación de electrodos de fibras de CNT de un solo filamento se exploró otro aspecto de la multifuncionalidad como es la transparencia.. El mismo método de fabricación de los dispositivos se utilizó para producir supercondensadores transparentes totalmente sólidos con elevada transmisión óptica del 74% y excelentes propiedades electroquímicas (densidad de potencia de 1370 kW kg-1). Finalmente, los supercondensadores flexibles mencionados anteriormente se utilizaron para producir supercondensadores estructurales en forma de laminados. Se demostró un método de fabricación simple que consistía en la inclusión de supercondensadores flexibles entre dos telas de fibra de carbono, seguido de una infusión y el curado de un polímero termoestable tipo resina. El comportamiento electroquímico de los dispositivos se evaluó durante la infusión de la resina epoxi, después del curado, y durante la deformación por flexión del dispositivo. En todos los casos se observó una alta eficiencia coulómbica y estabilidad. La utilización de supercondensadores flexibles perforados permitió mejorar las propiedades interlaminares del material compuesto, sobre todo en ensayos a cizalla. Esta estrategia ofrece una amplia gama de parámetros de diseño sobre los que se puede incidir y con los que se puede obtener el deseado rendimiento estructural del dispositivo. Un análisis preliminar de diferentes configuraciones y arquitecturas de compuestos intercalados ilustra la envolvente de las propiedades mecánicas y de almacenamiento de energía, y el factor clave para aumentar la eficiencia multifuncional y producir un ahorro de peso en relación con los sistemas monofuncionales convencionales. ----------ABSTRACT---------- There is a great deal of interest in the study of new functional materials which can simultaneously store energy and possess augmented mechanical properties. These include electrodes for flexible and structural high power supercapacitor devices, which find application in diverse fields such as aerospace, electric/hybrid vehicles and portable electronics. Macroscopic fibers of carbon nanotubes are considered as a potential multifunctional candidate for application as flexible and tough electrodes in supercapacitors. In this thesis, various features of CNT fibers, including their structure, textural, mechanical and electrochemical properties are investigated in detail. The study particularly reveals that the complex hierarchical structure of the fibers leading to a unique combination of high mechanical properties with toughness up to 61 J g-1, highly porous CNT network with surface area of 256 m2 g-1 and broad pore size distribution from meso to macroscale. Furthermore, the low dimensional nature of CNT fibers makes their quantum capacitance observable when measuring electrochemical properties of CNT fibers in half and full cell. The properties of the material can be further tuned by well-controlled gas phase functionalization, which modify electrochemical properties through changes in wetting, electronic structure and pseudocapacitance of redox active functional groups. Besides the intrinsic physicochemical and electrochemical properties of CNT fibers, this thesis also describes the development of high-performance multifunctional flexible supercapacitor based on CNT fiber electrodes and polymer electrolytes. For this purpose, all-solid polymer electrolyte membranes based on 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr14TFSI) ionic liquid and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) thermoplastic were prepared and extensively characterized in terms of their ionic conductivity, mechanical and thermal properties. The assembly process of all-solid supercapacitor device is based on utilization of a pre-cast PE membrane sandwiched between two CNT fiber electrodes, with the CNT fibers acting as current collector and active material and the membrane as separator and electrolyte. The method can be applied to fabricate free-standing devices from 0.785 to 100 cm2 with good reproducibility. These devices show specific capacitance, energy and power densities of 28 F g-1, 11.4 Wh kg-1 and 46 kW kg-1, respectively, and high stability under flexural deformations. Finally, a supercapacitor prototype consisted of 4 stacked cells was manufactured and shown to comply with specifications for the target application of the sponsors of a part of this work. Another aspect of multifunctionality such as transparency was explored by making singlefilament CNT fiber electrodes. The same fabrication method of devices was used to produce allsolid transparent supercapacitors with high optical transmission of 74% and outstanding electrochemical properties (power density of 1370 kW kg-1). Finally, abovementioned flexible supercapacitor devices were used to produce laminated structural supercapacitor composites. A simple fabrication method was demonstrated through embedding CNT fibers/polymer electrolyte interleaves between carbon fiber fabrics, followed by infusion and curing of a thermosetting polymer. Electrochemical behaviour of the device was evaluated during epoxy infusion, after resin curing and during flexural deformation. A high coulombic efficiency and stability were observed in all cases. Grid-shaped interleaves enable to improve interlaminar properties of the composite and offer a wide range of design parameters to obtain desired composite performance. A preliminary analysis of different configurations and architectures of interleaved composite illustrates the envelope of mechanical and energy storage properties, and the key factor to increase multifunctional efficiency and produce weight savings relative to conventional monofunctional systems.
- Published
- 2018
12. Transparent and flexible high-power supercapacitors based on carbon nanotube fibre aerogels.
- Author
-
Senokos, Evgeny, Rana, Moumita, Vila, Maria, Fernandez-Cestau, Julio, Costa, Rubén D., Marcilla, Rebeca, and Vilatela, Juan Jose
- Published
- 2020
- Full Text
- View/download PDF
13. Pore structure and electrochemical properties of CNT-based electrodes studied by in situ small/wide angle X-ray scattering.
- Author
-
Santos, Cleis, Senokos, Evgeny, Fernández-Toribio, Juan Carlos, Ridruejo, Álvaro, Marcilla, Rebeca, and Vilatela, Juan José
- Abstract
Macroscopic ensembles of nanocarbons, such as fibres of carbon nanotubes (CNT), are characterised by a complex hierarchical structure combining coherent crystalline regions with a large porosity arising from imperfect packing of the large rigid building blocks. Such structure is at the centre of a wide range of charge storage and transfer processes when CNT fibres are used as electrodes and/or current collectors. This work introduces a method based on wide and small-angle X-ray scattering (WAXS/SAXS) to obtain structural descriptors of CNT fibres and which enables in situ characterisation during electrochemical processes. It enables accurate determination of parameters such as specific surface area, average pore size and average bundle size from SAXS data after correction for scattering from density fluctuations arising from imperfect packing of graphitic planes. In situ and ex situ WAXS/SAXS measurements during electrochemical swelling of CNT fibre electrodes in ionic liquid provide continuous monitoring of the increase in effective surface area caused by electrostatic separation of CNT bundles in remarkable agreement with capacitance changes measured independently. Relative contributions from quantum and Helmholtz capacitance to total capacitance remaining fairly constant. The WAXS/SAXS analysis is demonstrated for fibres of either multi- and single-walled CNTs, and is expected to be generally applicable to operando studies on nanocarbon-based electrodes used in batteries, actuators and other applications. [ABSTRACT FROM AUTHOR]
- Published
- 2019
- Full Text
- View/download PDF
14. List of Contributors
- Author
-
Alcántara, Ricardo, Avvaru, Venkata Sai, Bidikoudi, Maria, Chakraborty, Pranay, Chen, Xianghong, Cíntora-Juárez, Daniel, Costa, Rubén D., Cui, Chunyu, Dai, Liming, Doñoro, Álvaro, Etacheri, Vinodkumar, Gayen, Rabindra N., Guo, Chunxian, Guo, Luning, Jana, Aniruddha, Kottappara, Revathi, Lavela, Pedro, Lee, Jonghoon, Lin, Deqing, Ma, Tengfei, Marcilla, Rebeca, Monreal-Bernal, Alfonso, Ortiz, Gregorio, Palantavida, Shajesh, Paul, Rajib, Roy, Ajit K., Senokos, Evgeny, Song, Jiangxuan, Tirado, José L., Vijayan, Baiju Kizhakkekilikoodayil, Vilatela, Juan J., Vincent, Mewin, Voevodin, A.A., Wang, Yan, Xie, Jiale, Xu, Jiantie, Zemlyanov, D., and Zhang, Jiakui
- Published
- 2019
- Full Text
- View/download PDF
15. Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors
- Author
-
Rebeca Marcilla, Cristina Navío, Maurizio Prato, Silvia Marchesan, Evgeny Senokos, Daniel Iglesias, Laura Cabana, Juan J. Vilatela, Belén Alemán, Iglesias, Daniel, Senokos, Evgeny, Alemán, Belén, Cabana, Laura, Navío, Cristina, Marcilla, Rebeca, Prato, Maurizio, Vilatela, Juan J, and Marchesan, Silvia
- Subjects
CNT fiber ,Materials science ,Scanning electron microscope ,ozone treatment ,FOS: Physical sciences ,Nanotechnology ,02 engineering and technology ,Carbon nanotube ,electrochemistry ,gas-phase functionalization ,self-standing supercapacitors ,010402 general chemistry ,01 natural sciences ,law.invention ,symbols.namesake ,X-ray photoelectron spectroscopy ,law ,General Materials Science ,Fiber ,Supercapacitor ,Condensed Matter - Materials Science ,Materials Science (cond-mat.mtrl-sci) ,021001 nanoscience & nanotechnology ,0104 chemical sciences ,Transmission electron microscopy ,symbols ,Surface modification ,0210 nano-technology ,Raman spectroscopy - Abstract
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
- Published
- 2018
16. Hard carbon from a sugar derivative for next-generation sodium-ion batteries.
- Author
-
Eren EO, Senokos E, Song Z, Mondal B, Perju A, Horner T, Yılmaz EB, Scoppola E, Taberna PL, Simon P, Antonietti M, and Giusto P
- Abstract
Sodium-ion batteries have emerged as a promising secondary battery system due to the abundance of sodium resources. One of the boosters for accelerating the practical application of sodium-ion batteries is the innovation in anode materials. This study focuses on developing a high-performance hard carbon anode material derived from hydroxymethylfurfural, produced from carbohydrates, using a straightforward thermal condensation method. The process results in a unique pseudo-graphitic material with abundant microporosity. Electrochemical evaluations demonstrate excellent sodium storage performance by maintaining the plateau capacity even at higher current densities. This translates to a promising energy density when coupled with the cathode material. However, we also discuss the influence of electrolyte composition on the performance of the hydroxymethylfurfural-derived hard carbon, emphasizing the critical role of electrolyte optimization for the development of efficient and sustainable carbonaceous anode materials for next-generation sodium-based batteries.
- Published
- 2024
- Full Text
- View/download PDF
17. Sustainable Sulfur-Carbon Hybrids for Efficient Sulfur Redox Conversions in Nanoconfined Spaces.
- Author
-
Senokos E, Au H, Eren EO, Horner T, Song Z, Tarakina NV, Yılmaz EB, Vasileiadis A, Zschiesche H, Antonietti M, and Giusto P
- Abstract
Nanoconfinement is a promising strategy in chemistry enabling increased reaction rates, enhanced selectivity, and stabilized reactive species. Sulfur's abundance and highly reversible two-electron transfer mechanism have fueled research on sulfur-based electrochemical energy storage. However, the formation of soluble polysulfides, poor reaction kinetics, and low sulfur utilization are current bottlenecks for broader practical application. Herein, a novel strategy is proposed to confine sulfur species in a nanostructured hybrid sulfur-carbon material. A microporous sulfur-rich carbon is produced from sustainable natural precursors via inverse vulcanization and condensation. The material exhibits a unique structure with sulfur anchored to the conductive carbon matrix and physically confined in ultra-micropores. The structure promotes Na
+ ion transport through micropores and electron transport through the carbon matrix, while effectively immobilizing sulfur species in the nanoconfined environment, fostering a quasi-solid-state redox reaction with sodium. This translates to ≈99% utilization of the 2e- reduction of sulfur and the highest reported capacity for a room temperature Na- S electrochemical system, with high rate capability, coulombic efficiency, and long-term stability. This study offers an innovative approach toward understanding the key physicochemical properties of sulfurcarbon nanohybrid materials, enabling the development of high-performance cathode materials for room-temperature Na-S batteries with efficient sulfur utilization., (© 2024 The Author(s). Small published by Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF
18. Conformal carbon nitride thin film inter-active interphase heterojunction with sustainable carbon enhancing sodium storage performance.
- Author
-
Eren EO, Senokos E, Song Z, Yılmaz EB, Shekova I, Badamdorj B, Lauermann I, Tarakina NV, Al-Naji M, Antonietti M, and Giusto P
- Abstract
Sustainable, high-performance carbonaceous anode materials are highly required to bring sodium-ion batteries to a more competitive level. Here, we exploit our expertise to control the deposition of a nm-sized conformal coating of carbon nitride with tunable thickness to improve the electrochemical performance of anode material derived from sodium lignosulfonate. In this way, we significantly enhanced the electrochemical performances of the electrode, such as the first cycle efficiency, rate-capability, and specific capacity. In particular, with a 10 nm homogeneous carbon nitride coating, the specific capacity is extended by more than 30% with respect to the bare carbon material with an extended plateau capacity, which we attribute to a heterojunction effect at the materials' interface. Eventually, the design of (inter)active electrochemical interfaces will be a key step to improve the performance of carbonaceous anodes with a negligible increase in the material weight., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)
- Published
- 2022
- Full Text
- View/download PDF
19. Energy storage in structural composites by introducing CNT fiber/polymer electrolyte interleaves.
- Author
-
Senokos E, Ou Y, Torres JJ, Sket F, González C, Marcilla R, and Vilatela JJ
- Abstract
This work presents a method to produce structural composites capable of energy storage. They are produced by integrating thin sandwich structures of CNT fiber veils and an ionic liquid-based polymer electrolyte between carbon fiber plies, followed by infusion and curing of an epoxy resin. The resulting structure behaves simultaneously as an electric double-layer capacitor and a structural composite, with flexural modulus of 60 GPa and flexural strength of 153 MPa, combined with 88 mF/g of specific capacitance and the highest power (30 W/kg) and energy (37.5 mWh/kg) densities reported so far for structural supercapacitors. In-situ electrochemical measurements during 4-point bending show that electrochemical performance is retained up to fracture, with minor changes in equivalent series resistance for interleaves under compressive stress. En route to improving interlaminar properties we produce grid-shaped interleaves that enable mechanical interconnection of plies by the stiff epoxy. Synchrotron 3D X-ray tomography analysis of the resulting hierarchical structure confirms the formation of interlaminar epoxy joints. The manuscript discusses encapsulation role of epoxy, demonstrated by charge-discharge measurements of composites immersed in water, a deleterious agent for ionic liquids. Finally, we show different architectures free of current collector and electrical insulators, in which both CNT fiber and CF act as active electrodes.
- Published
- 2018
- Full Text
- View/download PDF
20. Gas-Phase Functionalization of Macroscopic Carbon Nanotube Fiber Assemblies: Reaction Control, Electrochemical Properties, and Use for Flexible Supercapacitors.
- Author
-
Iglesias D, Senokos E, Alemán B, Cabana L, Navío C, Marcilla R, Prato M, Vilatela JJ, and Marchesan S
- Abstract
The assembly of aligned carbon nanotubes (CNTs) into fibers (CNTFs) is a convenient approach to exploit and apply the unique physico-chemical properties of CNTs in many fields. CNT functionalization has been extensively used for its implementation into composites and devices. However, CNTF functionalization is still in its infancy because of the challenges associated with preservation of CNTF morphology. Here, we report a thorough study of the gas-phase functionalization of CNTF assemblies using ozone which was generated in situ from a UV source. In contrast with liquid-based oxidation methods, this gas-phase approach preserves CNTF morphology, while notably increasing its hydrophilicity. The functionalized material is thoroughly characterized by Raman spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. Its newly acquired hydrophilicity enables CNTF electrochemical characterization in aqueous media, which was not possible for the pristine material. Through comparison of electrochemical measurements in aqueous electrolytes and ionic liquids, we decouple the effects of functionalization on pseudocapacitive reactions and quantum capacitance. The functionalized CNTF assembly is successfully used as an active material and a current collector in all-solid supercapacitor flexible devices with an ionic liquid-based polymer electrolyte.
- Published
- 2018
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.