This work was divided into two moments: at first, we set out to study spacelike sub manifolds Σn immersed in Lorentz spacetimes Mn+p+1. So, we introduce the notion of r-trapped submanifolds as a generalization of the trapped submanifolds introduced by Penrose. In the case where the ambient space is a GRW −I ×ρ Mn+p, considering some properties such as parabolicity and stochastic completeness we prove rigidity and nonexistence results for r-trapped in some configurations of GRW spacetimes and, lastly, we provide examples of r-trapped submanifolds, some of them are also simultaneously trapped, but we provided examples proving that the notion of r-trapped submanifolds are different accordingly to the number r. On the other hand, in the case where the ambient space is an standard static spacetime (SSST) Mn+p ×ρ R1, we calculate the differential operators Lr and Lr,φ applied to the height function h = πR ◦ψ of the immersion ψ : Σn → Mn+p ×ρ R1 and we consider some properties on Σn such as parabolicity and maximum principles. In this setting, we prove rigidity and nonexistence results for r-trapped spacelike submanifolds. After, we obtain some De Lellis-Topping type inequalities for general tensors under constraints in the Bakry-Émery Ricci tensor. In particular, we provide new results on manifolds with convex boundary, improving some known results given on manifolds with totally geodesic boundary. Furthemore, we apply our results in a class of locally conserved tensors. Nenhuma Este trabalho foi dividido em dois momentos: no primeiro, nos dedicamos ao estudo de subvariedades tipo-espaço Σn imersas em espaços-tempo Lorentzianos Mn+p+1. Assim, introduzimos a noção de subvariedades r-trapped como generalização das subvariedades trapped introduzidas por Penrose. No caso em que o espaço ambiente é um GRW −I ×ρ Mn+p, considerando algumas propriedades como parabolicidade e completude estocástica, fornecemos resultados de rigidez e de não existência para subvariedades r-trapped em algumas configurações de espaços-tempo GRW e, por último, fornecemos exemplos de subvariedades r-trapped, onde algumas delas são trapped e outras não, comprovando que a noção de subvariedades r-trapped são diferentes de acordo com o número r. Por outro lado, no caso em que o espaço ambiente é um standard static spacetime (SSST) Mn+p×ρR1, calculamos os operadores diferenciais Lr e Lr,φ aplicados à função altura h = πR ◦ ψ da imersão ψ : Σn → Mn+p ×ρ R1 e consideramos algumas propriedades em Σn como parabolicidade e princípios de máximo. Neste cenário, fornecemos resultados de rigidez e de não existência para subvariedades r-trapped. Depois, obtemos algumas desigualdades do tipo De Lellis-Topping para tensores gerais sob restrições no tensor Bakry-Émery Ricci. Em particular, fornecemos novos resultados em variedades com bordo convexo, melhorando alguns resultados conhecidos em variedades com bordo totalmente geodésico. Além disso, aplicamos nossos resultados em uma classe de tensores localmente conservativos.