1. Critical behavior, magnetic and magnetocaloric properties of meltspun Ni50Mn35Sn15 ribbons
- Author
-
E. Dhahri, J. J. Suňol, E.K. Hlil, K. Dadda, S. Souilah, Lotfi Bessais, Safia Alleg, Ministerio de Economía y Competitividad (Espanya), Laboratoire de Physique Appliquée, Université de Sfax - University of Sfax, Magnétisme et Supraconductivité (MagSup ), Institut Néel (NEEL), and Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
- Subjects
Transition metals -- Alloys ,Materials science ,Estany -- Propietats magnètiques ,02 engineering and technology ,Microestructura ,7. Clean energy ,01 natural sciences ,Metalls de transició -- Aliatges ,Differential scanning calorimetry ,0103 physical sciences ,Materials Chemistry ,Magnetic refrigeration ,Manganès -- Propietats magnètiques ,Níquel -- Propietats magnètiques ,Nickel -- Magnetic properties ,Microstructure ,ComputingMilieux_MISCELLANEOUS ,010302 applied physics ,Austenite ,Condensed matter physics ,Mechanical Engineering ,Metals and Alloys ,Thermomagnetic convection ,021001 nanoscience & nanotechnology ,Magnetic field ,Tin -- Magnetic properties ,Mechanics of Materials ,Diffusionless transformation ,[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci] ,Curie temperature ,Manganese -- Magnetic properties ,0210 nano-technology ,Critical exponent - Abstract
Microstructure, structural and magnetic phase transitions of the melt spun Ni50Mn35Sn15ribbons have been examined by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and magnetic measurements. The melt spun ribbons exhibit a single phase cubic L21austenite structure at room temperature with a space group Fm−3m, and lattice parameter a = 5.956 Å. The DSC results reveal the first order reverse and forward martensitic transition (Ms= 147.4 K, Mf= 133.7 K, As= 155 K and Af= 171 K) with a thermal hysteresis of about 21.3 K around the martensitic transition between heating and cooling. The thermomagnetic measurements show that the melt spun ribbons undergo a second order magnetic transition at a Curie temperature TC= 310 K and a first order martensitic transition at TM= 160 K. The critical behavior associated with the magnetic phase transition has been investigated through the isothermal magnetization measurements around TC. The critical exponents have been estimated by several methods such as the modified Arrott plots, Kouvel-Fisher method and critical isothermal analysis. The critical exponents values β=0.456, γ=0.88 and δ=2.929 are close to those predicted from the mean field model revealing a dominated long-range order of magnetic interactions. For an applied magnetic field of 5 T, the maximum magnetic entropy change (ΔSMmax) and the relative cooling power (RCP) values around TCare of about 2.105 J/kg.K and 132.5 J/kg, respectively. The melt-spun Ni50Mn35Sn15alloy is a good candidate for magnetic refrigeration near room temperature This work has been supported by the Algerian Ministère de l’Enseignement Supérieur et de la Recherche Scientifique, the PHC-Maghreb 15 MAG07 program, the Spanish MINECO projects MAT2013-47231-C2-2-P and MAT2016-75967-P and the Erasmus+KA107 STA 2015-2017 program
- Published
- 2020
- Full Text
- View/download PDF