26 results on '"Rodler, Auline"'
Search Results
2. Influence of urban morphology on potential of green roofs in regulating local microclimate: A case study of Liège, Belgium
- Author
-
Joshi, Mitali Yeshwant, Rodler, Auline, Musy, Marjorie, Guernouti, Sihem, and Teller, Jacques
- Published
- 2024
- Full Text
- View/download PDF
3. Coupling hydrological and microclimate models to simulate evapotranspiration from urban green areas and air temperature at the district scale
- Author
-
Robineau, Timothé, Rodler, Auline, Morille, Benjamin, Ramier, David, Sage, Jérémie, Musy, Marjorie, Graffin, Vincent, and Berthier, Emmanuel
- Published
- 2022
- Full Text
- View/download PDF
4. Assessing the effects of urban street trees on building cooling energy needs: The role of foliage density and planting pattern
- Author
-
Tsoka, Stella, Leduc, Thomas, and Rodler, Auline
- Published
- 2021
- Full Text
- View/download PDF
5. How building energy models take the local climate into account in an urban context – A review
- Author
-
Lauzet, Nicolas, Rodler, Auline, Musy, Marjorie, Azam, Marie-Hélène, Guernouti, Sihem, Mauree, Dasaraden, and Colinart, Thibaut
- Published
- 2019
- Full Text
- View/download PDF
6. A pixel counting technique for sun patch assessment within building enclosures
- Author
-
Rocha, Ana Paula de Almeida, Rodler, Auline, Oliveira, Ricardo C.L.F., Virgone, Joseph, and Mendes, Nathan
- Published
- 2019
- Full Text
- View/download PDF
7. Bayesian inference method for in situ thermal conductivity and heat capacity identification: Comparison to ISO standard
- Author
-
Rodler, Auline, Guernouti, Sihem, and Musy, Marjorie
- Published
- 2019
- Full Text
- View/download PDF
8. A mixed POD–PGD approach to parametric thermal impervious soil modeling: Application to canyon streets
- Author
-
Azam, Marie-Hélène, Guernouti, Sihem, Musy, Marjorie, Berger, Julien, Poullain, Philippe, and Rodler, Auline
- Published
- 2018
- Full Text
- View/download PDF
9. Monitoring LST at canyon scale for urban micro-climate applications: in-situ, simulation and airborne data comparisons
- Author
-
Roupioz, Laure, Rodler, Auline, Guernouti, Sihem, Bitar, Ahmad Al, Poutier, Laurent, Briottet, Xavier, Nerry, Françoise, Musy, Marjorie, ONERA / DOTA, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement - Equipe-projet BPE (Cerema Equipe-projet BPE), Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema), Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, and Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
- Subjects
[PHYS]Physics [physics] ,[SPI]Engineering Sciences [physics] ,Données aéroportées ,Température surface ,Capteurs in-situ ,Modèle micro-climatique - Abstract
International audience; In a context of more frequent heat waves, urban overheating is a major environmental and public health issue. The Land Surface Temperature (LST) is a key variable to study this phenomenon and its estimation at district or city scale can help to diagnose the thermal behaviour of existing or future infrastructures. This paper compares in-situ sensors, 3D physical models and remote sensing observations to investigate the potential and accuracy of each approach to monitor LST at canyon scale. This comparison is performed based on the datasets acquired during the CAMCATT-AI4GEO experiment led in Toulouse city in June 2021 and a side experiment evaluating iButtons data using KT19 measurements as reference. This work shows that iButtons provide LST within +/- 1.25°C (over white walls) if the sensor is protected from direct sun. They offer a good spatial coverage over a small scene, providing direct LST measurement, but they seem sensitive to dark colour walls and sun exposition. On-ground TIR cameras allow for fine scale monitoring of the spatial and temporal variation of the LST, which provides information on the thermal behaviour of the surfaces over limited portion of the scene. On the other hand, airborne cameras allow to retrieve LST over horizontal surfaces at flight overpass time, which give an instant picture of the LST spatial variability at district or city scale. In both cases, retrieving LST from the thermal infrared images can be challenging. Finally, micro-climat models allow to simulate LST at high spatial and temporal resolutions up to district scale, provided that meteorological data are available and that the scene parametrization is correct. Each approach has advantages and drawbacks in terms of accuracy, spatial and temporal coverage, but they can also benefits from a combined used.; Dans un contexte de vagues de chaleur plus fréquentes, le phénomène d'îlot de chaleur urbain est un enjeu environnemental et de santé publique majeur. La température de la surface terrestre (LST) est une variable clé pour étudier ce phénomène et son estimation à l'échelle d'un quartier ou d'une ville peut aider à diagnostiquer le comportement thermique des infrastructures existantes ou futures. Cet article compare les capteurs in-situ, les modèles physiques 3D et les observations de télédétection afin d'étudier le potentiel et la précision de chaque approche pour le suivi de la LST à l'échelle du canyon. Cette comparaison est réalisée sur la base des jeux de données acquis lors de l'expérience CAMCATT-AI4GEO menée dans la ville de Toulouse en juin 2021 et d'une expérience parallèle évaluant les données iButtons en utilisant les mesures KT19 comme référence. Ces travaux montrent que les iButtons fournissent une LST à +/- 1,25°C (sur des murs blancs) si le capteur est protégé du soleil direct. Ils offrent une bonne couverture spatiale sur une petite scène, permettant une mesure directe de la LST, mais ils semblent sensibles aux murs de couleur sombre et à l'exposition au soleil. Les caméras infrarouge thermique au sol permettent un suivi à petite échelle de la variation spatiale et temporelle de la LST, ce qui fournit des informations sur le comportement thermique des surfaces sur une portion limitée de la scène. D'autre part, les caméras aéroportées permettent de récupérer la LST sur des surfaces horizontales au moment du passage du vol, ce qui donne une image instantanée de la variabilité spatiale de la LST à l'échelle d'un quartier ou d'une ville. Dans les deux cas, l'extraction de la LST à partir d'images infrarouges thermiques peut être difficile. Enfin, les modèles de microclimat permettent de simuler la LST à haute résolution spatiale et temporelle jusqu'à l'échelle du district, à condition que les données météorologiques soient disponibles et que la paramétrisation de la scène soit correcte. Chaque approche présente des avantages et des inconvénients en termes de précision et de couverture spatiale et temporelle, mais elles peuvent également bénéficier d'une utilisation combinée.
- Published
- 2023
- Full Text
- View/download PDF
10. Development of a composite model for predicting urban surface temperature distribution in the context of GIS.
- Author
-
Cui, Ziang, Leduc, Thomas, Rodler, Auline, and Musy, Marjorie
- Published
- 2023
- Full Text
- View/download PDF
11. Impact of sun patch and three-dimensional heat transfer descriptions on the accuracy of a building’s thermal behavior prediction
- Author
-
Rodler, Auline, Virgone, Joseph, and Roux, Jean-Jacques
- Published
- 2016
- Full Text
- View/download PDF
12. CAMCATT: a multisensor experiment over Toulouse to validate TRISHNA urban products
- Author
-
Briottet, Xavier, Roupioz, Laure, Barda-Chatain, Romain, Rodler, Auline, Guernouti, Sihem, Marjorie, Musy, Nerry, Françoise, Lemonsu, Aude, Michel, Aurélie, Poutier, Laurent, Barillot, Philippe, Deliot, Philippe, Cerbelaud, Arnaud, Albitar, Ahmad, Roujean, Jean-Louis, Sobrino, José, Gadal, Sébastien, Carroll, Eric, Bridier, Sébastien, Cassante, Charlène, Guilhem de Lataillade, Amaury, Doublet, Philippe, ONERA / DOTA, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema), Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement - Equipe-projet BPE (Cerema Equipe-projet BPE), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Groupe de Météorologie à Moyenne Échelle (GMME), Centre national de recherches météorologiques (CNRM), Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), DOTA, ONERA [Salon], ONERA, Centre d'études spatiales de la biosphère (CESBIO), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Universitat de València (UV), Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE), Université Nice Sophia Antipolis (1965 - 2019) (UNS), COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA), Aix Marseille Université (AMU), Délégation générale de l'armement (DGA), Ministère de la Défense, CNES TOSCA TRISHNA (URBAN CAMCATT), CNES, ISRO, GADAL, Sébastien, Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), and Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
- Subjects
[SHS.STAT]Humanities and Social Sciences/Methods and statistics ,[SHS.GEO] Humanities and Social Sciences/Geography ,VISNIR-SWIR Hyperspectral sensor ,Toulouse ,Urban remote sensing ,[SHS.GEO]Humanities and Social Sciences/Geography ,Intercalibration ,[SDE.ES]Environmental Sciences/Environmental and Society ,[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation ,[INFO.INFO-TI] Computer Science [cs]/Image Processing [eess.IV] ,Multi-spectral thermal infrared sensor ,[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] ,[SHS.STAT] Humanities and Social Sciences/Methods and statistics ,Multi-sensors ,Airborne remote sensing ,[SDE.ES] Environmental Sciences/Environmental and Society ,[INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation ,Land surface temperature - Abstract
International audience; An extensive field experiment, CAMCATT-AI4GEO, was conducted for 15 days in June 2021 over Toulouse, to acquire an urban reference dataset combining airborne acquisitions and ground measurements. This presentation aims at introducing the campaign and describing the collected data, which will be used for the validation of tools developed to produce future TRISHNA products, such as algorithms used for atmospheric compensation and temperature emissivity retrieval, microclimatic models. The several workshops of this experiment will be detailed. Joint airborne multispectral thermal infrared and VISNIR-SWIR hyperspectral images were acquired along a 30 km transect centred over Toulouse. A second flight was devoted to calibrating these sensors with on-ground reference targets. During and between the flights, two cars acquired air temperature and relative humidity along a predefined itinerary across the city with sensors mounted on their roof. During the airborne acquisitions, land surface temperature measurements were performed in three locations in Toulouse for calibration purposes. They were completed outside the flight by spectral optical properties in the VISNIR-SWIR and thermal infrared domains over a large range of manmade and natural materials. A specific in lab session was dedicated to the intercalibration of the on-ground thermal sensors. Atmosphere composition data were monitored using radio soundings during the airborne acquisitions and completed with continuous measurements from on-ground stations. Finally, the last session was devoted to the validation of a thermo-radiative model. For this purpose, surface temperature sensors were installed at different locations of buildings walls supplemented by a thermal infrared images acquisition for one of the facades in order to continuously monitor its temperature during the 15 days of the experiment. The air temperature was also measured at different positions in the district (under trees, in flats, etc).
- Published
- 2022
13. Developing simplified metamodels for assessing urban park cooling effect on the thermal behavior of the residential buildings: A case study in Nantes, France during a heat wave.
- Author
-
Oulmouden, Safae, M'Saouri El Bat, Adnane, Rodler, Auline, Guernouti, Sihem, Bernard, Jérémy, Gros, Adrien, Morille, Benjamin, and Musy, Marjorie
- Subjects
HEAT waves (Meteorology) ,BUILT environment ,URBAN parks ,THERMAL comfort ,URBAN planning - Abstract
The objective of this research is twofold. First, it aims to evaluate the impact of an urban park on the thermal behavior of residential buildings. Second, it focuses on developing and validating metamodels for predicting the cooling needs and summer thermal comfort of three types of residential buildings: single-family houses (Low-rise), small collective housing (Mid-rise), and large collective housing (High-rise). The metamodels are created through regression analysis, using a set of dynamic thermal simulations conducted with TRNSYS software. The number of dynamic simulations is efficiently reduced using the design of experiments method, and the accuracy of the metamodels is further validated through additional simulations. This study was conducted considering the climate weather conditions of the city of Nantes, France. The results demonstrate that an urban park can achieve a maximum reduction of 12.53 % in cooling needs and a 12.50 % maximum reduction in degree hours of discomfort, particularly when the building is protected from solar radiation. Furthermore, developed metamodels show high accuracy with regression coefficients over 0.96. This study aimed to create a decision support tool for local government departments to optimize urban cooling, improve thermal comfort, and reduce cooling loads in buildings by guiding the design of parks and their surrounding built environment. [Display omitted] • Impact of urban planning, building typology and building envelope on the cooling effect of parks. • Developed metamodels to predict the impact of urban parks on cooling needs and thermal comfort in building. • Metamodels serve as decision-support tools for effective urban planning. • Urban parks can reduce cooling needs by up to 12.53 % and discomfort by 12.50 %. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
14. Centre d'expertise scientifique (CES) température de surface et emissivité
- Author
-
Michel, Aurélie, Briottet, Xavier, Irvine, Mark, Lemonsu, Aude, Musy, Marjorie, Nerry, Françoise, Olioso, Albert, Ottle, Catherine, Rivalland, Vincent, Rodler, Auline, Roujean, Jean-Louis, ONERA / DOTA, Université de Toulouse [Toulouse], ONERA-PRES Université de Toulouse, Interactions Sol Plante Atmosphère (UMR ISPA), Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Météo-France Direction Interrégionale Sud-Est (DIRSE), Météo-France, École Centrale de Nantes (Nantes Univ - ECN), Nantes Université (Nantes Univ), Laboratoire des sciences de l'ingénieur, de l'informatique et de l'imagerie (ICube), École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES)-Université de Strasbourg (UNISTRA)-Institut National des Sciences Appliquées - Strasbourg (INSA Strasbourg), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Les Hôpitaux Universitaires de Strasbourg (HUS)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE), Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS), Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH), Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Laboratoire des Sciences du Climat et de l'Environnement [Gif-sur-Yvette] (LSCE), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centre d'études spatiales de la biosphère (CESBIO), Institut de Recherche pour le Développement (IRD)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire Midi-Pyrénées (OMP), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)-Météo-France -Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), and Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)
- Subjects
[SDE.MCG]Environmental Sciences/Global Changes - Abstract
International audience; Le Centre d’Expertise Scientifique (CES) Température de surface et émissivité (LST/LSE) réunit des équipes de l’Onera, d’Icube, du LSCE, du Cesbio, de l’INRAE, du Cerema, du CNRM, du CNES et de l’OFB travaillant sur l’amélioration de l’estimation de la température de surface (LST), de l’émissivité de surface (LSE) ainsi que leur cartographie et leur usage. La communauté utilisatrice visée est autant scientifique qu’institutionnelle. L’objectif du CES est de répondre aux enjeux suivants :- Améliorer les algorithmes d’estimation pour les capteurs (actuels et futurs) à haute résolution spatiale dans l’infrarouge thermique- Établir des méthodes d’évaluation afin de fournir des produits avec une incertitude associée- Améliorer la résolution spatiale et/ou temporelle des estimations en fusionnant des données spatiales ou exogènes.- Développer des séries temporelles de produits thermiques- Valoriser et mettre à disposition des produits thermiques pour répondre aux différents besoins,- Fédérer la communauté scientifique et fluidifier les échanges avec les instituts
- Published
- 2020
15. Combined heat and power generation of the hydrogen chain based on MYRTE platform
- Author
-
Rodler, Auline, Haurant, Pierrick, Faggianelli, Ghjuvan-Anto, Poggi, Philippe, Sciences pour l'environnement ( SPE ), Université Pascal Paoli ( UPP ) -Centre National de la Recherche Scientifique ( CNRS ), Sciences pour l'environnement (SPE), Centre National de la Recherche Scientifique (CNRS)-Université Pascal Paoli (UPP), and Poggi, Philippe
- Subjects
[ SPI.NRJ ] Engineering Sciences [physics]/Electric power ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,ComputingMilieux_MISCELLANEOUS ,[SPI.NRJ] Engineering Sciences [physics]/Electric power - Abstract
International audience
- Published
- 2015
16. An outdoor plateform for PV ageing study: electrical parameter extraction from I-V curves
- Author
-
Faggianelli , Ghjuva-Anton, Haurant , Pierrick, Rodler , Auline, Poggi , Philippe, Sciences pour l'environnement ( SPE ), Université Pascal Paoli ( UPP ) -Centre National de la Recherche Scientifique ( CNRS ), Sciences pour l'environnement (SPE), Centre National de la Recherche Scientifique (CNRS)-Université Pascal Paoli (UPP), and Poggi, Philippe
- Subjects
[ SPI.NRJ ] Engineering Sciences [physics]/Electric power ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,ComputingMilieux_MISCELLANEOUS ,[SPI.NRJ] Engineering Sciences [physics]/Electric power - Abstract
International audience
- Published
- 2015
17. Predictability of the solar resource intermittence in Corsica
- Author
-
Haurant , Pierrick, Ghjuvan-Anto , Faggianelli, Rodler , Auline, Poggi , Philippe, Poggi, Philippe, Sciences pour l'environnement (SPE), Centre National de la Recherche Scientifique (CNRS)-Université Pascal Paoli (UPP), Sciences pour l'environnement ( SPE ), and Université Pascal Paoli ( UPP ) -Centre National de la Recherche Scientifique ( CNRS )
- Subjects
[ SPI.NRJ ] Engineering Sciences [physics]/Electric power ,[SPI.NRJ]Engineering Sciences [physics]/Electric power ,ComputingMilieux_MISCELLANEOUS ,[SPI.NRJ] Engineering Sciences [physics]/Electric power - Abstract
International audience
- Published
- 2015
18. Sun patch impact for the evaluation of operative temperatures distributions
- Author
-
Rodler, Auline, Virgone, Joseph, Roux, Jean-Jacques, Centre d'Energétique et de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), and CETHIL, Laboratoire
- Subjects
Operative Temperature ,Sun Patch ,Low Thermal Mass Room ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,Overheating ,Comfort ,[SPI.MECA.THER] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,Three Dimensional Conduction - Abstract
International audience; A numerical model has been developed in order to accurately simulate the transient thermal behavior of a building (a single room). This model has already been described in (Rodler et al., 2013): the energy balance equations consider irradiation, convection, air enthalpy and three‐dimensional heat conduction. The particularity of the program is that it projects the sun patch on the inner walls.The operative and mean radiant temperature are important parameters for the evaluation of comfort indices. Their calculations require the air temperature values and the surfaces temperatures field which vary in the sunspace as a function of position and disposition of the person. We show the importance of the knowledge of the operative temperature distribution and its consequences on the thermal comfort. The refined 3D model is compared to the one obtained by the classical distribution of the solar radiation with a 1D conduction approach and by assuming all incoming radiation touches the floor. The sun patch impact and its three dimension effect are finally discussed for the comfort evaluation of a low inertia cell.
- Published
- 2014
19. Impact of the sun patch on heating and cooling power evaluation for a low energy cell
- Author
-
Rodler, Auline, Virgone, Joseph, Roux, Jean-Jacques, Centre de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), ANR-10-HABI-0011,SUPERBAT,SimUler pour PilotER les BATiments efficaces(2010), CETHIL, Laboratoire, and Habitat intelligent et solaire photovoltaïque - SimUler pour PilotER les BATiments efficaces - - SUPERBAT2010 - ANR-10-HABI-0011 - HABISOL - VALID
- Subjects
[PHYS.MECA.THER] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] - Abstract
International audience; In the context of low energy buildings we study the impact of the incoming radiation through a window (sun patch) on the heating and cooling demand. Existing studies have shown that not considering the sun patch and fast climatic variations (Figure 4, Global radiation) can lead to important differences in energy power evaluation [1, 2, 3]. In this paper we present a 3D envelope model taking into account the minute-wise sun patch evolution. Simulation results are analysed for a low energy cell. A numerical model has been developed in order to simulate the transient thermal behaviour, with a refined spatial (3D) and temporal (down to one minute time step) discretization of the single room. For each node of the grid, the energy conservation equations are developed. They traduce balance between short-wave and long-wave irradiations, convection, air enthalpy and three-dimensional heat conduction. The particularities of the program are that it projects the sun patch on the inner walls, the conduction is treated in three dimensions and climatic minute-wise variations are taken into account. As main results, the surface temperature evolution, the air temperature evolution and the heating or cooling power necessary to maintain an inner air set-point temperature are calculated at each time-step. Heating or cooling power is compared to the power calculated with no sun patch incorporation (solar loads only on the floor). Conclusions are made on the importance of the integration of the sun patch and its impact on the observed results.
- Published
- 2013
20. Are 3D heat transfer formulations with short time sted and sun patch evolution nececessary for building simulation?
- Author
-
Rodler, Auline, Roux, Jean-Jacques, Virgone, Joseph, Kim, E.J., Hubert, Jean-Luc, Centre de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), EDF (EDF), and CETHIL, Laboratoire
- Subjects
[PHYS.MECA.THER] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] - Abstract
International audience; A numerical model is developed to accurately simulate the transient thermal behaviour of rooms with sun-facing windows, with the use of a refined spatial and temporal discretization. For each node, the energy balance equations are developed based on a consideration of radiation, convection, air enthalpy and three-dimensional heat conduction. As buildings are exposed to rapid climatic variations (particularly incident solar radiation), we have added the different environmental conditions at short time-steps. The simulation considers the projection of solar radiation through a window onto interior walls, referred to as a sun patch. Therefore conduction transfer is treated in three dimensions. The indoor air temperature, the temperature of the cells in the walls and the surface temperatures are calculated at each time step using a variable-step Ordinary Differential Equation (ODE) solver. Results from this model are compared to well-known simulation tools using one-dimensional heat conduction without a sun patch.
- Published
- 2013
21. impact de la tache solaire sur un modèle thermique tri-dimensionnel de bâtiment : application à une cellule fortement isolée
- Author
-
Rodler, Auline, Virgone, Joseph, Roux, Jean-Jacques, Kim, E.J., Hubert, Jean-Luc, Centre de Thermique de Lyon (CETHIL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS), EDF (EDF), and CETHIL, Laboratoire
- Subjects
[PHYS.MECA.THER] Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] ,[PHYS.MECA.THER]Physics [physics]/Mechanics [physics]/Thermics [physics.class-ph] ,[SPI.MECA.THER] Engineering Sciences [physics]/Mechanics [physics.med-ph]/Thermics [physics.class-ph] - Abstract
International audience; Un modèle est développé pour simuler le comportement thermique dynamique de l'enveloppe d'un bâtiment. Il est basé sur les échanges radiatifs (radiations courtes et grandes longueurs d'ondes), la conduction tridimensionnelle, le bilan sensible de l'air et la convection sur un noeud d'air. Les données météorologiques d'entrées sont intégrées au pas de temps de la minute. Une spécificité du programme est qu'il projette la tache solaire évoluant au cours de la journée à l'intérieur du bâtiment, en accord avec une conduction tridimensionnelle. La simulation fournit la température d'air intérieure du local et les températures des mailles des parois. Ce modèle a été développé pour tester différents paramètres : la discrétisation des volumes de contrôles, la discrétisation temporelle des données d'entrée du modèle et l'impact de la tache solaire. Enfin, ce papier présente une première application du modèle à une cellule isolée.
- Published
- 2013
22. Thermal behaviour of a building in its environment: Modelling, experimentation, and comparison.
- Author
-
Rodler, Auline, Guernouti, Sihem, Musy, Marjorie, and Bouyer, Julien
- Subjects
- *
SENSITIVITY analysis , *ARCHITECTURE & energy conservation , *BUILDINGS & the environment , *THERMAL properties of buildings , *MICROCLIMATOLOGY - Abstract
A building influences its surrounding external environment, and its indoor environment is usually sensitive to its surroundings. In order to obtain a more accurate prediction of the indoor thermal behaviour of a building or a building stock, it is necessary to consider the interactions between the indoor and outdoor thermal environments. The modelling approach presented in this paper is based on a building energy model and the urban modelling tool SOLENE-Microclimat. A sensitivity analysis is undertaken to highlight the parameters which influence the performance of the building model. Then, the thermal indoor behaviour of a building is compared to in situ experimental measurements and the outdoor thermal environment is evaluated in terms of external surface temperatures. The model's accuracy and behaviour is evaluated and a crossover approach with the sensitivity analysis results is proposed. The model obtains a good level of performance for almost all variables, unless some external surface temperatures intervals. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
23. How to Design a Park and Its Surrounding Urban Morphology to Optimize the Spreading of Cool Air?
- Author
-
Bernard, Jérémy, Rodler, Auline, Morille, Benjamin, and Zhang, Xueyao
- Subjects
URBAN heat islands ,ATMOSPHERIC temperature ,MATHEMATICAL optimization ,COMPUTATIONAL fluid dynamics ,COMPUTER simulation - Abstract
Green areas induce smaller increases in the air temperature than built-up areas. They can offer a solution to mitigating the urban heat island impacts during heat waves, since the cool air generated by a park is diffused into its immediate surroundings through forced or natural convection. The purpose of this study is to characterize the effect of several variables (park size, morphology of surrounding urban area, and wind speed) on the spreading of cool air. A parametric study is performed to run computational fluid dynamics simulations. The air temperature entering the computational domain was set at 35 °C, and the 2-m high surface included within the 34 °C isotherm was defined as an indicator of cool air spreading. The effects of park shape and orientation were negligible in comparison with size effects. The number of buildings was better correlated with the cooled surface area than the typical urban parameters identified in the literature (i.e., building density, aspect ratio, or mean building height). Since the number of buildings is obviously related to the number of streets, this result suggests that the greater the number of streets around a park, the wider the area that cool air spreads. [ABSTRACT FROM AUTHOR]
- Published
- 2018
- Full Text
- View/download PDF
24. Adapted time step to the weather fluctuation on a three dimensional thermal transient numerical model with sun patch: Application to a low energy cell.
- Author
-
Rodler, Auline, Roux, Jean-Jacques, and Virgone, Joseph
- Subjects
- *
ATMOSPHERIC temperature , *ENERGY consumption , *WEATHER , *SOLAR energy , *HEAT transfer , *THERMAL insulation - Abstract
In the case of highly efficient buildings the solar and internal gains have a higher impact on the energy balance than on classical constructions, with lower insulation. In this context, a model was developed which considers the three dimensional heat transfers through the walls. It simulates the transient behavior of rooms with the use of a refined spatial and temporal discretization and considers the projection of solar radiation through a window onto interior walls, referred to as sun patch. Validation of the model was carried out using experimental data from a low energy cell operating in a natural climate. Shorter sampling steps seem necessary to consider accurately the fluctuations of the weather data and the short dynamics of the systems such as the regulated heaters. In this paper, simulations with weather data at different time steps (1 min, 10 min and 1 h) are going to be analyzed. The impact of the contribution regarding the adaptive and variable time step of the differential equation solver will also be shown. Finally, the impact of the different time steps on the accuracy of the low energy cell’s temperatures and heating loads will be discussed. [ABSTRACT FROM AUTHOR]
- Published
- 2017
- Full Text
- View/download PDF
25. Identifying urban morphological archetypes for microclimate studies using a clustering approach.
- Author
-
Joshi, Mitali Yeshwant, Rodler, Auline, Musy, Marjorie, Guernouti, Sihem, Cools, Mario, and Teller, Jacques
- Subjects
LAND surface temperature ,ARCHETYPES ,K-means clustering ,SPACE ,URBAN morphology - Abstract
Urban morphology relates to the form, structure, physical characteristics, and arrangement of buildings affecting the urban microclimate. As the morphological characteristics vary across the city, small units such as urban blocks are analysed for microclimate estimation. However, microclimatic analysis of all the blocks in a city is computationally challenging and time-consuming. Therefore, it is vital to identify representative blocks in a city to obtain a general overview of the microclimate. Urban morphological archetypes are the representative units of a homogenous group of blocks based on morphological parameters. Here, we propose a systematic approach for identifying urban morphological archetypes suited for microclimatic analysis. Specifically, we employ a well-defined, PCA-based k-means clustering approach supported by validation using external criterion analysis. We use urban morphological parameters based on form, shape, arrangement, and variations within a block in Liege, Belgium. We use the cubic clustering criterion and pseudo F statistic to identify nine distinct homogenous clusters. Then, we propose a validation approach in the absence of existing typologies using ANOVA analysis on the external criterion of land surface temperature, a proxy for measuring microclimate. The validation suggests that the clusters are significantly different, indicating successful clustering. We also compare our classification to the existing local climate zone (LCZ) classification. We identify relevant sub-classes within the broader LCZ classes essential for capturing microclimatic variation. Finally, the study provides realistic archetypes for performing microclimatic simulations at a city scale. The proposed approach can be effectively applied to other cities for urban microclimate studies. • We propose systematic PCA-based k-means clustering approach to find urban archetypes. • Validation - ANOVA with land surface temperature in absence of existing typologies. • Our clusters are compared with WUDAPT's local climate zones (LCZs). • Our approach provides essential sub-classes to the existing LCZs. • We identify 9 urban morphological archetypes defining the morphology of Liege city. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
26. Creation and application of future typical weather files in the evaluation of indoor overheating in free-floating buildings.
- Author
-
Yaqubi, Obaidullah, Rodler, Auline, Guernouti, Sihem, and Musy, Marjorie
- Subjects
DOWNSCALING (Climatology) ,URBAN heat islands ,DISTRIBUTION (Probability theory) ,ATMOSPHERIC models ,HEAT waves (Meteorology) - Abstract
Expected Global warming and heatwaves coupled with the urban heat island effect (UHI) can overheat indoor environments of free-floating buildings in temperate climate regions. Overheating assessment requires practitioners to use appropriate climate data and suitable measurement indices. The aim of this article is first, to propose a practical approach to generate yearly and typical ready-to-use future typical weather datasets (FTWY) using high-resolution Regional Climate Model (RCM) data from Coordinated Regional Climate Downscaling Experiment (CORDEX), and second, investigate the potential of FTWYs in the assessment of indoor overheating, considering UHI effect. To achieve these objectives, three dynamically downscaled (DDS) FTWYs generated from RCMs (IPSL-SMHI, CNRM-ALADIN, MPI-REMO) were compared with one statistically downscaled (ESD) FTWY from Meteonorm, and observed heatwave weather data of 2003. Comparative analysis was performed in two stages: comparison of monthly statistical distribution of climate variables, and analysis of heatwave presence. Urban weather generator (UWG) was used to project UHI effect on two weather files for two buildings, and three overheating measurement indices were used to exploit results. Comparative analysis of weather files show that temperature in a FTWY in the medium future (2040–2070) is likely not as intense as the heatwave of 2003 for Nantes. Results also confirm that it is better to use two weather files, and at least two overheating indices to obtain reliable outputs. This study also revealed that indoor overheating is not limited to densely built areas where impact of UHI is highest; buildings located in sparsely built neighbourhoods are also at risk. [Display omitted] • A practical workflow to construct yearly and typical weather files from EURO-CORDEX is presented. • Contrary to assumptions, medium future typical years are not as intense as 2003 heatwave year in Nantes. • Buildings located in sparsely built locations that are less affected by UHI are also at risk of overheating. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.