1. Quantifying Quantum Coherence Using Machine Learning Methods
- Author
-
Lin Zhang, Liang Chen, Qiliang He, and Yeqi Zhang
- Subjects
quantum coherence ,robustness of coherence ,machining learning ,artificial neural network ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Quantum coherence is a crucial resource in numerous quantum processing tasks. The robustness of coherence provides an operational measure of quantum coherence, which can be calculated for various states using semidefinite programming. However, this method depends on convex optimization and can be time-intensive, especially as the dimensionality of the space increases. In this study, we employ machine learning techniques to quantify quantum coherence, focusing on the robustness of coherence. By leveraging artificial neural networks, we developed and trained models for systems with different dimensionalities. Testing on data samples shows that our approach substantially reduces computation time while maintaining strong generalizability.
- Published
- 2024
- Full Text
- View/download PDF