24 results on '"Perseo V."'
Search Results
2. 2D core ion temperature and impurity density measurements with Coherence Imaging Charge Exchange Recombination Spectroscopy (CICERS) at Wendelstein 7-X (invited).
- Author
-
Lopez-Cansino, R., Perseo, V., Viezzer, E., Ford, O. P., Kriete, M., Romba, T., Rueda-Rueda, J., Poloskei, P. Z., and Reimold, F.
- Subjects
- *
CHARGE exchange , *BACKGROUND radiation , *ION temperature , *DIAGNOSTIC imaging , *SPATIAL resolution , *BREMSSTRAHLUNG - Abstract
Coherence Imaging Charge Exchange Recombination Spectroscopy (CICERS) is an imaging diagnostic installed in Wendelstein 7-X from which 2D maps of ion temperature (Ti) and impurity density (nZ) are obtained. The improved spatial resolution and coverage, as compared to standard Charge eXchange Recombination Spectroscopy (CXRS), with which these parameters can be assessed, come at the expense of spectral resolution, requiring the development of new strategies to isolate the active charge exchange contribution from passive and Bremsstrahlung radiation. In this work, a new approach based on the modeling of background radiation is presented and applied to the derivation of 2D Ti maps. These are compared to the Ti profiles derived from standard CXRS, which found excellent agreement up to the edge (ρ > 0.8). The CICERS view is implemented in the pyFIDAsim code, which is used to provide further insight into the spatial localization of the radiation as measured by the diagnostic. Moreover, an absolute intensity calibration is carried out, and, coupled with pyFIDAsim, the first 2D nC maps are obtained and validated against CXRS data. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
3. Visible core spectroscopy at Wendelstein 7-X.
- Author
-
Ford, O. P., Langenberg, A., Romba, T., Pölöskei, P., Zanini, M., Bannmann, S., Gonda, T., Ida, K., Lopez Cansino, R., Pablant, N., de la Riva Villen, J., Swee, C., Yoshinuma, M., Alonso, A., Geiger, B., Perseo, V., and Viezzer, E.
- Subjects
OPTICAL spectroscopy ,CHARGE exchange ,ION temperature ,ELECTRON density ,X-ray spectrometers - Abstract
This paper presents an overview of recent hardware extensions and data analysis developments to the Wendelstein 7-X visible core spectroscopy systems. These include upgrades to prepare the in-vessel components for long-pulse operation, nine additional spectrometers, a new line of sight array for passive spectroscopy, and a coherence imaging charge exchange spectroscopy diagnostic. Progress in data analysis includes ion temperatures and densities from multiple impurity species, a statistical comparison with x-ray crystal spectrometer measurements, neutral density measurements from thermal passive Balmer-alpha emission, and a Bayesian analysis of active hydrogen emission, which is able to infer electron density and main ion temperature profiles. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF
4. Upgrades of edge, divertor and scrape-off layer diagnostics of W7‐X for OP1.2
- Author
-
Hathiramani, D., Ali, A., Anda, G., Barbui, T., Biedermann, C., Charl, A., Chauvin, D., Czymek, G., Dhard, C.P., Drewelow, P., Dudek, A., Effenberg, F., Ehrke, G., Endler, M., Ennis, D.A., Fellinger, J., Ford, O., Freundt, S., Gradic, D., Grosser, K., Harris, J., Hölbe, H., Jakubowski, M.W., Knaup, M., Kocsis, G., König, R., Krause, M., Kremeyer, T., Kornejew, P., Krychowiak, M., Lambertz, H.T., Jenzsch, H., Mayer, M., Mohr, S., Neubauer, O., Otte, M., Perseo, V., Pilopp, D., Rudischhauser, L., Schmitz, O., Schweer, B., Schülke, M., Stephey, L., Szepesi, T., Terra, A., Toth, M., Wenzel, U., Wurden, G.A., Zoletnik, S., and Pedersen, T. Sunn
- Published
- 2018
- Full Text
- View/download PDF
5. Development of MPPC-based detectors for high count rate DT campaigns at JET
- Author
-
Boltruczyk, G., Broslawski, A., Gosk, M., Korolczuk, S., Kwiatkowski, R., Linczuk, M., Urban, A., Bielecki, J., Costa Pereira, R., Fernandes, A., Figueiredo, J., Kiptily, V., Murari, A., Nocente, M., Perseo, V., Rigamonti, D., Santos, B., Tardocchi, M., and Zychor, I.
- Published
- 2017
- Full Text
- View/download PDF
6. Overview over the neutral gas pressures in Wendelstein 7-X during divertor operation under boronized wall conditions
- Author
-
W7-X Team, Haak, V., Bozhenkov, S. A., Feng, Y., Kharwandikar, A., Kremeyer, T., Naujoks, D., Perseo, V., Schlisio, G., and Wenzel, U.
- Subjects
Technology ,neutral gas pressure ,particle exhaust ,Wendelstein 7-X ,ddc:600 - Abstract
During the first test divertor campaign of the stellarator experiment Wendelstein 7-X (Pedersen et al 2022 Nucl. Fusion 62 042022), OP1.2b, 13 neutral gas pressure gauges collected data in different locations in the plasma vessel, enabling a detailed analysis of the neutral gas pressures, the compression ratios and the particle exhaust rates via the turbomolecular pumps in the different magnetic field configurations. In Wendelstein 7-X, the edge magnetic islands are intersected by the divertor target plates and used to create a plasma-wall interface. As the number and position of the magnetic islands varies in different magnetic field configurations, the position of the strike line on the target plates and thus the neutral gas pressure in the subdivertor differs between the configurations. Neutral gas pressures on the order of few 10−4 mbar were measured in the subdivertor region. The highest neutral gas pressure of $1.75\times 10^{-3}$ mbar was obtained in the so-called high iota configuration featuring four edge magnetic islands per cross section. The neutral particle flux through the pumping gaps into the subdivertor volume was provided by EMC3-EIRENE simulations and allowed to analyze the relation between the particle flux entering the subdivertor and the pressure distribution in the subdivertor. Finite element simulations in ANSYS provide a detailed picture of the pressure distribution in the subdivertor volume and agree with the neutral gas pressure measurements in the subdivertor in the standard configuration featuring an island chain of 5 edge magnetic islands. Surprisingly high neutral gas pressures that were not predicted by the simulation were measured in the subdivertor region away from the main strike line for discharges in the most used magnetic configuration, the standard configuration. While the pressure ratio between the two sections of the subdivertor volume, the low and high iota section is 0.06 in high iota configuration, a ratio of 2–5 was obtained in the other configurations, indicating significant particle loads and exhaust rates on the high iota section of the subdivertor in magnetic configurations with the main strike line on the low iota divertor targets.
- Published
- 2023
7. Effects of drifts on scrape-off layer transport in W7-X
- Author
-
Kriete, D. M., Pandey, A., Perseo, V., Schmitt, J. C., Ennis, D. A., Gradic, D., Hammond, K. C., Jakubowski, M., Killer, C., König, R., Maurer, D. A., Reimold, F., Winters, V., Beurskens, M. N. A., Bozhenkov, S. A., Brunner, K. J., Fuchert, G., Knauer, J., Pasch, E., Scott, E. R., Gantenbein, Gerd, Illy, Stefan, Jelonnek, John, Krier, Laurent, Thumm, Manfred, Team, the W-X., and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Nuclear and High Energy Physics ,Technology ,Condensed Matter Physics ,ddc:600 - Abstract
Drifts affect particle, momentum, and energy transport in the scrape-off layer (SOL) of tokamaks and stellarators, altering plasma flows and creating asymmetries between divertors. To understand how drifts affect SOL transport in the W7-X island divertor, an experiment was performed to compare plasmas with matched core parameters but opposite magnetic field directions, and therefore opposite drift transport directions. Parallel flow measurements made with coherence imaging spectroscopy are interpreted with the aid of a diagnostic forward model and a 1D simple SOL model that includes the E × B drift. In low-density plasmas ( n ‾ e < 2 × 10 19 m−3), the poloidal E × B drift induces a large poloidal density asymmetry within the island SOL, as measured by divertor Langmuir probes. This in turn causes the parallel flow stagnation point to shift from the position halfway between targets to the X-point in the drift direction, leading to near-unidirectional flow throughout the SOL. As density increases, the effects of the poloidal E × B drift decrease substantially, resulting in a smaller density asymmetry and the development of a counter-streaming flow pattern. For the entire density range probed in this experiment ( n ‾ e = 1.5 − 6 × 10 19 m−3), the experimental observations are more consistent with the effects of the poloidal E × B drift than the radial E × B drift.
- Published
- 2023
8. Impurity temperatures measured via line shape analysis in the island scrape-off-layer of Wendelstein 7-X
- Author
-
Gradic, D., Krychowiak, M., König, R., Henke, F., Otte, M., Perseo, V., Pedersen, T. Sunn, W7-X Team, Gantenbein, Gerd, Huber, Martina, Illy, Stefan, Jelonnek, John, Kobarg, Thorsten, Lang, Rouven, Leonhardt, Wolfgang, Mellein, Daniel, Papenfuß, Daniel, Thumm, Manfred, Wadle, Simone, Weggen, Jörg, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Technology ,Nuclear Energy and Engineering ,Condensed Matter Physics ,Condensed Matter::Mesoscopic Systems and Quantum Hall Effect ,ddc:600 - Abstract
Impurity temperatures have been determined by a spectroscopic line shape analysis for several species in the divertor scrape-off-layer of the stellarator Wendelstein 7-X (W7-X). Examples include spectral lines from intrinsic elements (C II and C III, He I) as well as from seeded impurities (Ar II, N II) through the divertor gas inlet system. Both Doppler broadening and Zeeman splitting are found to contribute significantly to the impurity line shapes. Zeeman splitting arises due to the confining magnetic field in W7-X and complicates the line shape appearance. By attributing Doppler widths to each of the various Zeeman components, however, we demonstrate that reliable ion temperature values can be derived provided that the presence of the magnetic field is properly accounted for. The spectrally highly resolved lines are analyzed by means of a multi-parameter, least-squares fit routine, which accounts for Doppler broadening, Zeeman splitting, as well as the instrumental broadening of the spectrometer used to measure the spectral line shapes. By spectral fitting of the Zeeman features, it is also found that the line shape analysis can yield values for the local magnetic field, which can be used to localize the impurity radiation approximately provided that the line emission is dominant in a small area intersected by the lines of sight of the spectrometer.
- Published
- 2022
9. Gas exhaust in the Wendelstein 7-X stellarator during the first divertor operation
- Author
-
Wenzel, U., Schlisio, G., Drewelow, P., Krychowiak, M., König, R., Pedersen, T. S., Bozhenkov, S., Haak, V., Kharwandikar, A. K., Lazerson, S., Naujoks, D., Perseo, V., Winters, V., Team, The W7-X, Gantenbein, Gerd, Huber, Martina, Illy, Stefan, Jelonnek, John, Kobarg, Thorsten, Lang, Rouven, Leonhardt, Wolfgang, Mellein, Daniel, Papenfuß, Daniel, Thumm, Manfred, Wadle, Simone, Weggen, Jörg, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Technology ,Nuclear and High Energy Physics ,Condensed Matter Physics ,ddc:600 - Abstract
The optimized superconducting stellarator Wendelstein 7-X (W7-X) is equipped with an island divertor for energy control and efficient pumping. We investigated the performance of the island divertor in terms of gas exhaust. For this purpose we have installed 18 pressure gauges in the vacuum vessel. This allowed us to determine the exhaust efficiency, the leakage, the collection efficiency and the compression ratio of the island divertor. These quantities depended strongly on the magnetic configuration. The best performance was obtained in the high-iota configuration. The exhaust efficiency was 2.9%, significantly higher than in the standard configuration (0.44%), and the maximum neutral compression was about 80. The high-iota configuration appears particularly promising for long-pulse operation of W7-X.
- Published
- 2022
- Full Text
- View/download PDF
10. 2D measurements of parallel counter-streaming flows in the W7-X scrape-off layer for attached and detached plasmas
- Author
-
W7-X Team, Perseo, V., Winters, V., Feng, Y., Reimold, F., Ford, O. P., König, R., Bozhenkov, S. A., Brunner, K. J., Burhenn, R., Drewelow, P., Ennis, D. A., Gao, Y., Gradic, D., Hacker, P., Hergenhahn, U., Jakubowski, M. W., Knauer, J., Kremeyer, T., Kriete, D. M., Krychowiak, M., Kwak, S., Niemann, H., Pavone, A., Pisano, F., Puig Sitjes, A., Schlisio, G., Svensson, J., Zhang, D., Sunn Pedersen, T., Gantenbein, Gerd, Huber, Martina, Illy, Stefan, Jelonnek, John, Kobarg, Thorsten, Lang, Rouven, Leonhardt, Wolfgang, Mellein, Daniel, Papenfuß, Daniel, Scherer, Theo, Thumm, Manfred, Wadle, Simone, Weggen, Jörg, and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Subjects
Physics ,Technology ,Nuclear and High Energy Physics ,0103 physical sciences ,Plasma ,010306 general physics ,Condensed Matter Physics ,ddc:600 ,01 natural sciences ,Layer (electronics) ,010305 fluids & plasmas ,Computational physics - Abstract
Investigations of particle parallel flow velocities have been carried out for the scrape-off layer (SOL) of the Wendelstein 7-X (W7-X) stellarator, in order to gain insights on the SOL transport properties during attached and detached plasma scenarios. The experimental evidence is based on the coherence imaging spectroscopy (CIS) diagnostic, able to measure 2D impurity emission intensity and flow velocity. The impurity monitored by CIS is C2+, characterized by a line-emission intensity observed to be linearly proportional to the total plasma radiated power in both attached and detached plasmas. The related C2+ velocity shows a strong dependence on the line-averaged electron density while remaining insensitive to the input power. During attached plasmas, the velocity increases with increasing line-averaged density. The tendency reverses in the transition to and during detachment, in which the velocity decreases by at least a factor of 2. The sharp drop in velocity, together with a rise in line-emission intensity, is reliably correlated to the detachment transition and can therefore be used as one of its signatures. The impurity flow velocity appears to be well coupled with the main ions’ one, thus implying the dominant role of impurity-main ion friction in the parallelimpurity transport dynamics. In view of this SOL impurity transport regime, the CIS measurement results are here interpreted with the help of EMC3-Eirene simulations, and their major trends are already explainable with a simple 1D fluid model.
- Published
- 2021
11. 2D coherence imaging measurements of C ion temperatures in the divertor of Wendelstein 7-X
- Author
-
W7-X Team, Gradic, D., Perseo, V., Kriete, D. M., Krychowiak, M., König, R., Feng, Y., Otte, M., Pedersen, T. Sunn, Gao, Y., Jakubowski, M., Schlisio, G., Warmer, F., Gantenbein, Gerd, Huber, Martina, Illy, Stefan, Jelonnek, John, Kobarg, Thorsten, Lang, Rouven, Leonhardt, Wolfgang, Mellein, Daniel, Papenfuß, Daniel, Scherer, Theo, Thumm, Manfred, Wadle, Simone, and Weggen, Jörg
- Subjects
Technology ,ddc:600 - Published
- 2021
12. Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
- Author
-
W7-X Team, Beidler, C. D., Smith, H. M., Alonso, A., Andreeva, T., Baldzuhn, J., Beurskens, M. N. A., Borchardt, M., Bozhenkov, S. A., Brunner, K. J., Damm, H., Drevlak, M., Ford, O. P., Fuchert, G., Geiger, J., Helander, P., Hergenhahn, U., Hirsch, M., Höfel, U., Kazakov, Ye. O., Kleiber, R., Krychowiak, M., Kwak, S., Langenberg, A., Laqua, H. P., Neuner, U., Pablant, N. A., Pasch, E., Pavone, A., Pedersen, T. S., Rahbarnia, K., Schilling, J., Scott, E. R., Stange, T., Svensson, J., Thomsen, H., Turkin, Y., Warmer, F., Wolf, R. C., Zhang, D., Abramovic, I., Äkäslompolo, S., Alcusón, J., Aleynikov, P., Aleynikova, K., Ali, A., Anda, G., Ascasibar, E., Bähner, J. P., Baek, S. G., Balden, M., Banduch, M., Barbui, T., Behr, W., Benndorf, A., Biedermann, C., Biel, W., Blackwell, B., Blanco, E., Blatzheim, M., Ballinger, S., Bluhm, T., Böckenhoff, D., Böswirth, B., Böttger, L.-G., Borsuk, V., Boscary, J., Bosch, H.-S., Brakel, R., Brand, H., Brandt, C., Bräuer, T., Braune, H., Brezinsek, S., Brunner, K.-J., Burhenn, R., Bussiahn, R., Buttenschön, B., Bykov, V., Cai, J., Calvo, I., Cannas, B., Cappa, A., Carls, A., Carraro, L., Carvalho, B., Castejon, F., Charl, A., Chaudhary, N., Chauvin, D., Chernyshev, F., Cianciosa, M., Citarella, R., Claps, G., Coenen, J., Cole, M., Cole, M. J., Cordella, F., Cseh, G., Czarnecka, A., Czerski, K., Czerwinski, M., Czymek, G., Molin, A. da, Silva, A. da, Pena, A. de la, Degenkolbe, S., Dhard, C. P., Dibon, M., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Durodie, F., Edlund, E., Effenberg, F., Ehrke, G., Elgeti, S., Endler, M., Ennis, D., Esteban, H., Estrada, T., Fellinger, J., Feng, Y., Flom, E., Fernandes, H., Fietz, W. H., Figacz, W., Fontdecaba, J., Fornal, T., Frerichs, H., Freund, A., Funaba, T., Galkowski, A., Gantenbein, G., Gao, Y., García Regaña, J., Gates, D., Geiger, B., Giannella, V., Gogoleva, A., Goncalves, B., Goriaev, A., Gradic, D., Grahl, M., Green, J., Greuner, H., Grosman, A., Grote, H., Gruca, M., Grulke, O., Guerard, C., Hacker, P., Han, X., Harris, J. H., Hartmann, D., Hathiramani, D., Hein, B., Heinemann, B., Henneberg, S., Henkel, M., Hernandez Sanchez, J., Hidalgo, C., Hollfeld, K. P., Hölting, A., Höschen, D., Houry, M., Howard, J., Huang, X., Huang, Z., Hubeny, M., Huber, M., Hunger, H., Ida, K., Ilkei, T., Illy, S., Israeli, B., Jablonski, S., Jakubowski, M., Jelonnek, J., Jenzsch, H., Jesche, T., Jia, M., Junghanns, P., Kacmarczyk, J., Kallmeyer, J.-P., Kamionka, U., Kasahara, H., Kasparek, W., Kenmochi, N., Killer, C., Kirschner, A., Klinger, T., Knauer, J., Knaup, M., Knieps, A., Kobarg, T., Kocsis, G., Köchl, F., Kolesnichenko, Y., Könies, A., König, R., Kornejew, P., Koschinsky, J.-P., Köster, F., Krämer, M., Krampitz, R., Krämer-Flecken, A., Krawczyk, N., Kremeyer, T., Krom, J., Ksiazek, I., Kubkowska, M., Kühner, G., Kurki-Suonio, T., Kurz, P. A., Landreman, M., Lang, P., Lang, R., Langish, S., Laqua, H., Laube, R., Lazerson, S., Lechte, C., Lennartz, M., Leonhardt, W., Li, C., Li, Y., Liang, Y., Linsmeier, C., Liu, S., Lobsien, J.-F., Loesser, D., Loizu Cisquella, J., Lore, J., Lorenz, A., Losert, M., Lücke, A., Lumsdaine, A., Lutsenko, V., Maaßberg, H., Marchuk, O., Matthew, J. H., Marsen, S., Marushchenko, M., Masuzaki, S., Maurer, D., Mayer, M., McCarthy, K., McNeely, P., Meier, A., Mellein, D., Mendelevitch, B., Mertens, P., Mikkelsen, D., Mishchenko, A., Missal, B., Mittelstaedt, J., Mizuuchi, T., Mollen, A., Moncada, V., Mönnich, T., Morisaki, T., Moseev, D., Murakami, S., Náfrádi, G., Nagel, M., Naujoks, D., Neilson, H., Neu, R., Neubauer, O., Ngo, T., Nicolai, D., Nielsen, S. K., Niemann, H., Nishizawa, T., Nocentini, R., Nührenberg, C., Nührenberg, J., Obermayer, S., Offermanns, G., Ogawa, K., Ölmanns, J., Ongena, J., Oosterbeek, J. W., Orozco, G., Otte, M., Pacios Rodriguez, L., Panadero, N., Panadero Alvarez, N., Papenfuß, D., Paqay, S., Pawelec, E., Pelka, G., Perseo, V., Peterson, B., Pilopp, D., Pingel, S., Pisano, F., Plaum, B., Plunk, G., Pölöskei, P., Porkolab, M., Proll, J., Puiatti, M.-E., Puig Sitjes, A., Purps, F., Rack, M., Récsei, S., Reiman, A., Reimold, F., Reiter, D., Remppel, F., Renard, S., Riedl, R., Riemann, J., Risse, K., Rohde, V., Röhlinger, H., Romé, M., Rondeshagen, D., Rong, P., Roth, B., Rudischhauser, L., Rummel, K., Rummel, T., Runov, A., Rust, N., Ryc, L., Ryosuke, S., Sakamoto, R., Salewski, M., Samartsev, A., Sanchez, M., Sano, F., Satake, S., Schacht, J., Satheeswaran, G., Schauer, F., Scherer, T., Schlaich, A., Schlisio, G., Schluck, F., Schlüter, K.-H., Schmitt, J., Schmitz, H., Schmitz, O., Schmuck, S., Schneider, M., Schneider, W., Scholz, P., Schrittwieser, R., Schröder, M., Schröder, T., Schroeder, R., Schumacher, H., Schweer, B., Sereda, S., Shanahan, B., Sibilia, M., Sinha, P., Sipliä, S., Slaby, C., Sleczka, M., Spiess, W., Spong, D. A., Spring, A., Stadler, R., Stejner, M., Stephey, L., Stridde, U., Suzuki, C., Szabó, V., Szabolics, T., Szepesi, T., Szökefalvi-Nagy, Z., Tamura, N., Tancetti, A., Terry, J., Thomas, J., Thumm, M., Travere, J. M., Traverso, P., Tretter, J., Trimino Mora, H., Tsuchiya, H., Tsujimura, T., Tulipán, S., Unterberg, B., Vakulchyk, I., Valet, S., Vanó, L., Eeten, P. van, Milligen, B. van, Vuuren, A. J. van, Vela, L., Velasco, J.-L., Vergote, M., Vervier, M., Vianello, N., Viebke, H., Vilbrandt, R., Stechow, A. von, Vorköper, A., Wadle, S., Wagner, F., Wang, E., Wang, N., Wang, Z., Wauters, T., Wegener, L., Weggen, J., Wegner, T., Wei, Y., Weir, G., Wendorf, J., Wenzel, U., Werner, A., White, A., Wiegel, B., Wilde, F., Windisch, T., Winkler, M., Winter, A., Winters, V., Wolf, S., Wright, A., Wurden, G., Xanthopoulos, P., Yamada, H., Yamada, I., Yasuhara, R., Yokoyama, M., Zanini, M., Zarnstorff, M., Zeitler, A., Zhang, H., Zhu, J., Zilker, M., Zocco, A., Zoletnik, S., Zuin, M., W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, Applied Physics and Science Education, Science and Technology of Nuclear Fusion, Turbulence in Fusion Plasmas, and European Commission
- Subjects
Magnetically Confined Plasmas ,Tokamak ,Design ,Helias ,Nuclear engineering ,Magnetically confined plasmas ,01 natural sciences ,7. Clean energy ,Article ,Plasma physics ,010305 fluids & plasmas ,law.invention ,law ,Physics::Plasma Physics ,0103 physical sciences ,Nuclear fusion ,010306 general physics ,Engineering & allied operations ,Stellarator ,Physics ,Plasma fusion ,Multidisciplinary ,Toroid ,biology ,Plasma Physics ,Física ,Magnetic confinement fusion ,Plasma ,biology.organism_classification ,Energía Nuclear ,ddc:620 ,Wendelstein 7-X - Abstract
Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator’s non-turbulent ‘neoclassical’ energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas3,4. The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible1,5. Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization., Previously documented record values of the fusion triple product in the stellarator Wendelstein 7-X are shown to be evidence for reduced neoclassical energy transport in this optimized device.
- Published
- 2021
- Full Text
- View/download PDF
13. Publisher Correction: Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
- Author
-
Beidler, C. D., Smith, H. M., Alonso, A., Andreeva, T., Baldzuhn, J., Beurskens, M. N. A., Borchardt, M., Bozhenkov, S. A., Brunner, K. J., Damm, H., Drevlak, M., Ford, O. P., Fuchert, G., Geiger, J., Helander, P., Hergenhahn, U., Hirsch, M., H��fel, U., Kazakov, Ye. O., Kleiber, R., Krychowiak, M., Kwak, S., Langenberg, A., Laqua, H. P., Neuner, U., Pablant, N. A., Pasch, E., Pavone, A., Pedersen, T. S., Rahbarnia, K., Schilling, J., Scott, E. R., Stange, T., Svensson, J., Thomsen, H., Turkin, Y., Warmer, F., Wolf, R. C., Zhang, D., Abramovic, I., ��k��slompolo, S., Alcus��n, J., Aleynikov, P., Aleynikova, K., Ali, A., Anda, G., Ascasibar, E., B��hner, J. P., Baek, S. G., Balden, M., Banduch, M., Barbui, T., Behr, W., Benndorf, A., Biedermann, C., Biel, W., Blackwell, B., Blanco, E., Blatzheim, M., Ballinger, S., Bluhm, T., B��ckenhoff, D., B��swirth, B., B��ttger, L.-G., Borsuk, V., Boscary, J., Bosch, H.-S., Brakel, R., Brand, H., Brandt, C., Br��uer, T., Braune, H., Brezinsek, S., Brunner, K.-J., Burhenn, R., Bussiahn, R., Buttensch��n, B., Bykov, V., Cai, J., Calvo, I., Cannas, B., Cappa, A., Carls, A., Carraro, L., Carvalho, B., Castejon, F., Charl, A., Chaudhary, N., Chauvin, D., Chernyshev, F., Cianciosa, M., Citarella, R., Claps, G., Coenen, J., Cole, M., Cole, M. J., Cordella, F., Cseh, G., Czarnecka, A., Czerski, K., Czerwinski, M., Czymek, G., Da Molin, A., Da Silva, A., De La Pena, A., Degenkolbe, S., Dhard, C. P., Dibon, M., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Durodie, F., Edlund, E., Effenberg, F., Ehrke, G., Elgeti, S., Endler, M., Ennis, D., Esteban, H., Estrada, T., Fellinger, J., Feng, Y., Flom, E., Fernandes, H., Fietz, W. H., Figacz, W., Fontdecaba, J., Fornal, T., Frerichs, H., Freund, A., Funaba, T., Galkowski, A., Gantenbein, G., Gao, Y., Garc��a Rega��a, J., Gates, D., Geiger, B., Giannella, V., Gogoleva, A., Goncalves, B., Goriaev, A., Gradic, D., Grahl, M., Green, J., Greuner, H., Grosman, A., Grote, H., Gruca, M., Grulke, O., Guerard, C., Hacker, P., Han, X., Harris, J. H., Hartmann, D., Hathiramani, D., Hein, B., Heinemann, B., Henneberg, S., Henkel, M., Hernandez Sanchez, J., Hidalgo, C., Hollfeld, K. P., H��lting, A., H��schen, D., Houry, M., Howard, J., Huang, X., Huang, Z., Hubeny, M., Huber, M., Hunger, H., Ida, K., Ilkei, T., Illy, S., Israeli, B., Jablonski, S., Jakubowski, M., Jelonnek, J., Jenzsch, H., Jesche, T., Jia, M., Junghanns, P., Kacmarczyk, J., Kallmeyer, J.-P., Kamionka, U., Kasahara, H., Kasparek, W., Kenmochi, N., Killer, C., Kirschner, A., Klinger, T., Knauer, J., Knaup, M., Knieps, A., Kobarg, T., Kocsis, G., K��chl, F., Kolesnichenko, Y., K��nies, A., K��nig, R., Kornejew, P., Koschinsky, J.-P., K��ster, F., Kr��mer, M., Krampitz, R., Kr��mer-Flecken, A., Krawczyk, N., Kremeyer, T., Krom, J., Ksiazek, I., Kubkowska, M., K��hner, G., Kurki-Suonio, T., Kurz, P. A., Landreman, M., Lang, P., Lang, R., Langish, S., Laqua, H., Laube, R., Lazerson, S., Lechte, C., Lennartz, M., Leonhardt, W., Li, C., Li, Y., Liang, Y., Linsmeier, C., Liu, S., Lobsien, J.-F., Loesser, D., Loizu Cisquella, J., Lore, J., Lorenz, A., Losert, M., L��cke, A., Lumsdaine, A., Lutsenko, V., Maa��berg, H., Marchuk, O., Matthew, J. H., Marsen, S., Marushchenko, M., Masuzaki, S., Maurer, D., Mayer, M., McCarthy, K., McNeely, P., Meier, A., Mellein, D., Mendelevitch, B., Mertens, P., Mikkelsen, D., Mishchenko, A., Missal, B., Mittelstaedt, J., Mizuuchi, T., Mollen, A., Moncada, V., M��nnich, T., Morisaki, T., Moseev, D., Murakami, S., N��fr��di, G., Nagel, M., Naujoks, D., Neilson, H., Neu, R., Neubauer, O., Ngo, T., Nicolai, D., Nielsen, S. K., Niemann, H., Nishizawa, T., Nocentini, R., N��hrenberg, C., N��hrenberg, J., Obermayer, S., Offermanns, G., Ogawa, K., ��lmanns, J., Ongena, J., Oosterbeek, J. W., Orozco, G., Otte, M., Pacios Rodriguez, L., Panadero, N., Panadero Alvarez, N., Papenfu��, D., Paqay, S., Pawelec, E., Pelka, G., Perseo, V., Peterson, B., Pilopp, D., Pingel, S., Pisano, F., Plaum, B., Plunk, G., P��l��skei, P., Porkolab, M., Proll, J., Puiatti, M.-E., Puig Sitjes, A., Purps, F., Rack, M., R��csei, S., Reiman, A., Reimold, F., Reiter, D., Remppel, F., Renard, S., Riedl, R., Riemann, J., Risse, K., Rohde, V., R��hlinger, H., Rom��, M., Rondeshagen, D., Rong, P., Roth, B., Rudischhauser, L., Rummel, K., Rummel, T., Runov, A., Rust, N., Ryc, L., Ryosuke, S., Sakamoto, R., Salewski, M., Samartsev, A., S��nchez, E., Sano, F., Satake, S., Schacht, J., Satheeswaran, G., Schauer, F., Scherer, T., Schlaich, A., Schlisio, G., Schluck, F., Schl��ter, K.-H., Schmitt, J., Schmitz, H., Schmitz, O., Schmuck, S., Schneider, M., Schneider, W., Scholz, P., Schrittwieser, R., Schr��der, M., Schr��der, T., Schroeder, R., Schumacher, H., Schweer, B., Sereda, S., Shanahan, B., Sibilia, M., Sinha, P., Sipli��, S., Slaby, C., Sleczka, M., Spiess, W., Spong, D. A., Spring, A., Stadler, R., Stejner, M., Stephey, L., Stridde, U., Suzuki, C., Szab��, V., Szabolics, T., Szepesi, T., Sz��kefalvi-Nagy, Z., Tamura, N., Tancetti, A., Terry, J., Thomas, J., Thumm, M., Travere, J. M., Traverso, P., Tretter, J., Trimino Mora, H., Tsuchiya, H., Tsujimura, T., Tulip��n, S., Unterberg, B., Vakulchyk, I., Valet, S., Van��, L., Van Eeten, P., Van Milligen, B., Van Vuuren, A. J., Vela, L., Velasco, J.-L., Vergote, M., Vervier, M., Vianello, N., Viebke, H., Vilbrandt, R., Von Stechow, A., Vork��per, A., Wadle, S., Wagner, F., Wang, E., Wang, N., Wang, Z., Wauters, T., Wegener, L., Weggen, J., Wegner, T., Wei, Y., Weir, G., Wendorf, J., Wenzel, U., Werner, A., White, A., Wiegel, B., Wilde, F., Windisch, T., Winkler, M., Winter, A., Winters, V., Wolf, S., Wright, A., Wurden, G., Xanthopoulos, P., Yamada, H., Yamada, I., Yasuhara, R., Yokoyama, M., Zanini, M., Zarnstorff, M., Zeitler, A., Zhang, H., Zhu, J., Zilker, M., Zocco, A., Zoletnik, S., and Zuin, M.
- Subjects
Chemical engineering ,ddc:660 - Published
- 2021
14. Impurity flow measurements with Coherence Imaging Spectroscopy at Wendelstein 7-X
- Author
-
Perseo, V.
- Published
- 2020
15. 2D coherence imaging measurements of C 2 + ion temperatures in the divertor of Wendelstein 7-X.
- Author
-
Gradic, D., Perseo, V., Kriete, D.M., Krychowiak, M., König, R., Feng, Y., Otte, M., Pedersen, T. Sunn, Gao, Y., Jakubowski, M., Schlisio, G., Warmer, F., and W7-X Team, the
- Subjects
- *
ION temperature , *ZEEMAN effect , *SPECTRAL imaging , *SPECTRAL line broadening , *DOPPLER broadening , *MAGNETIC fields - Abstract
For the first time, 2D ion temperature values are derived from coherence imaging spectroscopy (CIS) fringe contrast measurements by taking Zeeman line broadening effects into account during the analysis procedure of a spatial-heterodyne CIS instrument. This allowed 2D images of C2+ ion temperatures (T i) across the 3D-shaped island divertor of the Wendelstein 7-X stellarator. Ion temperatures ranging from 10 to 20 eV are observed for the C2+ impurity species in the region above the divertor targets. During the transition from the attached to the detached plasma state, the C2+ radiation zone moves from close to the divertor target towards the last closed flux surface. Within this radiation zone, C2+ temperature does not decrease significantly. Experimentally, the coherence imaging measurements were cross-calibrated at one poloidal cross-section using a high resolution Echelle spectrometer, that shared its sightlines with the coherence imaging diagnostic. The spectra demonstrated that, apart from Doppler broadening, the Zeeman effect significantly contributes to the spectral line broadening and cannot be neglected when analyzing the CIS contrast data for T i extraction in the edge and scrape-off-layer of Wendelstein 7-X (W7-X), due to the relatively low temperatures (T i < 100 eV) and high magnetic fields (B ≠2.5 T). [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
16. First Divertor Physics Studies in Wendelstein 7-X
- Author
-
Pedersen, T., König, R., Jakubowski, M., Feng, Y., Ali, A., Anda, G., Baldzuhn, J., Barbui, T., Biedermann, C., Blackwell, B., Bosch, H., Bozhenkov, S., Brakel, R., Brezinsek, S., Cai, J., Coenen, J., Cosfeld, J., Dinklage, A., Dittmar, T., Drewelow, P., Drews, P., Dunai, D., Effenberg, F., Endler, M., Fellinger, J., Ford, O., Frerichs, H., Fuchert, G., Geiger, J., Gao, Y., Goriaev, A., Henkel, M., Hammond, K., Harris, J., Hathiramani, D., Hölbe, H., Kazakov, Y., Killer, C., Kirschner, A., Knieps, A., Kobayashi, M., Kornejew, P., Krychowiak, M., Kocsis, G., Lazerzon, S., Li, C., Li, Y., Liang, Y., Liu, S., Lore, J., Masuzaki, S., Moncada, V., Neubauer, O., Ngo, T., Niemann, H., Oelmann, J., Otte, M., Perseo, V., Pisano, F., Puig Sitjes, A., Rack, M., Rasinski, M., Romazanov, J., Rudischhauser, L., Schmitt, J., Schlisio, G., Schmitz, O., Schweer, B., Sereda, S., Szepesi, T., Suzuki, Y., Wang, E., Wei, Y., Wenzel, U., Wiesen, S., Winters, V., Wauters, T., Wurden, G., Zhang, D., Zoletnik, S., and W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society
- Published
- 2019
17. Magnetic configuration effects on the Wendelstein 7-X stellarator
- Author
-
Dinklage A., Beidler C.D., Helander P., Fuchert G., Maassberg H., Rahbarnia K., Sunn Pedersen T., Turkin Y., Wolf R.C., Alonso A., Andreeva T., Blackwell B., Bozhenkov S., Buttenschon B., Czarnecka A., Effenberg F., Feng Y., Geiger J., Hirsch M., Hofel U., Jakubowski M., Klinger T., Knauer J., Kocsis G., Kramer-Flecken A., Kubkowska M., Langenberg A., Laqua H.P., Marushchenko N., Mollen A., Neuner U., Niemann H., Pasch E., Pablant N., Rudischhauser L., Smith H.M., Schmitz O., Stange T., Szepesi T., Weir G., Windisch T., Wurden G.A., Zhang D., Abramovic I., Akaslompolo S., Ali A., Belloso J.A., Aleynikov P., Aleynikova K., Alzbutas R., Anda G., Ascasibar E., Assmann J., Baek S.-G., Baldzuhn J., Banduch M., Barbui T., Barlak M., Baumann K., Behr W., Beidler C., Benndorf A., Bertuch O., Beurskens M., Biedermann C., Biel W., Birus D., Blanco E., Blatzheim M., Bluhm T., Bockenhoff D., Bolgert P., Borchardt M., Borsuk V., Boscary J., Bosch H.-S., Bottger L.-G., Brakel R., Brand H., Brandt C., Brauer T., Braune H., Brezinsek S., Brunner K.-J., Brunner B., Burhenn R., Bussiahn R., Bykov V., Cai Y., Calvo I., Cannas B., Cappa A., Card A., Carls A., Carraro L., Carvalho B., Castejon F., Charl A., Chernyshev F., Cianciosa M., Citarella R., Ciupinski L., Claps G., Cole M.J., Cordella F., Cseh G., Czermak A., Czerski K., Czerwinski M., Czymek G., da Molin A., da Silva A., Dammertz G., de la Pena A., Degenkolbe S., Denner P., Dittmar T., Dhard C.P., Dostal M., Drevlak M., Drewelow P., Drews P., Dudek A., Dundulis G., Durodie F., van Eeten P., Ehrke G., Endler M., Ennis D., Erckmann E., Esteban H., Estrada T., Fahrenkamp N., Feist J.-H., Fellinger J., Fernandes H., Fietz W.H., Figacz W., Fontdecaba J., Ford O., Fornal T., Frerichs H., Freund A., Fuhrer M., Funaba T., Galkowski A., Gantenbein G., Gao Y., Regana J.G., Garcia-Munoz M., Gates D., Gawlik G., Geiger B., Giannella V., Gierse N., Gogoleva A., Goncalves B., Goriaev A., Gradic D., Grahl M., Green J., Grosman A., Grote H., Gruca M., Grulke O., Guerard C., Hacker P., Haiduk L., Hammond K., Han X., Harberts F., Harris J.H., Hartfuss H.-J., Hartmann D., Hathiramani D., Hein B., Heinemann B., Heitzenroeder P., Henneberg S., Hennig C., Sanchez J.H., Hidalgo C., Holbe H., Hollfeld K.P., Holting A., Hoschen D., Houry M., Howard J., Huang X., Huber M., Huber V., Hunger H., Ida K., Ilkei T., Illy S., Israeli B., Ivanov A., Jablonski S., Jagielski J., Jelonnek J., Jenzsch H., Junghans P., Kacmarczyk J., Kaliatka T., Kallmeyer J.-P., Kamionka U., Karalevicius R., Kasahara H., Kasparek W., Kazakov Y., Kenmochi N., Keunecke M., Khilchenko A., Killer C., Kinna D., Kleiber R., Knaup M., Knieps A., Kobarg T., Kochl F., Kolesnichenko Y., Konies A., Koppen M., Koshurinov J., Koslowski R., Konig R., Koster F., Kornejew P., Koziol R., Kramer M., Krampitz R., Kraszewsk P., Krawczyk N., Kremeyer T., Krings T., Krom J., Krychowiak M., Krzesinski G., Ksiazek I., Kuhner G., Kurki-Suonio T., Kwak S., Landreman M., Lang R., Langish S., Laqua H., Laube R., Lazerson S., Lechte C., Lennartz M., Leonhardt W., Lewerentz L., Liang Y., Linsmeier C., Liu S., Lobsien J.-F., Loesser D., Cisquella J.L., Lore J., Lorenz A., Losert M., Lubyako L., Lucke A., Lumsdaine A., Lutsenko V., Maisano-Brown J., Marchuk O., Mardenfeld M., Marek P., Marsen S., Marushchenko M., Masuzaki S., Maurer D., McCarthy K., McNeely P., Meier A., Mellein D., Mendelevitch B., Mertens P., Mikkelsen D., Mishchenko O., Missal B., Mittelstaedt J., Mizuuchi T., Moncada V., Monnich T., Morisaki T., Moseev D., Munk R., Murakami S., Musielok F., Nafradi G., Nagel M., Naujoks D., Neilson H., Neubauer O., Ngo T., Nocentini R., Nuhrenberg C., Nuhrenberg J., Obermayer S., Offermanns G., Ogawa K., Ongena J., Oosterbeek J.W., Orozco G., Otte M., Rodriguez L.P., Pan W., Panadero N., Alvarez N.P., Panin A., Papenfuss D., Paqay S., Pavone A., Pawelec E., Pelka G., Peng X., Perseo V., Peterson B., Pieper A., Pilopp D., Pingel S., Pisano F., Plaum B., Plunk G., Povilaitis M., Preinhaelter J., Proll J., Puiatti M.-E., Sitjes A.P., Purps F., Rack M., Recsei S., Reiman A., Reiter D., Remppel F., Renard S., Riedl R., Riemann J., Rimkevicius S., Risse K., Rodatos A., Rohlinger H., Rome M., Rong P., Roscher H.-J., Roth B., Rummel K., Rummel T., Runov A., Rust N., Ryc L., Ryosuke S., Sakamoto R., Samartsev A., Sanchez M., Sano F., Satake S., Satheeswaran G., Schacht J., Schauer F., Scherer T., Schlaich A., Schlisio G., Schluter K.-H., Schmitt J., Schmitz H., Schmuck S., Schneider M., Schneider W., Scholz M., Scholz P., Schrittwieser R., Schroder M., Schroder T., Schroeder R., Schumacher H., Schweer B., Shanahan B., Shikhovtsev I.V., Sibilia M., Sinha P., Siplia S., Skodzik J., Slaby C., Smith H., Spiess W., Spong D.A., Spring A., Stadler R., Standley B., Stephey L., Stoneking M., Stridde U., Sulek Z., Pedersen T.S., Suzuki Y., Svensson J., Szabo V., Szabolics T., Szokefalvi-Nagy Z., Tamura N., Terra A., Terry J., Thomas J., Thomsen H., Thumm M., von Thun C.P., Timmermann D., Titus P., Toi K., Travere J.M., Traverso P., Tretter J., Mora H.T., Tsuchiya H., Tsujimura T., Tulipan S., Turnyanskiy M., Unterberg B., Urban J., Urbonavicius E., Vakulchyk I., Valet S., van Milligen B., Vela L., Velasco J.-L., Vergote M., Vervier M., Vianello N., Viebke H., Vilbrandt R., Vorkorper A., Wadle S., Wang E., Wang N., Warmer F., Wauters T., Wegener L., Weggen J., Wegner T., Wei Y., Wendorf J., Wenzel U., Wiegel B., Wilde F., Winkler E., Winters V., Wolf R., Wolf S., Wolowski J., Wright A., Wurden G., Xanthopoulos P., Yamada H., Yamada I., Yasuhara R., Yokoyama M., Zajac J., Zarnstorff M., Zeitler A., Zhang H., Zhu J., Zilker M., Zimbal A., Zocco A., Zoletnik S., Zuin M., W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, Science and Technology of Nuclear Fusion, and Turbulence in Fusion Plasmas
- Subjects
Physics ,Tokamak ,Field (physics) ,General Physics and Astronomy ,Plasma ,7. Clean energy ,01 natural sciences ,010305 fluids & plasmas ,Bootstrap current ,Computational physics ,Magnetic field ,law.invention ,Magnetic mirror ,Wendelstein 7-X stellarator ,Physics and Astronomy (all) ,law ,Physics::Plasma Physics ,0103 physical sciences ,Wendelstein 7-X plasmas ,Wendelstein 7-X ,010306 general physics ,Stellarator - Abstract
The two leading concepts for confining high-temperature fusion plasmas are the tokamak and the stellarator. Tokamaks are rotationally symmetric and use a large plasma current to achieve confinement, whereas stellarators are non-axisymmetric and employ three-dimensionally shaped magnetic field coils to twist the field and confine the plasma. As a result, the magnetic field of a stellarator needs to be carefully designed to minimize the collisional transport arising from poorly confined particle orbits, which would otherwise cause excessive power losses at high plasma temperatures. In addition, this type of transport leads to the appearance of a net toroidal plasma current, the so-called bootstrap current. Here, we analyse results from the first experimental campaign of the Wendelstein 7-X stellarator, showing that its magnetic-field design allows good control of bootstrap currents and collisional transport. The energy confinement time is among the best ever achieved in stellarators, both in absolute figures (τE > 100 ms) and relative to the stellarator confinement scaling. The bootstrap current responds as predicted to changes in the magnetic mirror ratio. These initial experiments confirm several theoretically predicted properties of Wendelstein 7-X plasmas, and already indicate consistency with optimization measures. Results from the first experimental campaign of the Wendelstein 7-X stellarator demonstrate that its magnetic-field design grants good control of parasitic plasma currents, leading to long energy confinement times.
- Published
- 2018
- Full Text
- View/download PDF
18. Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000
- Author
-
Pedersen T. S., Otte M., Lazerson S., Helander P., Bozhenkov S., Biedermann C., Klinger T., Wolf R. C., Bosch H. -S., Abramovic I., Akaslompolo S., Aleynikov P., Aleynikova K., Ali A., Alonso A., Anda G., Andreeva T., Ascasibar E., Baldzuhn J., Banduch M., Barbui T., Beidler C., Benndorf A., Beurskens M., Biel W., Birus D., Blackwell B., Blanco E., Blatzheim M., Bluhm T., Bockenhoff D., Bolgert P., Borchardt M., Bottger L. -G., Brakel R., Brandt C., Brauer T., Braune H., Burhenn R., Buttenschon B., Bykov V., Calvo I., Cappa A., Carls A., De Carvalho B. B., Castejon F., Cianciosa M., Cole M., Costea S., Cseh G., Czarnecka A., Dal Molin A., De La Cal E., De La Pena A., Degenkolbe S., Dhard C. P., Dinklage A., Dostal M., Drevlak M., Drewelow P., Drews P., Dudek A., Durodie F., Dzikowicka A., Von Eeten P., Effenberg F., Endler M., Erckmann V., Estrada T., Fahrenkamp N., Fellinger J., Feng Y., Figacz W., Ford O., Fornal T., Frerichs H., Fuchert G., Garcia-Munoz M., Geiger B., Geiger J., Gierse N., Gogoleva A., Goncalves B., Gradic D., Grahl M., Gross S., Grote H., Grulke O., Guerard C., Haas M., Harris J., Hartfuss H. -J., Hartmann D., Hathiramani D., Hein B., Heirnich S., Henneberg S., Hennig C., Hernandez J., Hidalgo C., Hidalgo U., Hirsch M., Hofel U., Holbe H., Holting A., Houry M., Huber V., Ionita C., Israeli B., Jablonski S., Jakubowski M., Van Vuuren A. J., Jenzsch H., Kaczmarczyk J., Kallmeyer J. -P., Kamionka U., Kasahara H., Kenmochi N., Kernbichler W., Killer C., Kinna D., Kleiber R., Knauer J., Kochl F., Kocsis G., Kolesnichenko Y., Konies A., Konig R., Kornejew P., Koster F., Kramer-Flecken A., Krampitz R., Krawzyk N., Kremeyer T., Krychowiak M., Ksiazek I., Kubkowska M., Kuhner G., Kurki-Suonio T., Kurz P., Kuttler K., Kwak S., Landreman M., Langenberg A., Lapayese F., Laqua H., Laqua H. -P., Laube R., Laux M., Lentz H., Lewerentz M., Liang Y., Liu S., Lobsien J. -F., Cisquella J. L., Lopez-Bruna D., Lore J., Lorenz A., Lui S., Lutsenko V., Maassberg H., Maisano-Brown J., Marchuk O., Marrelli L., Marsen S., Marushchenko N., Masuzaki S., McCarthy K., McNeely P., Medina F., Milojevic D., Mishchenko A., Missal B., Mittelstaedt J., Mollen A., Moncada V., Monnich T., Moseev D., Nagel M., Naujoks D., Neilson G. H., Neubauer O., Neuner U., Ngo T. -T., Niemann H., Nuhrenberg C., Nuhrenberg J., Ochando M., Ogawa K., Ongena J., Oosterbeek H., Pablant N., Pacella D., Pacios L., Panadero N., Pasch E., Pastor I., Pavone A., Pawelec E., Pedrosa A., Perseo V., Peterson B., Pilopp D., Pisano F., Piulatti M. E., Plunk G., Preynas M., Proll J., Sitjes A. P., Purps F., Rack M., Rahbarnia K., Riemann J., Risse K., Rong P., Rosenberger J., Rudischhauser L., Rummel K., Rummel T., Runov A., Rust N., Ryc L., Saitoh H., Satake S., Schacht J., Schmitz O., Schmuck S., Schneider B., Schneider M., Schneider W., Schrittwieser R., Schroder M., Schroder T., Schroder R., Schumacher H. W., Schweer B., Seki R., Sinha P., Sipilae S., Slaby C., Smith H., Sousa J., Spring A., Standley B., Stange T., Von Stechow A., Stephey L., Stoneking M., Stridde U., Suzuki Y., Svensson J., Szabolics T., Szepesi T., Thomsen H., Travere J. -M., Traverso P., Mora H. T., Tsuchiya H., Tsuijmura T., Turkin Y., Valet S., Van Milligen B., Vela L., Velasco J. -L., Vergote M., Vervier M., Viebke H., Vilbrandt R., Von Thun C. P., Wagner F., Wang E., Wang N., Warmer F., Wauters T., Wegener L., Wegner T., Weir G., Wendorf J., Wenzel U., Werner A., Wie Y., Wiegel B., Wilde F., Windisch T., Winkler M., Winters V., Wright A., Wurden G., Xanthopoulos P., Yamada I., Yasuhara R., Yokoyama M., Zhang D., Zilker M., Zimbal A., Zocco A., Zoletnik S., W7-X Team, Max Planck Institute for Plasma Physics, Max Planck Society, Massachusetts Institute of Technology. Department of Physics, Maisano-Brown, Jeannette D., Science and Technology of Nuclear Fusion, Pedersen, T, Otte, M, Lazerson, S, Helander, P, Bozhenkov, S, Biedermann, C, Klinger, T, Wolf, R, Bosch, H, Abramovic, I, Akaslompolo, S, Aleynikov, P, Aleynikova, K, Ali, A, Alonso, A, Anda, G, Andreeva, T, Ascasibar, E, Baldzuhn, J, Banduch, M, Barbui, T, Beidler, C, Benndorf, A, Beurskens, M, Biel, W, Birus, D, Blackwell, B, Blanco, E, Blatzheim, M, Bluhm, T, Bockenhoff, D, Bolgert, P, Borchardt, M, Bottger, L, Brakel, R, Brandt, C, Brauer, T, Braune, H, Burhenn, R, Buttenschon, B, Bykov, V, Calvo, I, Cappa, A, Carls, A, De Carvalho, B, Castejon, F, Cianciosa, M, Cole, M, Costea, S, Cseh, G, Czarnecka, A, Dal Molin, A, De La Cal, E, De La Pena, A, Degenkolbe, S, Dhard, C, Dinklage, A, Dostal, M, Drevlak, M, Drewelow, P, Drews, P, Dudek, A, Durodie, F, Dzikowicka, A, Von Eeten, P, Effenberg, F, Endler, M, Erckmann, V, Estrada, T, Fahrenkamp, N, Fellinger, J, Feng, Y, Figacz, W, Ford, O, Fornal, T, Frerichs, H, Fuchert, G, Garcia-Munoz, M, Geiger, B, Geiger, J, Gierse, N, Gogoleva, A, Goncalves, B, Gradic, D, Grahl, M, Gross, S, Grote, H, Grulke, O, Guerard, C, Haas, M, Harris, J, Hartfuss, H, Hartmann, D, Hathiramani, D, Hein, B, Heirnich, S, Henneberg, S, Hennig, C, Hernandez, J, Hidalgo, C, Hidalgo, U, Hirsch, M, Hofel, U, Holbe, H, Holting, A, Houry, M, Huber, V, Ionita, C, Israeli, B, Jablonski, S, Jakubowski, M, Van Vuuren, A, Jenzsch, H, Kaczmarczyk, J, Kallmeyer, J, Kamionka, U, Kasahara, H, Kenmochi, N, Kernbichler, W, Killer, C, Kinna, D, Kleiber, R, Knauer, J, Kochl, F, Kocsis, G, Kolesnichenko, Y, Konies, A, Konig, R, Kornejew, P, Koster, F, Kramer-Flecken, A, Krampitz, R, Krawzyk, N, Kremeyer, T, Krychowiak, M, Ksiazek, I, Kubkowska, M, Kuhner, G, Kurki-Suonio, T, Kurz, P, Kuttler, K, Kwak, S, Landreman, M, Langenberg, A, Lapayese, F, Laqua, H, Laube, R, Laux, M, Lentz, H, Lewerentz, M, Liang, Y, Liu, S, Lobsien, J, Cisquella, J, Lopez-Bruna, D, Lore, J, Lorenz, A, Lui, S, Lutsenko, V, Maassberg, H, Maisano-Brown, J, Marchuk, O, Marrelli, L, Marsen, S, Marushchenko, N, Masuzaki, S, Mccarthy, K, Mcneely, P, Medina, F, Milojevic, D, Mishchenko, A, Missal, B, Mittelstaedt, J, Mollen, A, Moncada, V, Monnich, T, Moseev, D, Nagel, M, Naujoks, D, Neilson, G, Neubauer, O, Neuner, U, Ngo, T, Niemann, H, Nuhrenberg, C, Nuhrenberg, J, Ochando, M, Ogawa, K, Ongena, J, Oosterbeek, H, Pablant, N, Pacella, D, Pacios, L, Panadero, N, Pasch, E, Pastor, I, Pavone, A, Pawelec, E, Pedrosa, A, Perseo, V, Peterson, B, Pilopp, D, Pisano, F, Piulatti, M, Plunk, G, Preynas, M, Proll, J, Sitjes, A, Purps, F, Rack, M, Rahbarnia, K, Riemann, J, Risse, K, Rong, P, Rosenberger, J, Rudischhauser, L, Rummel, K, Rummel, T, Runov, A, Rust, N, Ryc, L, Saitoh, H, Satake, S, Schacht, J, Schmitz, O, Schmuck, S, Schneider, B, Schneider, M, Schneider, W, Schrittwieser, R, Schroder, M, Schroder, T, Schroder, R, Schumacher, H, Schweer, B, Seki, R, Sinha, P, Sipilae, S, Slaby, C, Smith, H, Sousa, J, Spring, A, Standley, B, Stange, T, Von Stechow, A, Stephey, L, Stoneking, M, Stridde, U, Suzuki, Y, Svensson, J, Szabolics, T, Szepesi, T, Thomsen, H, Travere, J, Traverso, P, Mora, H, Tsuchiya, H, Tsuijmura, T, Turkin, Y, Valet, S, Van Milligen, B, Vela, L, Velasco, J, Vergote, M, Vervier, M, Viebke, H, Vilbrandt, R, Von Thun, C, Wagner, F, Wang, E, Wang, N, Warmer, F, Wauters, T, Wegener, L, Wegner, T, Weir, G, Wendorf, J, Wenzel, U, Werner, A, Wie, Y, Wiegel, B, Wilde, F, Windisch, T, Winkler, M, Winters, V, Wright, A, Wurden, G, Xanthopoulos, P, Yamada, I, Yasuhara, R, Yokoyama, M, Zhang, D, Zilker, M, Zimbal, A, Zocco, A, Zoletnik, S, Universidad de Sevilla. Departamento de Física Atómica, Molecular y Nuclear, Department of Applied Physics, Aalto-yliopisto, Aalto University, and Pacella, D.
- Subjects
Tokamak ,Plasma parameters ,Science ,General Physics and Astronomy ,Topology (electrical circuits) ,Topology ,7. Clean energy ,01 natural sciences ,Article ,General Biochemistry, Genetics and Molecular Biology ,010305 fluids & plasmas ,law.invention ,law ,0103 physical sciences ,010306 general physics ,Physics ,Fusion, Wendelstein7-X, Stellarator ,Multidisciplinary ,ta114 ,General Chemistry ,Plasma ,Fusion power ,Magnetic field ,Erratum ,Wendelstein 7-X ,Stellarator - Abstract
Fusion energy research has in the past 40 years focused primarily on the tokamak concept, but recent advances in plasma theory and computational power have led to renewed interest in stellarators. The largest and most sophisticated stellarator in the world, Wendelstein 7-X (W7-X), has just started operation, with the aim to show that the earlier weaknesses of this concept have been addressed successfully, and that the intrinsic advantages of the concept persist, also at plasma parameters approaching those of a future fusion power plant. Here we show the first physics results, obtained before plasma operation: that the carefully tailored topology of nested magnetic surfaces needed for good confinement is realized, and that the measured deviations are smaller than one part in 100,000. This is a significant step forward in stellarator research, since it shows that the complicated and delicate magnetic topology can be created and verified with the required accuracy., Early stellarator designs suffered from high particle losses, an issue that can be addressed by optimization of the coils. Here the authors measure the magnetic field lines in the Wendelstein 7-X stellarator, confirming that the complicated design of the superconducting coils has been realized successfully.
- Published
- 2016
19. Performance of the prototype LaBr3 spectrometer developed for the JET gamma-ray camera upgrade.
- Author
-
Rigamonti, D., Muraro, A., Nocente, M., Perseo, V., Boltruczyk, G., Fernandes, A., Figueiredo, J., Giacomelli, L., Gorini, G., Gosk, M., Kiptily, V., Korolczuk, S., Mianowski, S., Murari, A., Pereira, R. C., Cippo, E. P., Zychor, I., and Tardocchi, M.
- Subjects
SPECTROMETERS ,GAMMA ray spectroscopy ,DEUTERIUM plasma ,TRITIUM ,PLASMA diagnostics - Abstract
In this work, we describe the solution developed by the gamma ray camera upgrade enhancement project to improve the spectroscopic properties of the existing JET γ-ray camera. Aim of the project is to enable gamma-ray spectroscopy in JET deuterium-tritium plasmas. A dedicated pilot spectrometer based on a LaBr3 crystal coupled to a silicon photo-multiplier has been developed. A proper pole zero cancellation network able to shorten the output signal to a length of 120 ns has been implemented allowing for spectroscopy at MHz count rates. The system has been characterized in the laboratory and shows an energy resolution of 5.5% at Eγ = 0.662 MeV, which extrapolates favorably in the energy range of interest for gamma-ray emission from fast ions in fusion plasmas. [ABSTRACT FROM AUTHOR]
- Published
- 2016
- Full Text
- View/download PDF
20. Gamma-ray spectroscopy at MHz counting rates with a compact LaBr3 detector and silicon photomultipliers for fusion plasma applications.
- Author
-
Nocente, M., Rigamonti, D., Perseo, V., Tardocchi, M., Boltruczyk, G., Broslawski, A., Cremona, A., Croci, G., Gosk, M., Kiptily, V., Korolczuk, S., Mazzocco, M., Muraro, A., Strano, E., Zychor, I., and Gorini, G.
- Subjects
GAMMA ray spectroscopy ,DEUTERIUM ,TRITIUM ,TOKAMAKS - Abstract
Gamma-ray spectroscopy measurements at MHz counting rates have been carried out, for the first time, with a compact spectrometer based on a LaBr
3 scintillator and silicon photomultipliers. The instrument, which is also insensitive to magnetic fields, has been developed in view of the upgrade of the gamma-ray camera diagnostic for α particle measurements in deuterium-tritium plasmas of the Joint European Torus. Spectra were measured up to 2.9 MHz with a projected energy resolution of 3%-4% in the 3-5 MeV range, of interest for fast ion physics studies in fusion plasmas. The results reported here pave the way to first time measurements of the confined α particle profile in high power plasmas of the next deuterium-tritium campaign at the Joint European Torus. [ABSTRACT FROM AUTHOR]- Published
- 2016
- Full Text
- View/download PDF
21. Experimental confirmation of efficient island divertor operation and successful neoclassical transport optimization in Wendelstein 7-X
- Author
-
Thomas Sunn Pedersen, I. Abramovic, P. Agostinetti, M. Agredano Torres, S. Äkäslompolo, J. Alcuson Belloso, P. Aleynikov, K. Aleynikova, M. Alhashimi, A. Ali, N. Allen, A. Alonso, G. Anda, T. Andreeva, C. Angioni, A. Arkhipov, A. Arnold, W. Asad, E. Ascasibar, M.-H. Aumeunier, K. Avramidis, E. Aymerich, S.-G. Baek, J. Bähner, A. Baillod, M. Balden, J. Baldzuhn, S. Ballinger, M. Banduch, S. Bannmann, A. Banon Navarro, A. Bañón Navarro, T. Barbui, C. Beidler, C. Belafdil, A. Bencze, A. Benndorf, M. Beurskens, C. Biedermann, O. Biletskyi, B. Blackwell, M. Blatzheim, T. Bluhm, D. Böckenhoff, G. Bongiovi, M. Borchardt, D. Borodin, J. Boscary, H. Bosch, T. Bosmann, B. Böswirth, L. Böttger, A. Bottino, S. Bozhenkov, R. Brakel, C. Brandt, T. Bräuer, H. Braune, S. Brezinsek, K. Brunner, S. Buller, R. Burhenn, R. Bussiahn, B. Buttenschön, A. Buzás, V. Bykov, I. Calvo, K. Camacho Mata, I. Caminal, B. Cannas, A. Cappa, A. Carls, F. Carovani, M. Carr, D. Carralero, B. Carvalho, J. Casas, D. Castano-Bardawil, F. Castejon, N. Chaudhary, I. Chelis, A. Chomiczewska, J.W. Coenen, M. Cole, F. Cordella, Y. Corre, K. Crombe, G. Cseh, B. Csillag, H. Damm, C. Day, M. de Baar, E. De la Cal, S. Degenkolbe, A. Demby, S. Denk, C. Dhard, A. Di Siena, A. Dinklage, T. Dittmar, M. Dreval, M. Drevlak, P. Drewelow, P. Drews, D. Dunai, E. Edlund, F. Effenberg, G. Ehrke, M. Endler, D.A. Ennis, F.J. Escoto, T. Estrada, E. Fable, N. Fahrenkamp, A. Fanni, J. Faustin, J. Fellinger, Y. Feng, W. Figacz, E. Flom, O. Ford, T. Fornal, H. Frerichs, S. Freundt, G. Fuchert, M. Fukuyama, F. Füllenbach, G. Gantenbein, Y. Gao, K. Garcia, J.M. García Regaña, I. García-Cortés, J. Gaspar, D.A. Gates, J. Geiger, B. Geiger, L. Giudicotti, A. González, A. Goriaev, D. Gradic, M. Grahl, J.P. Graves, J. Green, E. Grelier, H. Greuner, S. Groß, H. Grote, M. Groth, M. Gruca, O. Grulke, M. Grün, J. Guerrero Arnaiz, S. Günter, V. Haak, M. Haas, P. Hacker, A. Hakola, A. Hallenbert, K. Hammond, X. Han, S.K. Hansen, J.H. Harris, H. Hartfuß, D. Hartmann, D. Hathiramani, R. Hatzky, J. Hawke, S. Hegedus, B. Hein, B. Heinemann, P. Helander, S. Henneberg, U. Hergenhahn, C. Hidalgo, F. Hindenlang, M. Hirsch, U. Höfel, K.P. Hollfeld, A. Holtz, D. Hopf, D. Höschen, M. Houry, J. Howard, X. Huang, M. Hubeny, S. Hudson, K. Ida, Y. Igitkhanov, V. Igochine, S. Illy, C. Ionita-Schrittwieser, M. Isobe, M. Jabłczyńska, S. Jablonski, B. Jagielski, M. Jakubowski, A. Jansen van Vuuren, J. Jelonnek, F. Jenko, T. Jensen, H. Jenzsch, P. Junghanns, J. Kaczmarczyk, J. Kallmeyer, U. Kamionka, M. Kandler, S. Kasilov, Y. Kazakov, D. Kennedy, A. Kharwandikar, M. Khokhlov, C. Kiefer, C. Killer, A. Kirschner, R. Kleiber, T. Klinger, S. Klose, J. Knauer, A. Knieps, F. Köchl, G. Kocsis, Ya.I. Kolesnichenko, A. Könies, R. König, J. Kontula, P. Kornejew, J. Koschinsky, M.M. Kozulia, A. Krämer-Flecken, R. Krampitz, M. Krause, N. Krawczyk, T. Kremeyer, L. Krier, D.M. Kriete, M. Krychowiak, I. Ksiazek, M. Kubkowska, M. Kuczynski, G. Kühner, A. Kumar, T. Kurki-Suonio, S. Kwak, M. Landreman, P.T. Lang, A. Langenberg, H.P. Laqua, H. Laqua, R. Laube, S. Lazerson, M. Lewerentz, C. Li, Y. Liang, Ch. Linsmeier, J. Lion, A. Litnovsky, S. Liu, J. Lobsien, J. Loizu, J. Lore, A. Lorenz, U. Losada, F. Louche, R. Lunsford, V. Lutsenko, M. Machielsen, F. Mackel, J. Maisano-Brown, O. Maj, D. Makowski, G. Manduchi, E. Maragkoudakis, O. Marchuk, S. Marsen, E. Martines, J. Martinez-Fernandez, M. Marushchenko, S. Masuzaki, D. Maurer, M. Mayer, K.J. McCarthy, O. Mccormack, P. McNeely, H. Meister, B. Mendelevitch, S. Mendes, A. Merlo, A. Messian, A. Mielczarek, O. Mishchenko, B. Missal, R. Mitteau, V.E. Moiseenko, A. Mollen, V. Moncada, T. Mönnich, T. Morisaki, D. Moseev, G. Motojima, S. Mulas, M. Mulsow, M. Nagel, D. Naujoks, V. Naulin, T. Neelis, H. Neilson, R. Neu, O. Neubauer, U. Neuner, D. Nicolai, S.K. Nielsen, H. Niemann, T. Nishiza, T. Nishizawa, C. Nührenberg, R. Ochoukov, J. Oelmann, G. Offermanns, K. Ogawa, S. Okamura, J. Ölmanns, J. Ongena, J. Oosterbeek, M. Otte, N. Pablant, N. Panadero Alvarez, A. Pandey, E. Pasch, R. Pavlichenko, A. Pavone, E. Pawelec, G. Pechstein, G. Pelka, V. Perseo, B. Peterson, D. Pilopp, S. Pingel, F. Pisano, B. Plöckl, G. Plunk, P. Pölöskei, B. Pompe, A. Popov, M. Porkolab, J. Proll, M.J. Pueschel, M.-E. Puiatti, A. Puig Sitjes, F. Purps, K. Rahbarnia, M. Rasiński, J. Rasmussen, A. Reiman, F. Reimold, M. Reisner, D. Reiter, M. Richou, R. Riedl, J. Riemann, K. Riße, G. Roberg-Clark, V. Rohde, J. Romazanov, D. Rondeshagen, P. Rong, L. Rudischhauser, T. Rummel, K. Rummel, A. Runov, N. Rust, L. Ryc, P. Salembier, M. Salewski, E. Sanchez, S. Satake, G. Satheeswaran, J. Schacht, E. Scharff, F. Schauer, J. Schilling, G. Schlisio, K. Schmid, J. Schmitt, O. Schmitz, W. Schneider, M. Schneider, P. Schneider, R. Schrittwieser, T. Schröder, M. Schröder, R. Schroeder, B. Schweer, D. Schwörer, E. Scott, B. Shanahan, G. Sias, P. Sichta, M. Singer, P. Sinha, S. Sipliä, C. Slaby, M. Sleczka, H. Smith, J. Smoniewski, E. Sonnendrücker, M. Spolaore, A. Spring, R. Stadler, D. Stańczak, T. Stange, I. Stepanov, L. Stephey, J. Stober, U. Stroth, E. Strumberger, C. Suzuki, Y. Suzuki, J. Svensson, T. Szabolics, T. Szepesi, M. Szücs, F.L. Tabarés, N. Tamura, A. Tancetti, C. Tantos, J. Terry, H. Thienpondt, H. Thomsen, M. Thumm, J.M. Travere, P. Traverso, J. Tretter, E. Trier, H. Trimino Mora, T. Tsujimura, Y. Turkin, A. Tykhyi, B. Unterberg, P. van Eeten, B.Ph. van Milligen, M. van Schoor, L. Vano, S. Varoutis, M. Vecsei, L. Vela, J.L. Velasco, M. Vervier, N. Vianello, H. Viebke, R. Vilbrandt, G. Vogel, N. Vogt, C. Volkhausen, A. von Stechow, F. Wagner, E. Wang, H. Wang, F. Warmer, T. Wauters, L. Wegener, T. Wegner, G. Weir, U. Wenzel, A. White, F. Wilde, F. Wilms, T. Windisch, M. Winkler, A. Winter, V. Winters, R. Wolf, A.M. Wright, G.A. Wurden, P. Xanthopoulos, S. Xu, H. Yamada, H. Yamaguchi, M. Yokoyama, M. Yoshinuma, Q. Yu, M. Zamanov, M. Zanini, M. Zarnstorff, D. Zhang, S. Zhou, J. Zhu, C. Zhu, M. Zilker, A. Zocco, H. Zohm, S. Zoletnik, L. Zsuga, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. GPI - Grup de Processament d'Imatge i Vídeo, Universitat Politècnica de Catalunya. GREO - Grup de Recerca en Enginyeria Òptica, Pedersen, T, Abramovic, I, Agostinetti, P, Torres, M, Akaslompolo, S, Belloso, J, Aleynikov, P, Aleynikova, K, Alhashimi, M, Ali, A, Allen, N, Alonso, A, Anda, G, Andreeva, T, Angioni, C, Arkhipov, A, Arnold, A, Asad, W, Ascasibar, E, Aumeunier, M, Avramidis, K, Aymerich, E, Baek, S, Bahner, J, Baillod, A, Balden, M, Baldzuhn, J, Ballinger, S, Banduch, M, Bannmann, S, Navarro, A, Barbui, T, Beidler, C, Belafdil, C, Bencze, A, Benndorf, A, Beurskens, M, Biedermann, C, Biletskyi, O, Blackwell, B, Blatzheim, M, Bluhm, T, Bockenhoff, D, Bongiovi, G, Borchardt, M, Borodin, D, Boscary, J, Bosch, H, Bosmann, T, Boswirth, B, Bottger, L, Bottino, A, Bozhenkov, S, Brakel, R, Brandt, C, Brauer, T, Braune, H, Brezinsek, S, Brunner, K, Buller, S, Burhenn, R, Bussiahn, R, Buttenschon, B, Buzas, A, Bykov, V, Calvo, I, Mata, K, Caminal, I, Cannas, B, Cappa, A, Carls, A, Carovani, F, Carr, M, Carralero, D, Carvalho, B, Casas, J, Castano-Bardawil, D, Castejon, F, Chaudhary, N, Chelis, I, Chomiczewska, A, Coenen, J, Cole, M, Cordella, F, Corre, Y, Crombe, K, Cseh, G, Csillag, B, Damm, H, Day, C, de Baar, M, De la Cal, E, Degenkolbe, S, Demby, A, Denk, S, Dhard, C, Di Siena, A, Dinklage, A, Dittmar, T, Dreval, M, Drevlak, M, Drewelow, P, Drews, P, Dunai, D, Edlund, E, Effenberg, F, Ehrke, G, Endler, M, Ennis, D, Escoto, F, Estrada, T, Fable, E, Fahrenkamp, N, Fanni, A, Faustin, J, Fellinger, J, Feng, Y, Figacz, W, Flom, E, Ford, O, Fornal, T, Frerichs, H, Freundt, S, Fuchert, G, Fukuyama, M, Fullenbach, F, Gantenbein, G, Gao, Y, Garcia, K, Regana, J, Garcia-Cortes, I, Gaspar, J, Gates, D, Geiger, J, Geiger, B, Giudicotti, L, Gonzalez, A, Goriaev, A, Gradic, D, Grahl, M, Graves, J, Green, J, Grelier, E, Greuner, H, Gross, S, Grote, H, Groth, M, Gruca, M, Grulke, O, Grun, M, Arnaiz, J, Gunter, S, Haak, V, Haas, M, Hacker, P, Hakola, A, Hallenbert, A, Hammond, K, Han, X, Hansen, S, Harris, J, Hartfuss, H, Hartmann, D, Hathiramani, D, Hatzky, R, Hawke, J, Hegedus, S, Hein, B, Heinemann, B, Helander, P, Henneberg, S, Hergenhahn, U, Hidalgo, C, Hindenlang, F, Hirsch, M, Hofel, U, Hollfeld, K, Holtz, A, Hopf, D, Hoschen, D, Houry, M, Howard, J, Huang, X, Hubeny, M, Hudson, S, Ida, K, Igitkhanov, Y, Igochine, V, Illy, S, Ionita-Schrittwieser, C, Isobe, M, Jablczynska, M, Jablonski, S, Jagielski, B, Jakubowski, M, van Vuuren, A, Jelonnek, J, Jenko, F, Jensen, T, Jenzsch, H, Junghanns, P, Kaczmarczyk, J, Kallmeyer, J, Kamionka, U, Kandler, M, Kasilov, S, Kazakov, Y, Kennedy, D, Kharwandikar, A, Khokhlov, M, Kiefer, C, Killer, C, Kirschner, A, Kleiber, R, Klinger, T, Klose, S, Knauer, J, Knieps, A, Kochl, F, Kocsis, G, Kolesnichenko, Y, Konies, A, Konig, R, Kontula, J, Kornejew, P, Koschinsky, J, Kozulia, M, Kramer-Flecken, A, Krampitz, R, Krause, M, Krawczyk, N, Kremeyer, T, Krier, L, Kriete, D, Krychowiak, M, Ksiazek, I, Kubkowska, M, Kuczynski, M, Kuhner, G, Kumar, A, Kurki-Suonio, T, Kwak, S, Landreman, M, Lang, P, Langenberg, A, Laqua, H, Laube, R, Lazerson, S, Lewerentz, M, Li, C, Liang, Y, Linsmeier, C, Lion, J, Litnovsky, A, Liu, S, Lobsien, J, Loizu, J, Lore, J, Lorenz, A, Losada, U, Louche, F, Lunsford, R, Lutsenko, V, Machielsen, M, Mackel, F, Maisano-Brown, J, Maj, O, Makowski, D, Manduchi, G, Maragkoudakis, E, Marchuk, O, Marsen, S, Martines, E, Martinez-Fernandez, J, Marushchenko, M, Masuzaki, S, Maurer, D, Mayer, M, Mccarthy, K, Mccormack, O, Mcneely, P, Meister, H, Mendelevitch, B, Mendes, S, Merlo, A, Messian, A, Mielczarek, A, Mishchenko, O, Missal, B, Mitteau, R, Moiseenko, V, Mollen, A, Moncada, V, Monnich, T, Morisaki, T, Moseev, D, Motojima, G, Mulas, S, Mulsow, M, Nagel, M, Naujoks, D, Naulin, V, Neelis, T, Neilson, H, Neu, R, Neubauer, O, Neuner, U, Nicolai, D, Nielsen, S, Niemann, H, Nishiza, T, Nishizawa, T, Nuhrenberg, C, Ochoukov, R, Oelmann, J, Offermanns, G, Ogawa, K, Okamura, S, Olmanns, J, Ongena, J, Oosterbeek, J, Otte, M, Pablant, N, Alvarez, N, Pandey, A, Pasch, E, Pavlichenko, R, Pavone, A, Pawelec, E, Pechstein, G, Pelka, G, Perseo, V, Peterson, B, Pilopp, D, Pingel, S, Pisano, F, Plockl, B, Plunk, G, Poloskei, P, Pompe, B, Popov, A, Porkolab, M, Proll, J, Pueschel, M, Puiatti, M, Sitjes, A, Purps, F, Rahbarnia, K, Rasinski, M, Rasmussen, J, Reiman, A, Reimold, F, Reisner, M, Reiter, D, Richou, M, Riedl, R, Riemann, J, Risse, K, Roberg-Clark, G, Rohde, V, Romazanov, J, Rondeshagen, D, Rong, P, Rudischhauser, L, Rummel, T, Rummel, K, Runov, A, Rust, N, Ryc, L, Salembier, P, Salewski, M, Sanchez, E, Satake, S, Satheeswaran, G, Schacht, J, Scharff, E, Schauer, F, Schilling, J, Schlisio, G, Schmid, K, Schmitt, J, Schmitz, O, Schneider, W, Schneider, M, Schneider, P, Schrittwieser, R, Schroder, T, Schroder, M, Schroeder, R, Schweer, B, Schworer, D, Scott, E, Shanahan, B, Sias, G, Sichta, P, Singer, M, Sinha, P, Siplia, S, Slaby, C, Sleczka, M, Smith, H, Smoniewski, J, Sonnendrucker, E, Spolaore, M, Spring, A, Stadler, R, Stanczak, D, Stange, T, Stepanov, I, Stephey, L, Stober, J, Stroth, U, Strumberger, E, Suzuki, C, Suzuki, Y, Svensson, J, Szabolics, T, Szepesi, T, Szucs, M, Tabares, F, Tamura, N, Tancetti, A, Tantos, C, Terry, J, Thienpondt, H, Thomsen, H, Thumm, M, Travere, J, Traverso, P, Tretter, J, Trier, E, Mora, H, Tsujimura, T, Turkin, Y, Tykhyi, A, Unterberg, B, van Eeten, P, van Milligen, B, van Schoor, M, Vano, L, Varoutis, S, Vecsei, M, Vela, L, Velasco, J, Vervier, M, Vianello, N, Viebke, H, Vilbrandt, R, Vogel, G, Vogt, N, Volkhausen, C, von Stechow, A, Wagner, F, Wang, E, Wang, H, Warmer, F, Wauters, T, Wegener, L, Wegner, T, Weir, G, Wenzel, U, White, A, Wilde, F, Wilms, F, Windisch, T, Winkler, M, Winter, A, Winters, V, Wolf, R, Wright, A, Wurden, G, Xanthopoulos, P, Xu, S, Yamada, H, Yamaguchi, H, Yokoyama, M, Yoshinuma, M, Yu, Q, Zamanov, M, Zanini, M, Zarnstorff, M, Zhang, D, Zhou, S, Zhu, J, Zhu, C, Zilker, M, Zocco, A, Zohm, H, Zoletnik, S, Zsuga, L, Fusion and Plasma Physics, Department of Applied Physics, National Institute for Fusion Science, Aalto-yliopisto, Aalto University, Science and Technology of Nuclear Fusion, Group Heemels, Control Systems Technology, and Turbulence in Fusion Plasmas
- Subjects
Magnetic confinement ,Nuclear and High Energy Physics ,Technology ,Materials science ,Detachment ,Nuclear engineering ,Física::Física de partícules [Àrees temàtiques de la UPC] ,Imatges -- Processament ,stellarator ,Divertor ,Image processing ,Physics::Plasma Physics ,divertor ,Wendelstein 7-X ,ddc:530 ,FIS/03 - FISICA DELLA MATERIA ,Neoclassical optimization ,Stellarators ,Reactors de fusió ,magnetic confinement ,Enginyeria de la telecomunicació::Processament del senyal::Processament de la imatge i del senyal vídeo [Àrees temàtiques de la UPC] ,Condensed Matter Physics ,ddc ,Fusion reactors ,Physics and Astronomy ,detachment ,neoclassical optimization ,ddc:620 ,ddc:600 ,Paper ,FEC 2020 Summaries and Overviews - Abstract
We present recent highlights from the most recent operation phases of Wendelstein 7-X, the most advanced stellarator in the world. Stable detachment with good particle exhaust, low impurity content, and energy confinement times exceeding 100 ms, have been maintained for tens of seconds. Pellet fueling allows for plasma phases with reduced ion-temperature-gradient turbulence, and during such phases, the overall confinement is so good (energy confinement times often exceeding 200 ms) that the attained density and temperature profiles would not have been possible in less optimized devices, since they would have had neoclassical transport losses exceeding the heating applied in W7-X. This provides proof that the reduction of neoclassical transport through magnetic field optimization is successful. W7-X plasmas generally show good impurity screening and high plasma purity, but there is evidence of longer impurity confinement times during turbulence-suppressed phases. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under Grant Agreement No. 633053. Peer Reviewed Article signat per 497 autors/es: Thomas Sunn Pedersen1,2,∗ , I. Abramovic3, P. Agostinetti4, M. Agredano Torres1, S. Äkäslompolo1, J. Alcuson Belloso1, P. Aleynikov1, K. Aleynikova1, M. Alhashimi1, A. Ali1, N. Allen5, A. Alonso6, G. Anda7, T. Andreeva1, C. Angioni8, A. Arkhipov8, A. Arnold1, W. Asad8, E. Ascasibar6, M.-H. Aumeunier9, K. Avramidis10, E. Aymerich11, S.-G. Baek3, J. Bähner1, A. Baillod12, M. Balden1, M. Balden8, J. Baldzuhn1, S. Ballinger3, M. Banduch1, S. Bannmann1, A. Banon Navarro8, A. Bañon Navarro ´ 1, T. Barbui13, C. Beidler1, C. Belafdil9, A. Bencze7, A. Benndorf1, M. Beurskens1, C. Biedermann1, O. Biletskyi14, B. Blackwell15, M. Blatzheim1, T. Bluhm1, D. Böckenhoff1, G. Bongiovi16, M. Borchardt1, D. Borodin17, J. Boscary8, H. Bosch1,18, T. Bosmann19, B. Böswirth8, L. Böttger1, A. Bottino8, S. Bozhenkov1, R. Brakel1, C. Brandt1, T. Bräuer1, H. Braune1, S. Brezinsek17, K. Brunner1, S. Buller1, R. Burhenn1, R. Bussiahn1, B. Buttenschön1, A. Buzás7, V. Bykov1, I. Calvo6, K. Camacho Mata1, I. Caminal20, B. Cannas11, A. Cappa6, A. Carls1, F. Carovani1, M. Carr21, D. Carralero6, B. Carvalho22, J. Casas20, D. Castano-Bardawil17, F. Castejon6, N. Chaudhary1, I. Chelis23, A. Chomiczewska24, J.W. Coenen13,17, M. Cole1, F. Cordella25, Y. Corre9, K. Crombe26, G. Cseh7, B. Csillag7, H. Damm1, C. Day10, M. de Baar27, E. De la Cal6, S. Degenkolbe1, A. Demby13, S. Denk3, C. Dhard1, A. Di Siena8,28, A. Dinklage12, T. Dittmar17, M. Dreval14, M. Drevlak1, P. Drewelow1, P. Drews17, D. Dunai7, E. Edlund3, F. Effenberg29, G. Ehrke1, M. Endler1, D.A. Ennis5, F.J. Escoto6, T. Estrada6, E. Fable8, N. Fahrenkamp1, A. Fanni11, J. Faustin1, J. Fellinger1, Y. Feng1, W. Figacz4, E. Flom13, O. Ford1, T. Fornal24, H. Frerichs13, S. Freundt1, G. Fuchert1, M. Fukuyama30, F. Füllenbach1, G. Gantenbein10, Y. Gao1, K. Garcia13, J.M. García Regaña6, I. García-Cortés6, J. Gaspar31, D.A. Gates29, J. Geiger1, B. Geiger13, L. Giudicotti32, A. González6, A. Goriaev26,33, D. Gradic1, M. Grahl1, J.P. Graves12, J. Green13, E. Grelier9, H. Greuner8, S. Groß1, H. Grote1, M. Groth34, M. Gruca24, O. Grulke1,35, M. Grün1, J. Guerrero Arnaiz1, S. Günter8, V. Haak1, M. Haas1, P. Hacker1, A. Hakola36, A. Hallenbert1, K. Hammond29, X. Han17,37, S.K. Hansen3, J.H. Harris38, H. Hartfuß1, D. Hartmann1, D. Hathiramani1, R. Hatzky8, J. Hawke39, S. Hegedus7, B. Hein8, B. Heinemann8, P. Helander12, S. Henneberg1, U. Hergenhahn8,40, C. Hidalgo6, F. Hindenlang8, M. Hirsch1, U. Höfel1, K.P. Hollfeld17, A. Holtz1, D. Hopf8, D. Höschen17, M. Houry9, J. Howard19, X. Huang41, M. Hubeny17, S. Hudson29, K. Ida9, Y. Igitkhanov10, V. Igochine8, S. Illy10, C. Ionita-Schrittwieser42, M. Isobe39, M. Jabłczynska ´ 24, S. Jablonski24, B. Jagielski1, M. Jakubowski1, A. Jansen van Vuuren1, J. Jelonnek10, F. Jenko8, F. Jenko8, T. Jensen35, H. Jenzsch1, P. Junghanns8, J. Kaczmarczyk24, J. Kallmeyer1, U. Kamionka1, M. Kandler8, S. Kasilov43, Y. Kazakov26, D. Kennedy1, A. Kharwandikar1, M. Khokhlov1, C. Kiefer8, C. Killer1, A. Kirschner17, R. Kleiber1, T. Klinger12, S. Klose1, J. Knauer1, A. Knieps17, F. Köchl44, G. Kocsis7, Ya.I. Kolesnichenko45, A. Könies1, R. König1, J. Kontula34, P. Kornejew1, J. Koschinsky, M.M. Kozulia14, A. Krämer-Flecken17, R. Krampitz1, M. Krause1, N. Krawczyk24, T. Kremeyer1, L. Krier10, D.M. Kriete5, M. Krychowiak1, I. Ksiazek46, M. Kubkowska24, M. Kuczynski1, G. Kühner1, A. Kumar15, T. Kurki-Suonio34, S. Kwak1, M. Landreman47, P.T. Lang8, A. Langenberg1, H.P. Laqua12, H. Laqua1, R. Laube1, S. Lazerson1, M. Lewerentz1, C. Li17, Y. Liang17, Ch. Linsmeier17, J. Lion1, A. Litnovsky17,48, S. Liu37, J. Lobsien1, J. Loizu12, J. Lore38, A. Lorenz1, U. Losada6, F. Louche26, R. Lunsford29, V. Lutsenko45, M. Machielsen12, F. Mackel8, J. Maisano-Brown3, O. Maj8, D. Makowski49, G. Manduchi50, E. Maragkoudakis6, O. Marchuk17, S. Marsen1, E. Martines4, J. Martinez-Fernandez6, M. Marushchenko1, S. Masuzaki41, D. Maurer5, M. Mayer8, K.J. McCarthy6, O. Mccormack4, P. McNeely1, H. Meister8, B. Mendelevitch8, S. Mendes1, A. Merlo1, A. Messian26, A. Mielczarek49, O. Mishchenko1, B. Missal1, R. Mitteau9, V.E. Moiseenko14, A. Mollen1, V. Moncada9, T. Mönnich1, T. Morisaki41, D. Moseev1, G. Motojima41, S. Mulas6, M. Mulsow1, M. Nagel1, D. Naujoks1, V. Naulin35, T. Neelis19, H. Neilson29, R. Neu8, O. Neubauer17, U. Neuner1, D. Nicolai17, S.K. Nielsen35, H. Niemann1, T. Nishiza1, T. Nishizawa1, T. Nishizawa8, C. Nührenberg1, R. Ochoukov8, J. Oelmann17, G. Offermanns17 K. Ogawa41, S. Okamura41, J. Ölmanns17, J. Ongena26, J. Oosterbeek1, M. Otte1, N. Pablant29, N. Panadero Alvarez6, N. Panadero Alvarez6, A. Pandey1, E. Pasch1, R. Pavlichenko14, A. Pavone1, E. Pawelec46, G. Pechstein1, G. Pelka24, V. Perseo1, B. Peterson41, D. Pilopp1, S. Pingel1, F. Pisano11, B. Plöckl8, G. Plunk1, P. Pölöskei1, B. Pompe2, A. Popov51, M. Porkolab3, J. Proll19, M.J. Pueschel19,27, M.-E. Puiatti52, A. Puig Sitjes1, F. Purps1, K. Rahbarnia1, M. Rasinski ´ 17, J. Rasmussen35, A. Reiman29, F. Reimold1, M. Reisner8, D. Reiter17, M. Richou9, R. Riedl8, J. Riemann1, K. Riße1, G. Roberg-Clark1, V. Rohde8, J. Romazanov17, D. Rondeshagen1, P. Rong1, L. Rudischhauser1, T. Rummel1, K. Rummel1, A. Runov1, N. Rust1, L. Ryc24, P. Salembier20, M. Salewski35, E. Sanchez6, S. Satake41, G. Satheeswaran17, J. Schacht1, E. Scharff1, F. Schauer8, J. Schilling1, G. Schlisio1, K. Schmid8, J. Schmitt5, O. Schmitz13, W. Schneider1, M. Schneider1, P. Schneider8, R. Schrittwieser42, T. Schröder1, M. Schröder1, R. Schroeder1, B. Schweer26, D. Schwörer1, E. Scott1, E. Scott8, B. Shanahan1, G. Sias11, P. Sichta29, M. Singer1, P. Sinha29, S. Sipliä34, C. Slaby1, M. Sleczka53, H. Smith1, J. Smoniewski54, E. Sonnendrücker8, M. Spolaore4, A. Spring1, R. Stadler8, D. Stanczak24, T. Stange1, I. Stepanov26, L. Stephey13, J. Stober8, U. Stroth8,55, E. Strumberger8, C. Suzuki41, Y. Suzuki41, J. Svensson1, T. Szabolics7, T. Szepesi7, M. Szücs7, F.L. Tabares6, N. Tamura41, A. Tancetti35, C. Tantos10, J. Terry3, H. Thienpondt6, H. Thomsen1, M. Thumm10, J.M. Travere9, P. Traverso5, J. Tretter8, E. Trier8, H. Trimino Mora1, T. Tsujimura41, Y. Turkin1, A. Tykhyi45, B. Unterberg17, P. van Eeten1, B.Ph. van Milligen6, M. van Schoor26, L. Vano1, S. Varoutis10, M. Vecsei7, L. Vela56, J.L. Velasco6, M. Vervier17, N. Vianello50, H. Viebke1, R. Vilbrandt1, G. Vogel8, N. Vogt1, C. Volkhausen1, A. von Stechow1, F. Wagner1, E. Wang17, H. Wang57, F. Warmer1, T. Wauters26, L. Wegener1, T. Wegner1, G. Weir1, U. Wenzel1, A. White3, F. Wilde1, F. Wilms1, T. Windisch1, M. Winkler1, A. Winter1, V. Winters1, R. Wolf118, A.M. Wright29, G.A. Wurden39, P. Xanthopoulos1, S. Xu17, H. Yamada58, H. Yamaguchi41, M. Yokoyama41, M. Yoshinuma41, Q. Yu8, M. Zamanov14, M. Zanini1, M. Zarnstorff29, D. Zhang1, S. Zhou17, J. Zhu1, C. Zhu29, M. Zilker8, A. Zocco1, H. Zohm8, S. Zoletnik7 and L. Zsuga7 // 1 Max Planck Institute for Plasma Physics, Garching and Greifswald, Germany: 2 University of Greifswald, Greifswald, Germany; 3 Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of America; 4 Consorzio RFX, Corso Stati Uniti, 4-35127 Padova, Italy; 5 Auburn University, Auburn, AL 36849, United States of America; 6 CIEMAT, Avenida Complutense, 40, 28040 Madrid, Spain; 7 Center for Energy Research, Konkoly-Thegeut 29-33, 1121 Budapest, Hungary; 8 Max-Planck-Institute for Plasma Physics, Boltzmannstraße 2, 85748 Garching bei München, Germany; 9 CEA Cadarache, 13115 Saint-Paul-lez-Durance, France; 10 Karlsruhe Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany; 11 University of Cagliari, Via Universita, 40, 09124 Cagliari, Italy; 12 École Polytechnique Fédérale de Lausanne, Swiss Plasma Center, CH-1015 Lausanne, Switzerland; 13 University of Wisconsin–Madison, Engineering Drive, Madison, WI 53706, United States of America; 14 Institute of Plasma Physics, National Science Center ‘Kharkiv Institute of Physics and Technology’, Kharkiv, Ukraine; 15 The Australian National University, Acton ACT 2601, Canberra, Australia; 16 Department of Engineering, University of Palermo, Viale delle Scienze, Edificio 6, Palermo, 90128, Italy; 17 Forschungszentrum Jülich GmbH, Institut für Energie-und Klimaforschung—Plasmaphysik, 52425 Jülich, Germany; 18 Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany; 19 Eindhoven University of Technology, 5600 MB Eindhoven, Netherlands; 20 Universitat Politècnica de Catalunya. BarcelonaTech, C. Jordi Girona, 31, 08034 Barcelona, Spain; 21 Culham Center for Fusion Energy, Abingdon OX14 3EB, United Kingdom; 22 Instituto de Plasmas e Fusao Nuclear, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; 23 Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece; 24 Institute of Plasma Physics and Laser Microfusion, 23 Hery Str., 01-497 Warsaw, Poland; 25 ENEA—Centro Ricerche Frascati, Via Enrico Fermi, 45, 00044 Frascati RM, Italy; 26 Laboratory for Plasma Physics, LPP-ERM/KMS, TEC Partner, B-1000 Brussels, Belgium; 27 Dutch Institute for Fundamental Energy Research, PO Box 6336, 5600 HH Eindhoven, Netherlands; 28 University of Texas, Austin, TX, United States of America; 29 Princeton Plasma Physics Laboratory, Princeton, NJ 08543, United States of America; 30 Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan; 31 Aix-Marseille University, Jardin du Pharo, 58 Boulevard Charles Livon, 13007, Marseille, France; 32 Department of Physics and Astronomy, Padova University, Via Marzolo 8, 35131 Padova, Italy; 33 Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; 34 Aalto University, 02150 Espoo, Finland; 35 Department of Physics, Technical University of Denmark, Anker Engelunds Vej, 2800 Kgs Lyngby, Denmark; 36 VTT Technical Research Center of Finland Ltd., PO Box 1000, FI-02044 VTT, Finland; 37 Institute of Plasma Physics, Chinese Academy of Sciences, 230031 Hefei, Anhui, China; 38 Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37830, United States of America; 39 Los Alamos National Laboratory, NM 87545, United States of America; 40 Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany; 41 National Institute for Fusion Science, National Institutes of Natural Sciences, 322-6 Oroshi-cho, Toki, Gifu Prefecture 509-5292, Japan; 42 Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria; 43 Graz University of Technology, Rechbauerstraße 12, 8010 GRAZ, Austria; 44 Austrian Academy of Science, Doktor-Ignaz-Seipel-Platz 2, 1010 Wien, Austria; 45 Institute for Nuclear Research, prospekt Nauky 47, Kyiv 03028, Ukraine; 46 University of Opole, plac Kopernika 11a, 45-001 Opole, Poland; 47 University of Maryland, Paint Branch Drive, College Park, MA 20742, United States of America; 48 National Research Nuclear University MEPhI, 115409 Moscow, Russian Federation; 49 Department of Microelectronics and Computer Science, Lodz University of Technology, Wolczanska 221/223, 90-924 Lodz, Poland; 50 Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, 7, 00185 Roma, Italy; 51 Ioffe Physical-Technical Institute of the Russian Academy of Sciences, 26 Politekhnicheskaya, St Petersburg 194021, Russian Federation; 52 Istituto di Fisica del Plasma Piero Caldirola, Via Roberto Cozzi, 53, 20125 Milano, Italy; 53 University of Szczecin, 70-453, aleja Papieza Jana Pawła II 22A, Szczecin, Poland; 54 Lawrence University, 711 E Boldt Way, Appleton, WI 54911, United States of America; 55 Physik-Department E28, Technische Universität München, 85747 Garching, Germany; 56 Universidad Carlos III de Madrid, Av. de la Universidad, 30 Madrid, Spain; 57 Yale University, New Haven, CT 06520, United States of America; 58 University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chhiab 277-0882, Japan Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant Objectius de Desenvolupament Sostenible::7 - Energia Assequible i No Contaminant::7.a - Per a 2030, augmentar la cooperació internacional per tal de facilitar l’accés a la investigació i a les tecnologies energètiques no contaminants, incloses les fonts d’energia renovables, l’eficiència energètica i les tecnologies de combustibles fòssils avançades i menys contaminants, i promoure la inversió en infraestructures energètiques i tecnologies d’energia no contaminant
- Published
- 2022
- Full Text
- View/download PDF
22. Multi-delay coherence imaging spectroscopy optimized for ion temperature measurements in the divertor plasma of the Wendelstein 7-X stellarator.
- Author
-
Kriete DM, Perseo V, Gradic D, Ennis DA, König R, and Maurer DA
- Abstract
A new coherence imaging spectroscopy (CIS) diagnostic optimized to measure the C2+ impurity ion temperature Ti spatial distribution in the divertor plasma of the W7-X stellarator is designed, tested, and validated. Using CIS to obtain Ti in the edge of magnetically confined plasmas has historically been challenging because Doppler broadening and Zeeman splitting have comparable effects on the shape of spectral emission lines. To distinguish between these two mechanisms, a novel approach to birefringent crystal design is employed to minimize the diagnostic's sensitivity to Zeeman splitting. The recently developed pixelated multi-delay CIS approach is also used to obtain four times as much spectral information as traditional CIS approaches. The Ti-optimized CIS diagnostic is validated in a long-pulse W7-X plasma by comparison with a high-resolution spectrometer whose sightlines overlap with the CIS field of view. The CIS and spectrometer Ti profiles have the same shape and agree to within 10% on average and 25% in the worst case. Images of the Ti distribution near the divertor show toroidally elongated bands aligned with the magnetic field, with Ti ranging between 10 and 40 eV., (© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).)
- Published
- 2024
- Full Text
- View/download PDF
23. Publisher's Note: "Coherence imaging spectroscopy at Wendelstein 7-X for impurity flow measurements" [Rev. Sci. Instrum. 91, 013501 (2020)].
- Author
-
Perseo V, Gradic D, König R, Ford OP, Killer C, Grulke O, and Ennis DA
- Published
- 2020
- Full Text
- View/download PDF
24. Coherence imaging spectroscopy at Wendelstein 7-X for impurity flow measurements.
- Author
-
Perseo V, Gradic D, König R, Ford OP, Killer C, Grulke O, and Ennis DA
- Abstract
In the last decade, Coherence Imaging Spectroscopy (CIS) has shown distinctive results in measuring ion flow velocities in the edge of magnetically confined plasma devices. Its 2D spatially resolved measurement capabilities and its high optical throughput are ideal for investigating the impurity behavior in the complex 3D magnetic island topology edge of Wendelstein 7-X (W7-X). However, a highly precise and stable calibration method is required for a reliable diagnostic operation. A new level of precision and stability has been achieved for the two CIS systems installed at W7-X with the use of a new calibration source, a continuous tunable laser commercially available only since 2015. A specific prototype model was successfully adapted to the challenging requirements of W7-X, granting high accuracy (±0.01 pm) and flexibility (spectral range: 450-650 nm) in the wavelength calibration required for measuring low-Z impurity ion flow velocities. These features opened up new investigation possibilities on temperature stability and wavelength response of the CIS components, allowing to fully characterize and validate the W7-X systems. The CIS diagnostic was operational throughout the last W7-X experimental campaign. Measured velocities on the order of ∼20-30 km/s were observed, corroborated by comparisons with measurements with Mach probes.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.