1. Particulate Matter Neurotoxicity in Culture is Size-Dependent
- Author
-
Morton Lippmann, Patricia A. Gillespie, Bellina Veronesi, Lung Chi Chen, and Julianne Tajuba
- Subjects
Enolase ,Toxicology ,medicine.disease_cause ,Article ,Andrology ,chemistry.chemical_compound ,Air Pollution ,Ultrafine particle ,medicine ,Animals ,Humans ,Nitrite ,Particle Size ,Reactive nitrogen species ,Cells, Cultured ,Retrospective Studies ,Neurons ,Analysis of Variance ,Dose-Response Relationship, Drug ,General Neuroscience ,Spectrum Analysis ,Neurotoxicity ,medicine.disease ,Embryo, Mammalian ,Corpus Striatum ,Rats ,Dose–response relationship ,chemistry ,Phosphopyruvate Hydratase ,Toxicity ,Particulate Matter ,Microglia ,Gutta-Percha ,Oxidative stress - Abstract
Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has more recently been associated with neurotoxicity. This study examines if the size-dependent toxicity reported in cardiopulmonary systems also occurs in neural targets. For this study, PM ambient air was collected over a 2 week period from Sterling Forest State Park (Tuxedo, New York) and its particulates sized as Accumulation Mode, Fine (AMF) (>0.18-1μm) or Ultrafine (UF) (12.5μg/ml) but was only significant at the highest concentration of AMF (50μg/ml). To examine if PM size-dependent neurotoxicity was retained in the presence of other cell types, dissociated brain cultures of embryonic rat striatum were exposed to AMF (80μg/ml) or UF (8.0μg/ml). After 24h exposure, a significant increase of reactive nitrogen species (nitrite) and morphology suggestive of apoptosis occurred in both treatment groups. However, morphometric analysis of neuron specific enolase staining indicated that only the UF exposure produced significant neuronal loss, relative to controls. Together, these data suggest that the inverse relationship between size and toxicity reported in cardiopulmonary systems occurs in cultures of isolated dopaminergic neurons and in primary cultures of the rat striatum.
- Published
- 2011