1. Loss of Anks6 leads to YAP deficiency and liver abnormalities.
- Author
-
Airik M, Schüler M, McCourt B, Weiss AC, Herdman N, Lüdtke TH, Widmeier E, Stolz DB, Nejak-Bowen KN, Yimlamai D, Wu YL, Kispert A, Airik R, and Hildebrandt F
- Subjects
- Animals, Bile Ducts growth & development, Bile Ducts metabolism, Bile Ducts pathology, Cell Differentiation genetics, Ciliopathies genetics, Ciliopathies metabolism, Ciliopathies pathology, Humans, Liver abnormalities, Liver metabolism, Liver pathology, Mice, Mice, Knockout, Morphogenesis genetics, Signal Transduction genetics, TEA Domain Transcription Factors, YAP-Signaling Proteins, Adaptor Proteins, Signal Transducing genetics, Carrier Proteins genetics, DNA-Binding Proteins genetics, Liver growth & development, Muscle Proteins genetics, Transcription Factors genetics
- Abstract
ANKS6 is a ciliary protein that localizes to the proximal compartment of the primary cilium, where it regulates signaling. Mutations in the ANKS6 gene cause multiorgan ciliopathies in humans, which include laterality defects of the visceral organs, renal cysts as part of nephronophthisis and congenital hepatic fibrosis (CHF) in the liver. Although CHF together with liver ductal plate malformations are common features of several human ciliopathy syndromes, including nephronophthisis-related ciliopathies, the mechanism by which mutations in ciliary genes lead to bile duct developmental abnormalities is not understood. Here, we generated a knockout mouse model of Anks6 and show that ANKS6 function is required for bile duct morphogenesis and cholangiocyte differentiation. The loss of Anks6 causes ciliary abnormalities, ductal plate remodeling defects and periportal fibrosis in the liver. Our expression studies and biochemical analyses show that biliary abnormalities in Anks6-deficient livers result from the dysregulation of YAP transcriptional activity in the bile duct-lining epithelial cells. Mechanistically, our studies suggest, that ANKS6 antagonizes Hippo signaling in the liver during bile duct development by binding to Hippo pathway effector proteins YAP1, TAZ and TEAD4 and promoting their transcriptional activity. Together, this study reveals a novel function for ANKS6 in regulating Hippo signaling during organogenesis and provides mechanistic insights into the regulatory network controlling bile duct differentiation and morphogenesis during liver development., (© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.)
- Published
- 2020
- Full Text
- View/download PDF